CN114669191A - 一种锰铜矿材料及其在室温去除一氧化碳中的应用 - Google Patents

一种锰铜矿材料及其在室温去除一氧化碳中的应用 Download PDF

Info

Publication number
CN114669191A
CN114669191A CN202210330424.9A CN202210330424A CN114669191A CN 114669191 A CN114669191 A CN 114669191A CN 202210330424 A CN202210330424 A CN 202210330424A CN 114669191 A CN114669191 A CN 114669191A
Authority
CN
China
Prior art keywords
catalyst
room temperature
manganese
manganite
molecular sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210330424.9A
Other languages
English (en)
Other versions
CN114669191B (zh
Inventor
麻春艳
潘菊霜
宋茂勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Center for Eco Environmental Sciences of CAS
Original Assignee
Research Center for Eco Environmental Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Center for Eco Environmental Sciences of CAS filed Critical Research Center for Eco Environmental Sciences of CAS
Priority to CN202210330424.9A priority Critical patent/CN114669191B/zh
Publication of CN114669191A publication Critical patent/CN114669191A/zh
Application granted granted Critical
Publication of CN114669191B publication Critical patent/CN114669191B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/116Molecular sieves other than zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本发明公开了一种锰铜矿材料及其在室温去除一氧化碳(CO)中的应用。所述锰铜矿材料具有规则的晶型结构,由MnO6八面体通过氧桥与O‑Cu‑O键连接后层层堆叠而成,在室温下能快速稳定的将干燥的CO完全氧化成CO2和H2O,成本低于贵金属催化剂,制备方法简单,操作方便,与干燥剂组合后适用于室温下存在环境湿度的CO污染去除。

Description

一种锰铜矿材料及其在室温去除一氧化碳中的应用
技术领域
本发明属于环境催化领域,具体涉及一种锰铜矿材料及其在室温去除一氧化碳(CO)中的应用。
背景技术
CO是一种有毒的小分子气体污染物,它产生并存在于室内、冶金、化工及汽车尾气等场景。在局部空间中释放的一氧化碳会优先与血红蛋白结合,使血红蛋白失去携带氧气的能力,导致中枢神经系统损伤或永久性脑损伤,甚至可引起人死亡。
现有的去除CO的技术有吸附法和热催化法,但吸附法存在吸附剂饱和及效率低的缺点。热催化法中的室温催化氧化技术是在室温下将CO催化氧化分解为CO2和H2O,是去除CO的有效且实际的方法。
根据文献报道,用于CO催化氧化的贵金属催化剂有负载型Au基催化剂(Journalof the American Chemical Society,2016,138(30):9572-9580;CatalysisCommunications,2018,110:14-17;Applied Catalysis B:Environmental,2019,241:539-547)、Pt基催化剂(Catalysis Today,2019,333:105-112;Applied Surface Science,2019,481:360-368.)、Pd基催化剂(Applied Catalysis B:Environmental,2019,243:36-46;Catalysis Today,2019,332:214-221.)等。CN 108452798 B公开授权了一种耐高温烧结的负载型贵金属催化剂用于CO催化氧化。该专利公开的催化剂是以TiO2或CeO2纳米颗粒为载体,负载贵金属Au、Pt或Pd颗粒为活性组分。但是,由于贵金属价格昂贵,严重制约了负载型贵金属催化剂在实际生活中去除CO的应用。
虽然过渡金属以低成本的优势被广泛研究,但能在室温下实现快速且高效去除CO仍然存在挑战,特别在实际环境中,水汽的存在又增加了对催化剂活性及稳定性的考验。锰氧化物(MOS-2)在50℃时CO的转化率小于10%(Applied Catalysis B:Environmental,2019,255:117766-117776.),Co-Mn相的混合氧化物在150℃才能实现CO的100%转化(Catalysis Today,2021,361:94-101.)。而球磨固相混合法合成的CuMnOx催化剂在25℃时CO的转化率仅为5%(Journal of Materials Chemistry A,2020,8(46):24438-24444.)。当有水蒸气存在时,催化剂的CO氧化性能显著下降。在30℃时,浸渍法合成的CuO/MnO2催化剂的CO转化率为40%,但存在3%水蒸气时,CO转化率下降为0%(Langmuir,2020,36(38):11196-11206.)。而3%Cu1/MnO2催化剂在30℃时CO的转化率为10%,但存在3vol%水时,在30℃时没有CO氧化活性(Chemistry,2021,27(35):9060-9070.)。
因此,在室温下实现CO高效且稳定的完全氧化去除是一个挑战,特别是在存在环境湿度的条件下去除CO更是一个考验。
发明内容
为了克服现有技术的缺陷,本发明的目的是提供一种锰铜矿材料及其在室温去除CO中的应用,该锰铜矿材料具有规则的晶型结构,由MnO6八面体通过氧桥与O-Cu-O键连接后层层堆叠而成,在室温下能快速稳定的将干燥的CO完全氧化成CO2和H2O,成本低于贵金属催化剂,制备方法简单,操作方便,与干燥剂组合后适用于室温下存在环境湿度的CO污染去除,如室内、潜艇、机动车尾气、防毒面具净化装置、空气净化装置等。
第一方面,本发明提供一种锰铜矿材料,具有规则的晶型结构,由MnO6八面体通过氧桥与O-Cu-O键连接后层层堆叠而成。
所述锰铜矿材料中,所述晶型结构中铜、锰和氧的原子比为1:1:2。
上述锰铜矿材料可通过包括如下步骤的方法制备得到:
(1)将铜盐的水溶液和锰盐的水溶液混合,得到锰铜混合溶液;
(2)将碳酸氢盐水溶液与所述锰铜混合溶液混合,搅拌下共沉淀,得到沉淀;
(3)将沉淀洗涤,干燥,焙烧,得到所述锰铜矿材料。
上述方法步骤(1)中,所述铜盐为任意可溶于水的铜盐,如硝酸铜;
所述锰盐为任意可溶于水的锰盐,如硝酸锰;
所述铜盐的水溶液浓度可为10mmol/L~300mmol/L,优选为100mmol/L;
所述锰盐的水溶液浓度可为10mmol/L~300mmol/L,优选为150mmol/L;
所述锰铜混合溶液中,铜和锰的摩尔比可为1:1~1:10,优选为1:1-1:5、1:1-1:3或1:1.5;
步骤(2)中,所述碳酸氢盐可为碳酸氢钠、碳酸氢铵、碳酸氢钾中的任一种或几种的混合物;
所述碳酸氢盐水溶液的浓度可为50mmol/L~1800mmol/L,具体可为720mmol/L;
所述碳酸氢盐水溶液与所述锰铜混合溶液的体积比可为1:10~10:1,具体可为1:1。
步骤(2)中,所述搅拌的温度具体可为室温(20~30℃),时间可为0.5~48小时,具体可为12小时;
步骤(3)中,所述洗涤步骤采用超纯水和无水乙醇多次洗涤;
步骤(3)中,所述干燥的温度可为80℃~120℃,具体可为80℃;时间可为6~24h,具体可为12h;
所述焙烧在空气中进行;
所述焙烧的温度可为150~450℃,具体可为350℃;时间可为2~8小时,具体可为4小时。
第二方面,本发明提供上述锰铜矿材料在室温下去除CO中的应用或制备成室温去除CO催化剂的应用。
所述锰铜矿材料特殊的晶型结构,使得铜原子和锰原子协同作用可实现干燥CO的完全氧化去除。
所述去除CO的浓度可为2~1000ppm。
第三方面,本发明提供一种室温去除干燥CO的高效催化剂,其由上述的锰铜矿材料制成。
所述的高效催化剂可以根据实际需求制备成各种结构,例如用于防毒面具和空气净化器中可制成蜂窝状,用于室内摆放可制成颗粒状。
第四方面,本发明提供一种室温去除CO的方法,包括如下步骤:利用上述锰铜矿催化剂与干燥剂组合后在室温下去除CO。
气体在与所述催化剂接触前,先经过干燥剂干燥;
所述干燥剂为3A分子筛、4A分子筛、5A分子筛和13X分子筛中的一种或几种的组合。
所述CO气体的环境湿度可为0%~90%,优选0%~50%。
所述催化剂去除CO的浓度为2~1000ppm。
第五方面,本发明提供一种除CO装置,包括干燥剂和催化剂组件,所述干燥剂为上述任一项干燥剂,所述催化剂组件中的催化剂为上述锰铜矿材料。
所述除CO装置通过如下方法组装:首先将催化剂粉末成型为催化剂单元并将催化剂单元组装成去除CO的催化剂组件,然后将干燥剂颗粒组装成干燥剂组件,其次将干燥剂组件和催化剂组件依次放入空气净化装置中。
使用时,流动的空气从上述装置中先通过干燥剂组件,再通过催化剂组件,空气中含有的水汽被干燥剂组件完全吸收得到干燥CO气体,干燥的CO气体与装置中的催化剂组件接触,被催化剂催化氧化成为二氧化碳和水,实现CO的去除。
与现有技术相比,本发明的优点是:
(1)本发明去除CO的锰铜矿催化剂比贵金属催化剂成本低,制备方法简单。
(2)本发明用于去除CO的催化剂的使用条件简单,实施方便,可在室温下高效的去除CO污染,催化剂在室温下能快速稳定的将干燥CO完全氧化为CO2和H2O,不产生二次污染,CO2选择性达到100%,CO转化率可达到100%。
(3)本发明催化剂与干燥剂组合后在室温下去除CO,具有优异的稳定性和广泛的实用性。在0~50%的条件下,CO转化率可达到100%,CO2选择性也达到100%。即使在高湿度条件下(RH=90%),CO转化率能大于95%,CO2选择性达到100%,并且1000小时内,催化剂的CO转化率依然保持在95%。
附图说明
图1为本发明实施例1中制备得到的锰铜矿的晶体结构图。
具体实施方式
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。以下提供的实施例可作为本技术领域普通技术人员进行进一步改进的指南,并不以任何方式构成对本发明的限制。
下述实施例中的实验方法,如无特殊说明,均为常规方法,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
按照如下步骤制备室温去除CO的催化剂:
(1)将配制好的浓度为100mmol/L的硝酸铜溶液和浓度为150mmol/L的硝酸锰溶液按照体积比为1:1比例混合得到锰铜混合溶液;
(2)将配制好的浓度为720mmol/L的碳酸氢铵溶液快速加入到锰铜混合溶液中,碳酸氢铵溶液和锰铜混合溶液的体积比为1:1,室温(25℃)搅拌12小时得到沉淀;
(3)将沉淀用超纯水和无水乙醇洗涤三次;
(3)将洗涤后的沉淀在80℃干燥12小时后在350℃空气中焙烧4小时,得到锰铜矿材料。
所得锰铜矿的晶体结构图如图1所示。
分别将0.2克锰铜矿催化剂(锰铜矿材料)固定在石英的固定床反应器中,固定床反应器保持温度为25℃。反应气体组成为干燥CO,氧气浓度为20%,氮气为平衡气体,反应气体中CO浓度分别为20ppm、200ppm、400ppm、1000ppm,气体流速是50mL/min。活性评价结果(除特殊说明外,反应时间均为10小时)如表1。
表1、实施例1的催化活性
Figure BDA0003575101090000051
实施例2
分别将0.2克实施例1制得的锰铜矿催化剂固定在石英的固定床反应器中,固定床反应器保持温度为25℃。反应气体组成为20ppm CO,氧气浓度为20%,氮气为平衡气体,气体流速是50mL/min。反应气体相对湿度分别为20%、50%、70%、90%,干燥剂为3A分子筛,装入干燥管中并置于固定床反应器前。活性评价结果如表2。
表2、实施例2的催化活性
Figure BDA0003575101090000052
实施例3
其余与实施例2一样,但反应气体CO浓度为200ppm,活性评价结果如表3。
表3、实施例3的催化活性
Figure BDA0003575101090000053
实施例4
其余与实施例2一样,但反应气体CO浓度为400ppm,催化剂用量为0.1克,活性评价结果如表4。
表4、实施例4的催化活性
Figure BDA0003575101090000061
实施例5
其余与实施例2一样,但反应气体CO浓度为1000ppm,催化剂用量为0.1克,活性评价结果如表5。
表5、实施例5的催化活性
Figure BDA0003575101090000062
实施例6
分别将0.2克实施例1制得的锰铜矿催化剂固定在石英的固定床反应器中,固定床反应器保持温度为25℃。反应气体组成为20ppm CO,氧气浓度为20%,氮气为平衡气体,气体流速是50mL/min。应气体相对湿度分别为20%、50%、70%、90%,干燥剂为4A分子筛,装入干燥管中并置于固定床反应器前。活性评价结果如表6。
表6、实施例6的催化活性
Figure BDA0003575101090000063
实施例7
其余与实施例6一样,但反应气体CO浓度为200ppm,催化剂用量为0.1克,活性评价结果如表7。
表7、实施例7的催化活性
Figure BDA0003575101090000071
实施例8
其余与实施例6一样,但反应气体CO浓度为400ppm,催化剂用量为0.1克,活性评价结果如表8。
表8、实施例8的催化活性
Figure BDA0003575101090000072
实施例9
其余与实施例6一样,但反应气体CO浓度为1000ppm,活性评价结果如表9。
表9、实施例9的催化活性
Figure BDA0003575101090000073
实施例10
分别将0.2克实施例1制得的锰铜矿催化剂固定在石英的固定床反应器中,固定床反应器保持温度为25℃。反应气体组成为20ppm CO,氧气浓度为20%,氮气为平衡气体,气体流速是50mL/min。应气体相对湿度分别为20%、50%、70%、90%,干燥剂为13X分子筛,装入干燥管中并置于固定床反应器前。活性评价结果如表10。
表10、实施例10的催化活性
Figure BDA0003575101090000081
实施例11
其余与实施例10一样,但反应气体CO浓度为200ppm,催化剂用量为0.1克,活性评价结果如表11。
表11、实施例11的催化活性
Figure BDA0003575101090000082
实施例12
其余与实施例10一样,但反应气体CO浓度为400ppm,催化剂用量为0.1克,活性评价结果如表12。
表12、实施例12的催化活性
Figure BDA0003575101090000083
实施例13
其余与实施例10一样,但反应气体CO浓度为1000ppm,催化剂用量为0.1克,活性评价结果如表13。
表13、实施例13的催化活性
Figure BDA0003575101090000091
实施例14
其余与实施例10一样,但反应时间为1000小时,活性评价结果如表14。
表14、实施例14的催化活性
Figure BDA0003575101090000092
实施例15
分别将0.2克锰铜矿催化剂固定在石英的固定床反应器中,固定床反应器保持温度为25℃。反应气体组成为20ppm CO,氧气浓度为20%,氮气为平衡气体,气体流速是50mL/min。应气体相对湿度分别为20%、50%、70%、90%,干燥剂为3A分子筛与5A分子筛混合(两者混合比例1:1),装入干燥管中并置于固定床反应器前。活性评价结果如表15。
表15、实施例15的催化活性
Figure BDA0003575101090000093
Figure BDA0003575101090000101
实施例16
其余与实施例15一样,但反应气体CO浓度为200ppm,催化剂用量为0.1克,活性评价结果如表16。
表16、实施例16的催化活性
Figure BDA0003575101090000102
实施例17
其余与实施例15一样,但反应气体CO浓度为400ppm,催化剂用量为0.1克,活性评价结果如表17。
表17、实施例17的催化活性
Figure BDA0003575101090000103
实施例18
其余与实施例15一样,但反应气体CO浓度为1000ppm,催化剂用量为0.1克,活性评价结果如表18。
表18、实施例18的催化活性
Figure BDA0003575101090000104
实施例19
分别将0.2克实施例1制得的锰铜矿催化剂固定在石英的固定床反应器中,固定床反应器保持温度为25℃。反应气体组成为20ppm CO,氧气浓度为20%,氮气为平衡气体,气体流速是50mL/min。应气体相对湿度分别为20%、50%、70%、90%,干燥剂为3A分子筛与13X分子筛混合(两者混合比例1:1),装入干燥管中并置于固定床反应器前。活性评价结果如表19。
表19、实施例19的催化活性
Figure BDA0003575101090000111
实施例20
其余与实施例19一样,但反应气体CO浓度为200ppm,催化剂用量为0.1克,活性评价结果如表20。
表20、实施例20的催化活性
Figure BDA0003575101090000112
实施例21
其余与实施例19一样,但反应气体CO浓度为400ppm,催化剂用量为0.1克,活性评价结果如表21。
表21、实施例21的催化活性
Figure BDA0003575101090000113
Figure BDA0003575101090000121
实施例22
其余与实施例19一样,但反应气体CO浓度为1000ppm,催化剂用量为0.1克,活性评价结果如表22。
表22、实施例22的催化活性
Figure BDA0003575101090000122
实施例23
分别将0.2克实施例1制得的锰铜矿催化剂固定在石英的固定床反应器中,固定床反应器保持温度为25℃。反应气体组成为200ppm CO,氧气浓度为20%,氮气为平衡气体,气体流速是50mL/min。反应气体相对湿度分别为20%、50%、70%、90%。活性评价结果如表23。
表23、实施例23的催化活性
Figure BDA0003575101090000123
实施例24
首先将500克实施例1制得的催化剂粉末成型为颗粒状的催化剂单元(颗粒大小为直径0.2~0.4厘米,长为0.6~1厘米的圆柱颗粒)并将催化剂单元装入多孔的盒子中制成除CO的催化剂组件,然后将500克5A分子筛干燥剂颗粒装入多孔的盒子中制成除水的干燥剂组件,随后将干燥剂组件和催化剂组件依次放入空气净化装置的换风口处,最后将空气净化装置放于15m2的大气仓中。大气仓中温度为25℃。CO气体提前由钢瓶气接入释放一段时间,浓度为20ppm,大气仓中氧气浓度约为20%,反应气体相对湿度分别为20%、50%、70%、90%。反应60分钟后,CO浓度均降为0ppm。
以上对本发明进行了详述。对于本领域技术人员来说,在不脱离本发明的宗旨和范围,以及无需进行不必要的实验情况下,可在等同参数、浓度和条件下,在较宽范围内实施本发明。虽然本发明给出了特殊的实施例,应该理解为,可以对本发明作进一步的改进。总之,按本发明的原理,本申请欲包括任何变更、用途或对本发明的改进,包括脱离了本申请中已公开范围,而用本领域已知的常规技术进行的改变。

Claims (10)

1.一种锰铜矿材料,具有规则的晶型结构,由MnO6八面体通过氧桥与O-Cu-O键连接后层层堆叠而成;
所述锰铜矿材料中,所述晶型结构中铜、锰和氧的原子比为1:1:2。
2.一种制备权利要求1所述的锰铜矿材料的方法,包括如下步骤:
(1)将铜盐的水溶液和锰盐的水溶液混合,得到锰铜混合溶液;
(2)将碳酸氢盐水溶液与所述锰铜混合溶液混合共沉淀并搅拌,得到沉淀;
(3)将沉淀洗涤,干燥,焙烧,得到所述锰铜矿材料。
3.根据权利要求2所述的方法,其特征在于:步骤(1)中,所述铜盐的水溶液浓度为10mmol/L~300mmol/L;
所述锰盐的水溶液浓度为10mmol/L~300mmol/L;
所述锰铜混合溶液中,铜和锰的摩尔比为1:1~1:10。
4.根据权利要求2或3所述的方法,其特征在于:步骤(2)中,所述碳酸氢盐为碳酸氢钠、碳酸氢铵、碳酸氢钾中的任一种或几种的混合物;
所述碳酸氢盐水溶液的浓度为50mmol/L~1800mmol/L;
所述碳酸氢盐水溶液与所述锰铜混合溶液的体积比为1:10~10:1;
所述搅拌的温度为室温,时间为0.5~48小时。
5.根据权利要求2-4中任一项所述的方法,其特征在于:步骤(3)中,所述干燥的温度为80℃~120℃,时间为6~24h;
所述焙烧在空气中进行;
所述焙烧的温度为150~450℃;时间为2~8小时。
6.权利要求1所述的锰铜矿材料或权利要求2-5中任一项所述方法制备得到的锰铜矿材料在室温下去除CO中的应用或制备成室温去除CO催化剂的应用,具体地,所述CO的浓度为2~1000ppm。
7.一种室温去除干燥CO的高效催化剂,其由权利要求1所述的锰铜矿材料或权利要求2-5中任一项所述方法制备得到的锰铜矿材料制成。
8.一种室温去除CO的方法,包括如下步骤:利用权利要求1所述的锰铜矿材料或权利要求2-5中任一项所述方法制备得到的锰铜矿催化剂与干燥剂组合后在室温下去除空气中CO;
气体在与所述催化剂接触前,先经过干燥剂干燥。
9.根据权利要求8所述的方法,其特征在于:所述干燥剂为3A分子筛、4A分子筛、5A分子筛和13X分子筛中的一种或几种的组合;
所述CO气体的环境湿度为0%~90%;
所述催化剂去除CO的浓度为2~1000ppm。
10.一种除CO装置,包括干燥剂和催化剂组件,所述干燥剂为3A分子筛、4A分子筛、5A分子筛和13X分子筛中的一种或几种的组合,所述催化剂组件中的催化剂为权利要求1所述的锰铜矿材料或权利要求2-5中任一项所述方法制备得到的锰铜矿材料。
CN202210330424.9A 2022-03-31 2022-03-31 一种锰铜矿材料及其在室温去除一氧化碳中的应用 Active CN114669191B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210330424.9A CN114669191B (zh) 2022-03-31 2022-03-31 一种锰铜矿材料及其在室温去除一氧化碳中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210330424.9A CN114669191B (zh) 2022-03-31 2022-03-31 一种锰铜矿材料及其在室温去除一氧化碳中的应用

Publications (2)

Publication Number Publication Date
CN114669191A true CN114669191A (zh) 2022-06-28
CN114669191B CN114669191B (zh) 2023-05-19

Family

ID=82075775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210330424.9A Active CN114669191B (zh) 2022-03-31 2022-03-31 一种锰铜矿材料及其在室温去除一氧化碳中的应用

Country Status (1)

Country Link
CN (1) CN114669191B (zh)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1131631A (en) * 1965-01-05 1968-10-23 Ici Ltd Catalysts of high activity at low temperature
JPS6377546A (ja) * 1986-09-17 1988-04-07 Nissan Gaadoraa Shokubai Kk 一酸化炭素転化用触媒及びその製造方法
JPS63252908A (ja) * 1987-04-08 1988-10-20 Agency Of Ind Science & Technol 金超微粒子固定化酸化物、その製造法、酸化触媒、還元触媒、可燃性ガスセンサ素子、及び電極用触媒
JPH02157043A (ja) * 1988-12-07 1990-06-15 Matsushita Electric Ind Co Ltd 排気ガス浄化触媒
JPH0435744A (ja) * 1990-05-31 1992-02-06 Matsushita Electric Ind Co Ltd 排気ガス浄化触媒体
CN101143321A (zh) * 2006-09-15 2008-03-19 中国人民解放军63971部队 低温co氧化非贵金属催化剂
CN101559372A (zh) * 2008-01-23 2009-10-21 亚申科技研发中心(上海)有限公司 用于费托合成的铁/锰催化剂及其制备方法
CN101590412A (zh) * 2009-07-02 2009-12-02 浙江师范大学 一种低温消除co的负载型催化剂及其制备方法和用途
KR100976174B1 (ko) * 2009-02-13 2010-08-16 금호석유화학 주식회사 얇은 다중벽 탄소나노튜브 제조용 촉매조성물 및 이의 제조방법
CN102688765A (zh) * 2012-06-19 2012-09-26 福州大学 一种负载型铜锰水煤气变换催化剂及其制备方法
CN104162440A (zh) * 2014-08-04 2014-11-26 南昌大学 一种高抗水性铜锰锡复合氧化物co低温氧化催化剂制备方法
TW201531590A (zh) * 2014-02-12 2015-08-16 Univ Nat Kaohsiung Applied Sci 錳銅礦薄膜的製造方法
CN105289642A (zh) * 2015-10-30 2016-02-03 上海纳米技术及应用国家工程研究中心有限公司 一种孔状结构铜锰复合氧化物的制备方法
CN105618075A (zh) * 2014-08-29 2016-06-01 中国人民解放军63971部队 一种霍加拉特剂的高效制备工艺
CN106031873A (zh) * 2016-07-19 2016-10-19 河南师范大学 一种用于CO低温氧化消除的高比表面CuMn2O4催化剂的制备方法
CN107570167A (zh) * 2017-09-11 2018-01-12 中国科学技术大学 一种碳纳米管负载型催化剂及其制备方法和低温催化氧化co的应用
CN108862395A (zh) * 2018-06-25 2018-11-23 广东工业大学 一种铜铁矿结构CuMnO2粉末及其制备方法和应用
CN109569642A (zh) * 2018-12-13 2019-04-05 重庆工商大学 一种含铜-锰的双组分氧化物的共沉淀制备方法
CN109569643A (zh) * 2018-12-18 2019-04-05 宁波智通环保科技有限公司 一种负载型常温除臭氧催化剂的制备方法
CN110139710A (zh) * 2016-12-27 2019-08-16 三井金属矿业株式会社 废气净化催化剂

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1131631A (en) * 1965-01-05 1968-10-23 Ici Ltd Catalysts of high activity at low temperature
JPS6377546A (ja) * 1986-09-17 1988-04-07 Nissan Gaadoraa Shokubai Kk 一酸化炭素転化用触媒及びその製造方法
JPS63252908A (ja) * 1987-04-08 1988-10-20 Agency Of Ind Science & Technol 金超微粒子固定化酸化物、その製造法、酸化触媒、還元触媒、可燃性ガスセンサ素子、及び電極用触媒
JPH02157043A (ja) * 1988-12-07 1990-06-15 Matsushita Electric Ind Co Ltd 排気ガス浄化触媒
JPH0435744A (ja) * 1990-05-31 1992-02-06 Matsushita Electric Ind Co Ltd 排気ガス浄化触媒体
CN101143321A (zh) * 2006-09-15 2008-03-19 中国人民解放军63971部队 低温co氧化非贵金属催化剂
CN101559372A (zh) * 2008-01-23 2009-10-21 亚申科技研发中心(上海)有限公司 用于费托合成的铁/锰催化剂及其制备方法
KR100976174B1 (ko) * 2009-02-13 2010-08-16 금호석유화학 주식회사 얇은 다중벽 탄소나노튜브 제조용 촉매조성물 및 이의 제조방법
CN101590412A (zh) * 2009-07-02 2009-12-02 浙江师范大学 一种低温消除co的负载型催化剂及其制备方法和用途
CN102688765A (zh) * 2012-06-19 2012-09-26 福州大学 一种负载型铜锰水煤气变换催化剂及其制备方法
TW201531590A (zh) * 2014-02-12 2015-08-16 Univ Nat Kaohsiung Applied Sci 錳銅礦薄膜的製造方法
CN104162440A (zh) * 2014-08-04 2014-11-26 南昌大学 一种高抗水性铜锰锡复合氧化物co低温氧化催化剂制备方法
CN105618075A (zh) * 2014-08-29 2016-06-01 中国人民解放军63971部队 一种霍加拉特剂的高效制备工艺
CN105289642A (zh) * 2015-10-30 2016-02-03 上海纳米技术及应用国家工程研究中心有限公司 一种孔状结构铜锰复合氧化物的制备方法
CN106031873A (zh) * 2016-07-19 2016-10-19 河南师范大学 一种用于CO低温氧化消除的高比表面CuMn2O4催化剂的制备方法
CN110139710A (zh) * 2016-12-27 2019-08-16 三井金属矿业株式会社 废气净化催化剂
CN107570167A (zh) * 2017-09-11 2018-01-12 中国科学技术大学 一种碳纳米管负载型催化剂及其制备方法和低温催化氧化co的应用
CN108862395A (zh) * 2018-06-25 2018-11-23 广东工业大学 一种铜铁矿结构CuMnO2粉末及其制备方法和应用
CN109569642A (zh) * 2018-12-13 2019-04-05 重庆工商大学 一种含铜-锰的双组分氧化物的共沉淀制备方法
CN109569643A (zh) * 2018-12-18 2019-04-05 宁波智通环保科技有限公司 一种负载型常温除臭氧催化剂的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MARIA POIENAR ET AL.,: "Use of ultrasound‑assisted co‑precipitation route to obtain CuMnO2 semiconductor nanomaterials", 《CHEMICAL PAPERS》 *
ZHIXUN LI ET AL.,: "Novel synthesis and shape-dependent catalytic performance of Cu–Mn oxides for CO oxidation", 《APPLIED SURFACE SCIENCE》 *
李明等: "非贵金属室温CO氧化催化剂的研究", 《环境科学与技术》 *
潘菊霜等: "环境水对FeMnO3和NiMnO3室温催化氧化甲醛的影响", 《环境科学学报》 *

Also Published As

Publication number Publication date
CN114669191B (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
RU2237514C1 (ru) Катализатор для разложения закиси азота и способ осуществления процессов, включающих образование закиси азота
CN110732323B (zh) 催化挥发性有机化合物氧化的α-MnO2催化剂的制备方法
EP0311084B1 (en) Oxidation of carbon monoxide and catalyst composition therefor
US8921258B2 (en) Catalyst for selective oxidation of NH3 to N2 and method for preparing the same
WO1997011779A1 (fr) Agent d'elimination de gaz toxiques
US5759949A (en) Supported cold-complex oxidation catalyst
Li et al. Advances in selective catalytic oxidation of ammonia (NH3-SCO): A review of catalyst structure-activity relationship and design principles
EP0589393A2 (en) Method for purifying oxygen rich exhaust gas
KR102067668B1 (ko) 질소산화물 환원용 촉매 및 이를 이용한 질소산화물 환원 시스템
CN111151247A (zh) 一种负载型催化剂及其制备方法和应用
CN114669191B (zh) 一种锰铜矿材料及其在室温去除一氧化碳中的应用
JP2006043634A (ja) 排ガス浄化用触媒及び排ガス浄化用触媒の製造方法
JP4512691B2 (ja) 一酸化炭素による窒素酸化物の選択的還元触媒およびその調製法
Lin et al. Cu-Mn-Ce ternary oxide catalyst coupled with KOH sorbent for air pollution control in confined space
CN110252317B (zh) 一种低温﹑高效脱除氮氧化物的Ce-Fe基催化剂
CN109289906B (zh) 一种氨气净化催化剂及其制备方法和用途
CN114870865A (zh) 一种用于CO还原NO的负载型Pd基双金属纳米催化剂
JP2001058130A (ja) 窒素酸化物分解用触媒
EP2193843B1 (en) Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and method of removing nitrogen oxides using the same
Bian et al. Preparation and characterization of CeO 2–Fe 2 O 3 catalysts for the selective catalytic reduction of NO with CO
JP3433137B2 (ja) 窒素酸化物および/または硫黄酸化物の吸着剤
CN114054020B (zh) 一种钙钛矿结构材料及其在室温去除甲醛中的应用
JPH11104491A (ja) COおよびNOxの酸化触媒
CN117884144A (zh) 一种适用于烧结烟气的低温抗硫去除一氧化碳的催化剂
RU2062145C1 (ru) Поглотитель-катализатор для тонкой очистки инертных газов

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant