WO2020232961A1 - 一种具有超高介电常数有机/无机铁电复合材料、其制备方法及应用 - Google Patents

一种具有超高介电常数有机/无机铁电复合材料、其制备方法及应用 Download PDF

Info

Publication number
WO2020232961A1
WO2020232961A1 PCT/CN2019/111756 CN2019111756W WO2020232961A1 WO 2020232961 A1 WO2020232961 A1 WO 2020232961A1 CN 2019111756 W CN2019111756 W CN 2019111756W WO 2020232961 A1 WO2020232961 A1 WO 2020232961A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferroelectric
organic
composite material
inorganic
dielectric constant
Prior art date
Application number
PCT/CN2019/111756
Other languages
English (en)
French (fr)
Inventor
齐建全
常娟雄
马振伟
韩秀梅
汪晋宽
王亭惠
姜茂成
程静
周吉祥
李梦莹
王佳
孙金月
吴晶晶
张君
孙晴雯
李妍
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2020232961A1 publication Critical patent/WO2020232961A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/032Inorganic semiconducting electrolytes, e.g. MnO2

Definitions

  • the invention relates to an organic/inorganic ferroelectric composite material with ultra-high dielectric constant, a preparation method and application thereof, and belongs to the technical field of preparation of high dielectric materials.
  • Electrolytic capacitors are one of the most representative ones. They are widely used in household appliances and various electronic products. They have a large capacity range, generally 1 ⁇ 3300 ⁇ F. , The rated working voltage range is 6.3 ⁇ 700V.
  • electrolytic capacitors use metal foil (aluminum or tantalum) as the positive electrode, and the metal oxide film (aluminum oxide or tantalum pentoxide) close to the positive electrode is the dielectric.
  • the negative electrode is made of conductive materials, electrolyte (can be liquid or solid) and Other materials are made up together. Because the electrolyte is the main part of the negative electrode, the electrolytic capacitor is named after it.
  • electrolytic capacitors are dielectric loss, large capacity error (the maximum allowable deviation is +100%, -20%), poor high temperature resistance, and prone to failure when stored for a long time. It is easy to cause deformation, explosion, leakage, etc. during use, which will damage the entire circuit.
  • the manufacturing process of electrolytic capacitors is relatively complicated, and it is difficult to make chip capacitors.
  • the present invention provides an organic/inorganic ferroelectric composite material with ultra-high dielectric constant, its preparation method and application.
  • the material is a large-capacity all-solid state and is suitable for surface mounting.
  • the preparation method is to fill the ferroelectric inorganic powder such as BaTiO 3 into the ferroelectric organic phase matrix formed by mixing the ferroelectric organic macromolecule DIPAB and the ferroelectric organic polymer polyvinylidene fluoride PVDF.
  • the formation of new organic/inorganic ferroelectric composite materials Due to the huge space charge polarization formed between the ferroelectric phase interfaces, this new organic/inorganic composite material has an ultra-high dielectric constant. At room temperature, its relative dielectric constant is greater than 10 5 at power frequency; There are many kinds of interface charge polarization, which breaks through the current existing dielectric theory pre-permeation theory, and provides a new way for material application and further research.
  • the main technical solutions adopted by the present invention include:
  • An organic/inorganic ferroelectric composite material with ultra-high dielectric constant which is a new type of inorganic powder filler with ferroelectric properties in a matrix composite formed by organic ferroelectric macromolecules and ferroelectric polymer Organic/inorganic ferroelectric composite material.
  • the relative dielectric constant is greater than 10 5 .
  • the inorganic powder is barium titanate (BaTiO 3 ), strontium titanate (SrTiO 3 ), barium strontium titanate (Ba 1-x Sr x TiO 3 ), barium zirconate titanate ( At least one of BaTi 1-y Zr y O 3 ), lithium niobate (LiNbO 3 ), potassium niobate (KNbO 3 ), potassium sodium niobate (K 1-x Na x NbO 3 ), etc.;
  • the organic ferroelectric macromolecule is at least one of diisopropylamine bromide (DIPAB), diisopropylamine chloride (DIPAC), triglycidyl sulfate (TGS), rosinate (RS), etc.;
  • DIPAB diisopropylamine bromide
  • DIPAC diisopropylamine chloride
  • TGS triglycidyl sulfate
  • RS rosinate
  • the ferroelectric high molecular polymer is at least one of polyvinylidene fluoride (PVDF), PVDF copolymer, polylactic acid (PLA), etc.;
  • the copolymer of PVDF is vinylidene fluoride and trifluoroethylene copolymer P (VDF-TrFE) or polyvinylidene fluoride and hexafluoropropylene copolymer P (VDF-HFE).
  • the volume ratio of the organic ferroelectric macromolecule to the ferroelectric macromolecule polymer is 1-9:9-1; the mass filling ratio of the inorganic powder with ferroelectric properties in the composite material is 20%-95%.
  • a preparation method of an organic/inorganic ferroelectric composite material with ultra-high dielectric constant which comprises the following steps:
  • step S3 Add the inorganic ferroelectric oxide nanopowder obtained in step S1 to the organic matrix solution or sol described in S2, and after ultrasonic vibration, the solvent is evaporated to obtain a composite material powder with ultra-high dielectric constant body;
  • the inorganic ferroelectric oxide is BaTiO 3 , BaTiO 3 , SrTiO 3 , Ba 1-x Sr x TiO 3 , BaTi 1-y Zr y O 3 , LiNbO 3 , At least one of KNbO 3 or K 1-x Na x NbO 3 ; the temperature of the heat treatment is 25°C to 1350°C.
  • the organic ferroelectric macromolecule is at least one of DIPAB, DIPAC, TGS or RS;
  • the ferroelectric polymer is at least one of PVDF, PVDF copolymer or PLA;
  • the solvent is water, ethanol, isopropanol, benzene, toluene, acetone, or methyl ethyl ketone.
  • the volume ratio of the organic ferroelectric macromolecule to the ferroelectric macromolecule polymer is 1-9:9-1;
  • step S3 the inorganic ferroelectric oxide nanopowder is 20%-95% of the mass of the composite material powder.
  • step S3 the solvent evaporation is drying in a drying box, and the drying temperature is 70-100°C.
  • the pressing conditions are pressure of 1 to 300 MPa and temperature of room temperature to 250°C.
  • the ultra-high dielectric constant is greater than 10 5 .
  • the above-mentioned organic/inorganic ferroelectric composite material with ultra-high dielectric constant or the material obtained by the preparation method is used in the preparation of functional devices with ultra-high dielectric constant, and the organic/inorganic iron with ultra-high dielectric constant
  • the electric composite material is introduced into the electrode to obtain.
  • the method of introducing the electrode includes pressing, evaporation, screen printing, etc., and the above-mentioned ultra-high dielectric constant composite material is covered on both sides by pressing, evaporation, and screen printing. electrode.
  • the ultra-high dielectric constant composite material powder is placed between two layers of aluminum foil, and pressed with a pressure of 1-100 MPa to form the required sheet, wherein the aluminum foil is used as the electrode material and the sheet is rolled Or stacked to form a capacitor.
  • the ultra-high dielectric constant composite material is printed on a metal foil, and after curing, a conductive ink is screen-printed on it to form another layer of electrodes to form a capacitor.
  • the ultra-high dielectric constant composite material powder is pressed into the required sheet at a pressure of 1 to 300 MPa, and then the two sides of the sheet are vapor-deposited to form metal electrodes, and the sheet with electrodes is rolled Or stacked to form a capacitor.
  • the functional device includes monolithic capacitors, plug-in capacitors, and chip capacitors.
  • the present invention provides a new type of ultra-high dielectric material with a relative dielectric constant of more than 100,000.
  • the preparation method provided is by filling a ferroelectric inorganic ferroelectric powder such as BaTiO 3 with iron In the ferroelectric organic phase matrix formed by mixing electrical organic macromolecules such as DIPAB and ferroelectric organic polymers such as PVDF, a new type of organic/inorganic ferroelectric composite material is formed.
  • the new organic/inorganic composite material has a relative dielectric constant greater than 10 5 at room temperature at power frequency.
  • the preparation method has simple operation, low price, and is easy for mass industrial production.
  • the new ultra-high dielectric material can be used to prepare large-capacity all-solid-state capacitor materials suitable for surface mounting.
  • the high dielectric constant is usually explained by dielectric percolation theory.
  • dielectric percolation theory In existing dielectric composite materials, the high dielectric constant is usually explained by dielectric percolation theory.
  • dielectric percolation theory In conductive composites, as the filling ratio of conductive materials increases, the degree of interconnection between particles will continue to increase. When the filling ratio reaches a certain critical value, the system will suddenly appear long-range connectivity. It is manifested as a rapid increase in the conductivity of the composite material. This phenomenon is called conductive percolation. Therefore, it can be explained that some composite materials have higher dielectric constants.
  • the ultra-high dielectric material obtained by the present invention cannot be explained by the current existing dielectric composite pre-infiltration theory. This material has a variety of interface charge polarization, which provides a new way for material application and further research.
  • Figure 1 is the XRD pattern of the sample in the example; among them, (a) the XRD pattern of BaTiO 3 synthesized by the solution direct synthesis method, (b) the XRD pattern of DIPAB crystallized from the aqueous solution in the example, (c) the XRD pattern of the reagent PVDF, (c) XRD pattern of the composite material powder in Example 1;
  • FIG. 2 is a SEM photograph of different BaTiO 3 powders used in the examples. Among them, (a) BaTiO 3 powder synthesized at room temperature used in Example 1 and (b) 800°C used in Examples 2 and 3 BaTiO 3 powder after calcining, (c) BaTiO 3 powder calcined at 850°C, (d) BST powder calcined at 950°C used in Example 4;
  • Figure 3 is a dielectric spectrum analysis of the composite material prepared in Example 1;
  • Figure 4 shows the dielectric spectrum analysis of the composite materials prepared in Examples 2 and 3 (BaTiO3 powder calcined at 800°C), in which (a) the dielectric constant of Example 2 and (b) the dielectric constant of Example 2 , (C) Example 2 loss, (d) Example 3 loss;
  • Figure 5 shows the dielectric-temperature characteristics of the composite material in Example 3.
  • Fig. 6 is a dielectric spectrum analysis of the composite material prepared in Example 4 (filler is 950° C.-BST, and the added amount is 80%).
  • the XRD diffraction peaks of the three ferroelectrics exist at the same time, and the peak of the PVDF polymer is relatively weak, which is determined by its own crystalline condition and its content is low.
  • the ultra-high dielectric constant composite material powder is placed between two layers of aluminum foil, and pressed at room temperature with a pressure of 100 MPa to form the required sheet, wherein the aluminum foil is used as the electrode material.
  • Using a dielectric spectrum analyzer can test the dielectric frequency characteristics of materials. The spectrum analysis of the dielectric characteristics of the sample in this example is shown in Figure 3. It can be seen that the dielectric constant ⁇ r of the sample is as high as 2 ⁇ 10 5 and the loss tg ⁇ 2 at 20 Hz.
  • Nano-BaTiO 3 powder is obtained by direct solution synthesis at room temperature, see: Chinese Patent 021538700, Qi Jianquan, Li Longtu, Wang Yongli, Gui Zhilun, a method for synthesizing nano-scale perovskite ceramic powder and literature Jian Quan Qi ,Tao Peng,Yong Ming Hu,Li Sun,Yu Wang,Wan Ping Chen,Long Tu Li,Ce Wen Nan and Helen Lai Wah Chan,”Direct synthesis of ultrafine tetragonal BaTiO 3 nanoparticles at room temperature”Nanoscale Research Letters 6(2011 )466.
  • the XRD of the BaTiO 3 powder obtained by the solution direct synthesis method is shown in Figure 1 (a), indicating that the BaTiO 3 crystal synthesized at room temperature is complete.
  • the corresponding scanning electron microscope SEM photo is shown in Figure 2(a), and the particle size is uniform, about 15nm.
  • DIPAB is obtained by direct reaction and crystallization from an aqueous solution.
  • Figure 1(b) Figure 1(c) shows the XRD of the commercial PVDF powder used.
  • the used nano BaTiO 3 powder, DIPAB and PVDF are the same as in Example 1.
  • the nano BaTiO 3 powder obtained by the direct synthesis method of solution was pre-fired at 800 °C for 2 hours to make it ferroelectric. It can be seen from Figure 2 that the three samples with different treatment temperatures increase with the increase of the treatment temperature. The particle size increases.
  • the scanning electron microscope SEM photo of this example is shown in Figure 2(b). Weigh 0.2g PVDF and 0.2g DIPAB into a beaker, then add 20ml of absolute ethanol, and after vigorous stirring, a clear PVDF/DIPAB mixed solution is obtained as an organic matrix solution.
  • the spectrum analysis of the dielectric characteristics of the white composite powder sample prepared in this example is shown in Figure 4(a). It can be seen that the dielectric constant of the sample is as high as 6.9 ⁇ 10 6 at 20 Hz, as shown in Figure 4(c) As shown, its loss is ⁇ 2 at 20 Hz.
  • the ultra-high dielectric constant comes from space charge polarization. Because the nanoparticles have a very large specific surface area, and the heat-treated BaTiO 3 is a ferroelectric phase, it has a high dielectric constant itself, although the crystal grains have grown , The space charge generation interface is reduced, but the space charge polarization efficiency is greatly improved due to the ferroelectric phase. Compared with Example 3, the content of BaTiO 3 in this example is increased, so a higher dielectric constant can be obtained.
  • the used nano BaTiO 3 powder, DIPAB and PVDF are the same as in Example 1.
  • the nano-BaTiO 3 powder obtained by the solution direct synthesis method is pre-fired at 800°C for 2 hours.
  • 1.4g of BaTiO 3 nano-powder calcined at 800°C was added to the solution. Add a layer of fresh-keeping film on the beaker. After ultrasonic vibration for 30 minutes, the BaTiO 3 powder is suspended in the absolute ethanol solution of PVDF and DIPAB.
  • the beaker is placed in a drying box at a temperature of 80 °C 24 Hours to obtain a white composite powder.
  • the ultra-high dielectric constant composite material powder is placed between two layers of aluminum foil, and pressed with a pressure of 100 MPa to form the required sheet, wherein the aluminum foil is used as the electrode material.
  • the dielectric spectrum analyzer can be used to test the measured dielectric constant and loss with frequency. The frequency spectrum analysis of the dielectric characteristics of the sample in this example is shown in Figure 4(b) and (d). It can be seen that the dielectric constant of the sample is as high as 1.8 ⁇ 10 6 and the loss is less than 2 at 20 Hz.
  • the ultra-high dielectric constant comes from space charge polarization.
  • the nanoparticles have a very large specific surface area, and the heat-treated BaTiO 3 is a ferroelectric phase, it has a high dielectric constant itself, although the crystal grains have grown , The space charge interface is reduced, but the ferroelectric phase greatly improves the space charge polarization efficiency, so a very high dielectric constant can be obtained.
  • dielectric-temperature spectrum of this example is shown in Figure 5. It can be seen that the dielectric constant above room temperature is relatively stable, and below room temperature, the decrease is relatively rapid. For 20 Hz, it decreases by 1.5 orders of magnitude.
  • the preparation method of the used nano-Ba 0.75 Sr 0.25 TiO 3 (BST) powder is the same as that of the BaTiO 3 nano-powder.
  • the DIPAB and PVDF used are the same as in Example 1.
  • the particle size of the synthesized original BST powder is also very close to that of BaTiO 3 nanometer.
  • the nano-BST powder obtained by the solution direct synthesis method is pre-fired at 950°C for 2 hours, and the scanning electron microscope SEM photo is shown in Figure 2(d). It shows that the higher temperature treatment, the faster the grain growth.
  • the white composite material powder is placed between two layers of aluminum foil, and pressed with a pressure of 100 MPa to form the required sheet, wherein the aluminum foil is used as the electrode material.
  • the frequency spectrum analysis of the dielectric characteristics is shown in Figure 6. It can be seen that the dielectric constant of the sample is as high as 1.9 ⁇ 10 6 and the loss is less than 3 at 20 Hz.
  • the ultra-high dielectric constant comes from space charge polarization. Because the nanoparticles have a large specific surface area, and the heat-treated BST is a ferroelectric phase, it has a relatively high dielectric constant. Although the crystal grains have grown, The space charge interface is reduced, but the space charge polarization efficiency is greatly improved due to the ferroelectric phase.
  • the BST grains are larger.
  • the room temperature BST dielectric constant is greater than BaTiO 3 , its The tetragonality is weaker than the latter, so the ferroelectricity is weaker than the latter, and the efficiency of space charge polarization is weaker than the latter. Therefore, the obtained dielectric constant is smaller than that of Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)

Abstract

本发明涉及一种具有超高介电常数有机/无机铁电复合材料、其制备方法及应用,其其为将具有铁电性能的无机粉体填料于有机铁电大分子与铁电高分子聚合物形成的基体复合物中,形成新型的有机/无机铁电复合材料。在室温下,其相对介电常数工频时,大于10 5。其制备方法操作简单,价格低廉,易于大批量工业化生产。该新型超高介电材料,可用于制备大容量全固态,适合表面安装的新型电容器材料。其存在多种界面电荷极化,突破了目前现有的电介质理论预逾渗理论,为材料应用和进一步研究提供了新的途径。

Description

一种具有超高介电常数有机/无机铁电复合材料、其制备方法及应用 技术领域
本发明涉及一种具有超高介电常数有机/无机铁电复合材料、其制备方法及应用,属于高介材料制备技术领域。
背景技术
大容量电容器是现代电子工业必不可缺的电子元器件,电解电容是其中最具代表性的一种,广泛应用于家用电器和各种电子产品中,其容量范围较大,一般为1~3300μF,额定工作电压范围为6.3~700V。一般来讲电解电容器以金属箔(铝或钽)为正极,与正极紧贴金属的氧化膜(氧化铝或五氧化二钽)是电介质,负极由导电材料、电解质(可以是液体或固体)和其他材料共同组成,因电解质是负极的主要部分,电解电容因此而得名。电解电容器的缺点是介质损耗、容量误差较大(最大允许偏差为+100%、-20%),耐高温性较差,长时间存放容易失效。使用期间容易造成变形、爆浆、漏液等的现象,从而使整个电路损坏。电解电容器制造工艺较为复杂,做成贴片式电容器尚有难度。
如何缩减电子元器件体积,提高电容器容量,实现表面安装是大容量电容器研究重要课题。除去元件结构问题,电介质材料的介电性能的提高,则一直是材料研究所追求的目标,其中介电常数的提高,则是最为重要的研究方向。早期的研究是把铁电材料半导化,形成铁电半导体陶瓷,然后通过晶界氧化形成绝缘层,这就是所谓的晶界层电容器(BLC)。这种电容器的表观介电常数可高达10 4以上,然而由于其材料本身的半导化特性决定,漏电流较大,在较低的电压下就会击穿,工艺极其复杂,很难满足常规电路需求。人们寻求高介电常数材料的热情持续不断,前些年一度由于发现钙铜氧钛(CCTO)具有很高的介电常数, 其介电常数可以高达10 4以上,这种材料引起广泛关注和深入研究,然而这种材料本身就是一种半导体,其介电性能甚至难以与BLC相匹敌,截至目前为止仍然处于研究阶段。
发明内容
(一)要解决的技术问题
为了解决现有技术的上述问题,本发明提供一种具有超高介电常数有机/无机铁电复合材料、其制备方法及应用,其材料为大容量全固态,适合表面安装的新型电容器材料。其制备方法是将具有铁电性的无机粉体如BaTiO 3等,填充到具有铁电性的有机大分子DIPAB等和铁电有机高分子聚偏氟乙烯PVDF等混合形成的铁电有机相基体中,形成新型的有机/无机铁电复合材料。由于各个铁电相界面之间所形成的巨大的空间电荷极化,因此这种新型有机/无机复合材料具有超高介电常数,在室温下,其相对介电常数工频时大于10 5;存在多种界面电荷极化,突破了目前现有的电介质理论预渗理论,为材料应用和进一步研究提供了新的途径。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
一种具有超高介电常数有机/无机铁电复合材料,其为将具有铁电性能的无机粉体填料于有机铁电大分子与铁电高分子聚合物形成的基体复合物中,形成新型的有机/无机铁电复合材料。其相对介电常数大于10 5
在一个优选的实施方案中,所述无机粉体为钛酸钡(BaTiO 3)、钛酸锶(SrTiO 3)、钛酸锶钡(Ba 1-xSr xTiO 3)、锆钛酸钡(BaTi 1-yZr yO 3)、铌酸锂(LiNbO 3)、铌酸钾(KNbO 3)、铌酸钾钠(K 1-xNa xNbO 3)等中的至少一种;
所述有机铁电大分子为溴化二异丙胺(DIPAB)、氯化二异丙胺(DIPAC)、硫酸三苷肽(TGS)、罗息盐(RS)等中的至少一种;
所述铁电高分子聚合物为聚偏氟乙烯(PVDF)、PVDF的共聚物、 聚乳酸(PLA)等中的至少一种;
进一步地,所述PVDF的共聚物为偏氟乙烯和三氟乙烯共聚物P(VDF-TrFE)或或聚偏氟乙烯和六氟丙烯共聚物P(VDF-HFE)等。
在一个优选的实施方案中,所述有机铁电大分子与铁电高分子聚合物的体积比为1~9:9~1;具有铁电性能的无机粉体在复合材料中的质量填充比例为20%~95%。
一种具有超高介电常数有机/无机铁电复合材料的制备方法,其包括如下步骤:
S1、将无机铁电氧化物纳米粉体进行热处理,使其具有铁电性;或已经具有铁电性的无机铁电氧化物粉体备用,其不用热处理,如颗粒较大的亚微米以上的粉体可以不用热处理;
S2、将具有铁电性的有机铁电大分子和铁电高分子聚合物溶解或分散到溶剂中,形成有机基体溶液或溶胶;
S3、将步骤S1中获得的所述无机铁电氧化物纳米粉体,加入到S2所述的有机基体溶液或溶胶中,超声振荡后,使溶剂蒸发,获得具有超高介电常数复合材料粉体;
S4、将S3中所获得的粉体,通过压制形成具有超高介电常数的新型复合材料。
在一个优选的实施方案中,在步骤S1中,所述无机铁电氧化物为BaTiO 3、BaTiO 3、SrTiO 3、Ba 1-xSr xTiO 3、BaTi 1-yZr yO 3、LiNbO 3、KNbO 3或K 1-xNa xNbO 3等中的至少一种;所述热处理的温度为25℃~1350℃。
在一个优选的实施方案中,在步骤S2中,所述有机铁电大分子为DIPAB、DIPAC、TGS或RS等中的至少一种;
铁电高分子聚合物为PVDF、PVDF的共聚物或PLA等中的至少一种;
所述溶剂为水、乙醇、异丙醇、苯、甲苯、丙酮或甲乙酮等。
在一个优选的实施方案中,在步骤S2中,所述有机铁电大分子与铁 电高分子聚合物的体积比为1~9:9~1;
在步骤S3中,所述无机铁电氧化物纳米粉体在复合材料粉体的质量20%~95%。
在一个优选的实施方案中,在步骤S3中,所述溶剂蒸发为在干燥箱中进行干燥,干燥温度为70~100℃。
在一个优选的实施方案中,在步骤S4中,所述压制的条件为压力1~300MPa,温度为室温~250℃。
所述超高介电常数为大于10 5
如上所述具有超高介电常数有机/无机铁电复合材料或制备方法获得的材料用于制备具有超高介电常数的功能器件中应用,将所述具有超高介电常数有机/无机铁电复合材料引入电极获得。
在一个优选的实施方案中,所述引入电极的方式有压制、蒸镀、丝网印刷等方式,通过压制、蒸镀、丝网印刷的方式将上述超高介电常数复合材料双面覆盖上电极。
具体地,如压制:将所述超高介电常数复合材料粉体置于两层铝箔之间,用1~100MPa压力压制成所需要的薄片,其中铝箔做为电极材料,对薄片进行卷制或叠层形成电容器。
如丝网印刷:将所述超高介电常数复合材料印刷于金属箔上,固化后再在其上丝网印刷导电油墨等形成另一层电极,制成电容器。
如蒸镀:将所述超高介电常数复合材料粉体用1~300MPa压力压制成所需要的薄片,再对薄片双面用蒸镀等方法形成金属电极,对具有电极的薄片进行卷制或叠层形成电容器。
在一个优选的实施方案中,所述功能器件包括有独石电容器、插入式电容器、贴片式电容器等。
(三)有益效果
本发明的有益效果是:
本发明提供一种新型超高介电材料,其相对介电常数超过100,000 以上,提供的制备方法,是通过将具有铁电性的无机铁电粉体如BaTiO 3等,填充到具有铁电性的有机大分子如DIPAB等和铁电有机高分子如PVDF等混合形成的铁电有机相基体中,形成新型的有机/无机铁电复合材料。由于参与复合的主要组分都具有铁电性,各个铁电组分形成的界面之间具有空间电荷层,因此电场作用下产生极大的空间电荷极化,从而形成具有超高介电常数的新型有机/无机复合材料,在室温下,其相对介电常数工频时,大于10 5。其制备方法操作简单,价格低廉,易于大批量工业化生产。该新型超高介电材料,可用于制备大容量全固态,适合表面安装的新型电容器材料。
在现有的电介质复合材料中,高介电常数通常用电介质逾渗理论来解释。在导电复合材料中,随着导电材料填充比例的增加,粒子间的相互连接程度将不断增强。当填充比例达到某一临界值时,系统会突然出现长程连接性。其表现为复合材料的导电性迅速增加,这种现象被称为导电逾渗现象。因此可以解释某些复合材料具有较高的介电常数。对于本发明所获得的超高介材料,不能由目前现有的电介质复合预渗理论来解释。这种材料存在多种界面电荷极化,为材料应用和进一步研究提供了新的途径。
附图说明
图1为实施例中样品的XRD图谱;其中,(a)溶液直接合成法合成的BaTiO 3的XRD图谱,(b)实施例水溶液结晶的DIPAB的XRD图谱,(c)试剂PVDF的XRD图谱,(c)实施例1中的复合材料粉体XRD图谱;
图2为实施例中用到的不同BaTiO 3粉体的SEM照片,其中,(a)实施例1中使用的常温合成的BaTiO 3粉体,(b)实施例2、3中使用的800℃预烧后的BaTiO 3粉体,(c)850℃预烧后的BaTiO 3粉体,(d)实施例4中使用的950℃预烧后的BST粉体;
图3为实施例1中制备的复合材料的介电频谱分析;
图4为实施例2、3中制备的复合材料的介电频谱分析(BaTiO3粉体800℃下预烧),其中,(a)实施例2介电常数,(b)实施例2介电常数,(c)实施例2损耗,(d)实施例3损耗;
图5为实施例3中复合材料的介电-温度特性;
图6为实施例4中制备的复合材料的介电频谱分析(填料为950℃-BST,加入量80%)。
具体实施方式
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。
实施例1
称取0.2gPVDF和0.2gDIPAB放入烧杯中,然后加入20ml无水乙醇,剧烈搅拌后,得到澄清PVDF/DIPAB混合溶液作为有机基体溶液。之后往溶液中加入1.6g的BaTiO 3纳米粉体。在烧杯上加一层保鲜膜,超声振荡30min后,BaTiO 3粉体悬浊在PVDF和DIPAB的无水乙醇溶液中,取下保鲜膜后,将烧杯放入温度为80℃的干燥箱中24小时干燥,得到白色复合材料粉体。其XRD如图1(d)所示。可以看出复合材料粉体的XRD中,三种铁电体的XRD衍射峰同时存在,PVDF聚合物的峰较弱,由于其本身结晶状况决定的,加上本身含量较低。将所述超高介电常数复合材料粉体置于两层铝箔之间,用100MPa压力在常温压制成所需要的薄片,其中铝箔做为电极材料。采用介电频谱仪可以测试材料的介电频率特性。本例样品的介电特性频谱分析如图3所示,可以看出在20Hz下,样品的介电常数ε r高达2×10 5,损耗tgδ<2。由于BaTiO 3纳米颗粒未经热处理,为顺电相,因此超高介电常数来源于空间电荷极化,由于纳米颗粒具有极大的比表面,因此获得较大的介电常数。从介电频谱来看,这种复合材料存在多种界面电荷极化,突破了目前现有的电介质理论预渗理论,为材料应用和进一步研究提供了新的途径。
其中,本实施例中所用的原料:
纳米BaTiO 3粉体采用采用溶液直接合成法在室温下获得,可参见:中国专利021538700,齐建全、李龙土、王永力、桂治轮,一种合成纳米级钙钛矿陶瓷粉体的方法和文献Jian Quan Qi,Tao Peng,Yong Ming Hu,Li Sun,Yu Wang,Wan Ping Chen,Long Tu Li,Ce Wen Nan and Helen Lai Wah Chan,“Direct synthesis of ultrafine tetragonal BaTiO 3nanoparticles at room temperature”Nanoscale Research Letters 6(2011)466。溶液直接合成法获得的BaTiO 3粉体XRD如附图1(a)所示,表明室温下合成的BaTiO 3结晶完整。其对应的扫描电镜SEM照片如附图2(a)所示,其颗粒大小均匀,约为15nm。DIPAB采用水溶液直接反应析晶获得,详见文献D.W.Fu,H.L.Cai,Y.Liu,Q.Ye,W.Zhang,Y.Zhang,R.G.Xiong,Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal.Science 339,425–428(2013)。其XRD如图1(b)所示。图1(c)为所采用商用PVDF粉末的XRD。
实施例2
所用纳米BaTiO 3粉体、DIPAB和PVDF同实施例1。先将溶液直接合成法获得的纳米BaTiO 3粉体在800℃下预烧2小时,使其具有铁电性,从图2中可以看出三个不同处理温度的样品随处理温度提高,粉体颗粒尺寸增大。对于BaTiO 3纳米颗粒,本例其扫描电镜SEM照片如附图2(b)所示。称取0.2gPVDF和0.2gDIPAB放入烧杯中,然后加入20ml无水乙醇,剧烈搅拌后,得到澄清PVDF/DIPAB混合溶液作为有机基体溶液。之后往溶液中加入1.6g800℃预烧后的BaTiO 3纳米粉体。在烧杯上加一层保鲜膜,超声振荡30min后,BaTiO 3粉体悬浊在PVDF和DIPAB的无水乙醇溶液中,取下保鲜膜后,将烧杯放入温度为80℃的干燥箱中24小时,使溶剂蒸发,得到白色复合材料粉体。将该白色复合材料粉体置于两层铝箔之间,用100MPa压力压制成所需要的薄片,其中铝箔做为电极材料。用介电频谱仪可以测试测量的介电常数和损耗随频率的变化。本实施例制备的白色复合材料粉体样品的介电特性频谱分析 如图4(a)所示,可以看出在20Hz下,样品的介电常数高达6.9×10 6,如图4(c)所示,其在20Hz下,损耗<2。超高的介电常数来源于空间电荷极化,由于纳米颗粒具有极大的比表面,由于热处理后的BaTiO 3为铁电相,本身具有较高的介电常数,晶粒虽然有所长大,产生空间电荷的界面减小,但是由于铁电相使空间电荷极化效率大大提高,本例中与实施例3相比,BaTiO 3含量提升,因此可以获得更高的介电常数。
实施例3
所用纳米BaTiO 3粉体、DIPAB和PVDF同实施例1。先将溶液直接合成法获得的纳米BaTiO 3粉体在800℃下预烧2小时。称取0.3gPVDF和0.3gDIPAB放入烧杯中,然后加入20ml无水乙醇,剧烈搅拌后,得到澄清PVDF/DIPAB混合溶液作为有机基体溶液。之后往溶液中加入1.4g800℃预烧后的BaTiO 3纳米粉体。在烧杯上加一层保鲜膜,超声振荡30min后,BaTiO 3粉体悬浊在PVDF和DIPAB的无水乙醇溶液中,取下保鲜膜后,将烧杯放入温度为80℃的干燥箱中24小时,得到白色复合材料粉体。将所述超高介电常数复合材料粉体置于两层铝箔之间,用100MPa压力压制成所需要的薄片,其中铝箔做为电极材料。用介电频谱仪可以测试测量的介电常数和损耗随频率的变化。本实施例样品的介电特性频谱分析如图4(b)、(d)所示,可以看出在20Hz下,样品的介电常数高达1.8×10 6,损耗<2。超高的介电常数来源于空间电荷极化,由于纳米颗粒具有极大的比表面,由于热处理后的BaTiO 3为铁电相,本身具有较高的介电常数,晶粒虽然有所长大,产生空间电荷的界面减小,但是由于铁电相使空间电荷极化效率大大提高,因此可以获得很高的介电常数。
采用介电频谱仪在不同温度下测试材料介电特性可以获得介电-温度谱。本例的介电-温度谱如图5所示,可以看出室温以上介电常数较为稳定,在室温以下,降低的比较快,对于20Hz下,降低了1.5个数量级。
实施例4
所用纳米Ba 0.75Sr 0.25TiO 3(BST)粉体,其制备方法与BaTiO 3纳米粉体制备方法相同。所用DIPAB和PVDF同实施例1。其合成的原始BST粉体的颗粒尺寸也同BaTiO 3纳米非常接近。先将溶液直接合成法获得的纳米BST粉体在950℃下预烧2小时,其扫描电镜SEM照片如附图2(d)所示。说明较高的温度处理,晶粒长大较快。
称取0.2gPVDF和0.2gDIPAB放入烧杯中,然后加入20ml无水乙醇,剧烈搅拌后,得到澄清PVDF/DIPAB混合溶液作为有机基体溶液。之后往溶液中加入1.6g 950℃预烧后的BST纳米粉体。在烧杯上加一层保鲜膜,超声振荡30min后,BST粉体悬浊在PVDF和DIPAB的无水乙醇溶液中,取下保鲜膜后,将烧杯放入温度为80℃的干燥箱中24小时,得到白色复合材料粉体。将该白色复合材料粉体置于两层铝箔之间,用100MPa压力压制成所需要的薄片,其中铝箔做为电极材料。介电特性频谱分析如图6所示,可以看出在20Hz下,样品的介电常数高达1.9×10 6,损耗<3。超高的介电常数来源于空间电荷极化,由于纳米颗粒具有极大的比表面,由于热处理后的BST为铁电相,本身具有较高的介电常数,晶粒虽然有所长大,产生空间电荷的界面减小,但是由于铁电相使空间电荷极化效率大大提高,本例中与实施例3相比,BST晶粒较大,尽管室温BST介电常数大于BaTiO 3,但是其四方性弱于后者,因此铁电性较后者为弱,对空间电荷极化的效率提高弱于后者,因此获得的介电常数小于实施例2。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明做其它形式的限制,任何本领域技术人员可以利用上述公开的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

  1. 一种有超高介电常数有机/无机铁电复合材料,其特征在于,其为将具有铁电性能的无机粉体填料于有机铁电大分子与铁电高分子聚合物形成的基体复合物中,形成新型的有机/无机铁电复合材料。
  2. 如权利要求1所述的复合材料,其特征在于,
    所述无机粉体为无机粉体为BaTiO 3、SrTiO 3、Ba 1-xSr xTiO 3、BaTi 1-yZr yO 3、LiNbO 3、KNbO 3或K 1-xNa xNbO 3中的至少一种;
    所述有机铁电大分子为DIPAB、DIPAC、TGS或RS中的至少一种;
    所述铁电高分子聚合物为聚偏氟乙烯、PVDF的共聚物或聚乳酸中的至少一种。
  3. 如权利要求2所述的复合材料,其特征在于,所述PVDF的共聚物为偏氟乙烯和三氟乙烯共聚物或聚偏氟乙烯和六氟丙烯共聚物;
    所述有机铁电大分子与铁电高分子聚合物的体积比为1~9:9~1;具有铁电性能的无机粉体在复合材料中的质量填充比例为20%~95%。
  4. 一种具有超高介电常数有机/无机铁电复合材料的制备方法,其特征在于,其包括如下步骤:
    S1、将无机铁电氧化物纳米粉体进行热处理,使其具有铁电性;
    或已经具有铁电性的无机铁电氧化物粉体备用;
    S2、将具有铁电性的有机铁电大分子和铁电高分子聚合物溶解或分散到溶剂中,形成有机基体溶液或溶胶;
    S3、将步骤S1中获得的所述无机铁电氧化物纳米粉体,加入到S2所述的有机基体溶液或溶胶中,超声振荡后,使溶剂蒸发,获得复合材料粉体;
    S4、将S3中所获得的复合材料粉体,通过压制形成具有超高介电常数的新型复合材料。
  5. 如权利要求4所述的制备方法,其特征在于,所述在步骤S1中,所述无机铁电氧化物为BaTiO 3、SrTiO 3、Ba 1-xSr xTiO 3、 BaTi 1-yZr yO 3、LiNbO 3、KNbO 3、K 1-xNa xNbO 3中的至少一种;所述热处理的温度为25℃~1350℃。
  6. 如权利要求4所述的制备方法,其特征在于,在步骤S2中,所述有机铁电大分子为DIPAB、DIPAC、TGS或RS中的至少一种;
    所述铁电高分子聚合物为PVDF、PVDF的共聚物或PLA中的至少一种;
    所述溶剂为水、乙醇、异丙醇、苯、甲苯、丙酮或甲乙酮。
  7. 如权利要求4所述的制备方法,其特征在于,在步骤S2中,所述有机铁电大分子与铁电高分子聚合物的体积比为1~9:9~1;
    在步骤S3中,所述无机铁电氧化物纳米粉体在复合材料粉体的质量20%~95%。
  8. 如权利要求4所述的制备方法,其特征在于,在步骤S3中,所述溶剂蒸发为在干燥箱中进行干燥,干燥温度为70~100℃;在步骤S4中,所述压制的条件为压力1~300MPa,温度为室温~250℃。
  9. 如权利要求1-3中任一项具有超高介电常数有机/无机铁电复合材料或权利要求4-8中任一项制备方法获得的材料用于制备具有超高介电常数的功能器件中的应用。
  10. 如权利要求9所述的应用,其特征在于,所述功能器件为独石电容器、插入式电容器或贴片式电容器。
PCT/CN2019/111756 2019-05-22 2019-10-17 一种具有超高介电常数有机/无机铁电复合材料、其制备方法及应用 WO2020232961A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910431353.XA CN110164694B (zh) 2019-05-22 2019-05-22 一种具有超高介电常数有机/无机铁电复合材料、其制备方法及应用
CN201910431353.X 2019-05-22

Publications (1)

Publication Number Publication Date
WO2020232961A1 true WO2020232961A1 (zh) 2020-11-26

Family

ID=67632032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111756 WO2020232961A1 (zh) 2019-05-22 2019-10-17 一种具有超高介电常数有机/无机铁电复合材料、其制备方法及应用

Country Status (2)

Country Link
CN (1) CN110164694B (zh)
WO (1) WO2020232961A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981540A (zh) * 2021-02-18 2021-06-18 江苏建筑职业技术学院 一种二异丙基丙胺四氟硼酸盐晶体材料及其制备方法和应用
CN114163815A (zh) * 2021-12-24 2022-03-11 上海海事大学 一种复合材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110164694B (zh) * 2019-05-22 2020-09-29 东北大学 一种具有超高介电常数有机/无机铁电复合材料、其制备方法及应用
CN114864300A (zh) * 2022-04-25 2022-08-05 江苏大学 一种超级电容器电解液及超级电容器
CN115252872A (zh) * 2022-09-30 2022-11-01 北京大学口腔医学院 基于铁电材料的抗菌敷料及其制备方法和用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871850B2 (en) * 2006-02-01 2014-10-28 Daikin Industries, Ltd. Highly dielectric film
CN110164694A (zh) * 2019-05-22 2019-08-23 东北大学 一种具有超高介电常数有机/无机铁电复合材料、其制备方法及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1223548C (zh) * 2003-01-07 2005-10-19 天津大学 无机盐原料液相化学法制备SrBi2Ta2O9 铁电陶瓷薄膜
CN103408876A (zh) * 2013-07-20 2013-11-27 北京化工大学 一种具有高介电常数和低介电损耗的柔性复合介电材料
CN103740327B (zh) * 2013-12-10 2016-03-02 南京理工大学 一种分子铁电薄膜及其溶液浸泡生长方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871850B2 (en) * 2006-02-01 2014-10-28 Daikin Industries, Ltd. Highly dielectric film
CN110164694A (zh) * 2019-05-22 2019-08-23 东北大学 一种具有超高介电常数有机/无机铁电复合材料、其制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WENLONG YANG ET AL.: "A novel all-organic DIPAB/PVDF composite film with high dielectric permittivity", JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS, vol. 28, no. 13, 14 March 2017 (2017-03-14), XP036248197, DOI: 20200221094618Y *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981540A (zh) * 2021-02-18 2021-06-18 江苏建筑职业技术学院 一种二异丙基丙胺四氟硼酸盐晶体材料及其制备方法和应用
CN112981540B (zh) * 2021-02-18 2022-02-01 江苏建筑职业技术学院 一种二异丙基丙胺四氟硼酸盐晶体材料及其制备方法和应用
CN114163815A (zh) * 2021-12-24 2022-03-11 上海海事大学 一种复合材料及其制备方法
CN114163815B (zh) * 2021-12-24 2024-01-23 上海海事大学 一种复合材料及其制备方法

Also Published As

Publication number Publication date
CN110164694A (zh) 2019-08-23
CN110164694B (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2020232961A1 (zh) 一种具有超高介电常数有机/无机铁电复合材料、其制备方法及应用
Liu et al. High energy-storage performance of PLZS antiferroelectric multilayer ceramic capacitors
Mao et al. Size-dependences of the dielectric and ferroelectric properties of BaTiO3/polyvinylidene fluoride nanocomposites
Hao et al. High energy-storage performance in Pb0. 91La0. 09 (Ti0. 65Zr0. 35) O3 relaxor ferroelectric thin films
US11673353B2 (en) High-energy density nanocomposite capacitor
WO2019206321A1 (en) Multilayer and flexible capacitors with metal-ion doped tio2 colossal permittivity material/polymer composites
Diao et al. Enhanced recoverable energy storage density of Mn-doped Ba 0.4 Sr 0.6 TiO 3 thin films prepared by spin-coating technique
Wang et al. Effects of dielectric thickness on energy storage properties of surface modified BaTiO3 multilayer ceramic capacitors
US20220005647A1 (en) Relaxor-ferroelectric material and method of synthesizing the same and device including relaxor-ferroelectric material
CN114388693A (zh) 电介质材料以及包括其的器件和存储设备
Wang et al. Improvement of the energy storage performance in Pb0. 88La0. 12ZrO3 thin films by inserting ZrO2 layer
US20120127630A1 (en) Solid State Supercapacitor and Method for Manufacturing the Same
KR102363288B1 (ko) 유전체, 그 제조 방법, 이를 포함하는 유전체 소자 및 전자 소자
Ravanamma et al. Yttria activated lanthanum-barium titanate ceramic electrode for fast charging supercapacitor applications
Xiao et al. Modulation of capacitive energy storage performance in 0.9 (Na0. 5Bi0. 5)(Fe0. 02Ti0. 98) O3-0.1 SrTiO3 relaxor ferroelectric thin film via sol-gel optimizing strategy
JP6368751B2 (ja) 銀置換ニオブ酸ストロンチウム誘電体組成物及びその製造方法
CN110452421B (zh) 一种基于核壳结构填料的介电复合材料
Wang et al. Effect of AgNbO3 Morphology on Dielectric and Energy Storage Properties of Polyvinylidene Fluoride-Based Nanocomposites
JP5855159B2 (ja) 高誘電率と低誘電損失特性を持つニオブ酸ビスマス誘電体組成物
JP7392015B2 (ja) 誘電分散のないニオブ酸カルシウムリチウム誘電体組成物及びその製造方法
Diao et al. Structure, dielectric properties and energy storage performance of barium strontium titanate thin films prepared by spin-coating technique
KR101531844B1 (ko) 졸­겔 방법을 이용한 Ag­BaTiO3 복합유전체 조성물 및 그 제조방법
Chen et al. Sandwich-structured relaxor ferroelectric nanocomposite incorporated with core-shell fillers for outstanding-energy-storage capacitor application
Takezawa et al. Mn-doped BaTiO3 thin film sintered using nanocrystals and its dielectric properties
CN114560693B (zh) 一种氟化锂改性的钛酸钡基介质薄膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929693

Country of ref document: EP

Kind code of ref document: A1