CN110252317B - 一种低温﹑高效脱除氮氧化物的Ce-Fe基催化剂 - Google Patents

一种低温﹑高效脱除氮氧化物的Ce-Fe基催化剂 Download PDF

Info

Publication number
CN110252317B
CN110252317B CN201910600945.XA CN201910600945A CN110252317B CN 110252317 B CN110252317 B CN 110252317B CN 201910600945 A CN201910600945 A CN 201910600945A CN 110252317 B CN110252317 B CN 110252317B
Authority
CN
China
Prior art keywords
temperature
catalyst
preparation
low
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910600945.XA
Other languages
English (en)
Other versions
CN110252317A (zh
Inventor
王秀云
蔡继辉
张凯
肖益鸿
江莉龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201910600945.XA priority Critical patent/CN110252317B/zh
Publication of CN110252317A publication Critical patent/CN110252317A/zh
Application granted granted Critical
Publication of CN110252317B publication Critical patent/CN110252317B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种高活性、低温Ce‑Fe基SCR催化剂,其组成成分主要包括Ce、Fe或Ce、Fe、W,是采用单模微波技术结合浸渍法制备获得,其中Fe2O3的形貌为八面体结构。该催化剂在较宽的温度范围内均可表现出高的NOx消除性能,且具有优异的低温活性和抗水性能。本发明提供催化剂的NOx脱除效果优于传统SCR催化剂,且其制备工艺简单,操作方便,成本低,具有明显的工业应用价值,可用于催化消除燃煤烟气中的NOx

Description

一种低温﹑高效脱除氮氧化物的Ce-Fe基催化剂
技术领域
本发明属于纳米催化应用领域,具体涉及一种低温下高效脱硝的Ce-Fe基催化剂及其制备方法。
背景技术
近年来,我国大面积、长时间的雾霾天气给人类健康敲响了警钟。雾霾污染的主要成因之一是氮氧化物(NOx)、二氧化硫(SO2)和挥发性有机物(VOCs)三者相互作用形成的PM2.5,而PM2.5具有颗粒小、毒性大和难沉降等特征。此外,NOx可形成酸雨、光化学烟雾等,对环境和人体健康都产生了严重的危害。随着机动车保有量的增加及燃煤电站装机容量的攀升,NOx的排放量不断增加。因此,开展NOx高效消除研究已成为一项迫在眉睫的工作。
在众多NOx消除技术中,选择性催化还原(SCR)是最有效脱除NOx的技术之一。SCR技术是在含有NOx的烟气中喷入氨、尿素或者其它还原剂,在催化剂的作用下选择性地与NOx反应生成N2和水。其中,高性能催化剂的研发是实现该技术的关键。目前SCR催化剂主要包含三类:(1) 过渡金属Fe、Mn、Co、Cu和V基催化剂,其中V2O5-WO3(MoO3)/TiO2催化剂已实现规模化工业应用,但其存在的问题是活性温区在300-400 ℃,低温活性较差,且V2O5为有毒物质。(2)Pt、Pd和Rh等为活性组分的贵金属基催化剂。它们虽然在低温(100-250℃)条件下具有优异的NOx还原活性,但其易SO2中毒并将还原剂NH3氧化成N2O,导致N2选择性较差,且贵金属昂贵的价格限制了该类催化剂的规模化应用。(3)分子筛为载体的催化剂。ZSM-5和MFI等分子筛为载体的催化剂因活性温区 (100-400℃)较宽,且催化剂废弃后易于回收而备受关注,但该类型催化剂也易SO2中毒,且载体中的硅铝易和烟气中的水蒸气反应形成水合物,导致水热稳定性较差。为此,能否开发出低温活性好、N2选择性高、抗硫性能强的高性能SCR催化剂就成为NOx消除的关键。
国内外研究者为获得上述高性能SCR催化剂开展了大量的研究,如Mn、Ce和Fe基等催化剂。其中,CeO2由于具有良好的储氧能力和氧化还原性能,且具有丰富的表面氧缺陷位,Ce的电子捐赠效应会削弱NH3的氧化,赋予了Ce基催化剂在高温下较高的N2选择性,因而近年来受到许多研究者青睐。然而,由于纯CeO2自身表面酸性位较少,导致低温SCR活性和抗硫性能远不能满足实际要求。众多的研究通过在CeO2中复合过渡金属氧化物来提高低温活性和抗硫性能。如复合Fe和W等,不仅可以显著改变Ce的表面,形成更多的表面氧缺陷,提高催化剂的氧化还原能力,同时可形成更多接受孤对电子的空轨道,促进NH3的吸附,而且Fe和W因具有高酸度/低碱度的过渡金属氧化物,通过它们与Ce的氧化物复合,增强的Lewis酸性位促进了NH3吸附与活化,且在该类组分上形成的硫酸盐相对不稳定,可有效抑制SO2的吸附,促进形成的硫物种分解,从而提高催化剂的抗硫性能。
近几年来,金属离子和有机配体以自组装形式构建的金属有机框架(MOF),由于具有均匀孔隙率的多孔结构和大的比表面积,已引起广泛关注并在著多领域进行了探索应用。因此,本发明采用具有均匀加热、均匀成核优势的单模微波技术,自组装构建MIL-53(Fe),并以其为前驱物制备八面体形状的Fe2O3,结合浸渍方法,制备含Ce、W的复合氧化物。目前还没有相关专利和文献针对微波单模技术条件下制备高性能NOx消除催化剂进行报道。
发明内容
本发明的目的在于提供一种低温﹑高效脱除氮氧化物(NOx)的Ce-Fe基催化剂及其制备方法。
为实现上述目的,本发明采用如下技术方案:
一种低温﹑高效脱除NOx的Ce-Fe基催化剂,其组成成分主要包括Ce、Fe或Ce、Fe、W。
所述低温﹑高效脱除NOx的Ce-Fe基催化剂是采用单模微波耦合浸渍法进行制备;其制备过程具体包括如下步骤:
(1)单模微波合成MIL-53(Fe)纳米晶体:在单模微波条件下,将Fe的前驱体、苯二甲酸加入到N,N-二甲基甲酰胺(DMF)中,高温搅拌,得到MIL-53(Fe)纳米晶体粉末;
(2)Fe2O3的制备:将MIL-53(Fe)纳米晶体粉末在玛瑙研钵中充分研磨,高温焙烧,得到Fe2O3
(3)采用等体积浸渍法,将Fe2O3于Ce的前驱体溶液或Ce与W的前驱体混合溶液中浸泡,然后经烘干,高温焙烧,制得Ce/Fe或Ce-W/Fe催化剂。
步骤1)中所述单模微波条件的微波功率≤50%,升温速率为5 ℃/min,温度为150℃
步骤1)中所述Fe的前驱体为氯化铁或者硝酸铁(优选氯化特);所用苯二甲酸与Fe的摩尔比为10:7。
步骤1)中所述高温搅拌的温度为120-160 ℃,搅拌时间为1-4 h。
该步操作中,可以是将Fe的前驱体单独加到DMF中,然后再将苯二甲酸添加到上述溶液中,也可以是将Fe的前驱体和苯二甲酸分别添加到DMF中,再将二者溶液进行混合(优选后者)。
步骤2)所得Fe2O3为八面体结构。
步骤3)中所述Ce的前驱体为Ce(NO3)3·6H2O,所述W的前驱体为(NH4)10H2(W2O7)6
步骤2)、3)中所述高温焙烧的升温速率为0.5-10 ℃/min,温度为400-600℃(优选500℃),时间为0.5-4 h(优选1h)。
所得催化剂中Ce的理论含量为Fe2O3质量的10-20%,W的理论含量为Fe2O3质量的0-6 wt%。
所述Ce-Fe催化剂主要应用于催化消除火电厂和硝酸厂等燃煤烟气中的氮氧化物。
本发明具有以下的优势:
(1)本发明利用MOF前驱体为具有均匀孔隙率的多孔结构并具有大的比表面积的特点,在单模微波条件下,以Fe的前驱体、苯二甲酸和DMF为原料,制备MIL-53(Fe)纳米晶体,然后将其焙烧制得Fe2O3,再利用等体积浸渍法在其上负载Ce或Ce-W,使制备的催化剂形貌可控且均一。
(2)本发明所得催化剂在低温下具有较高的NOx转化率和抗水中毒性能;且其制备过程简单,无污水排出,使用非贵金属催化剂,大大降低催化剂的合成成本,具有广泛的工业应用前景。
附图说明
图1为实施例1、2所制备Fe2O3纳米棒(a)和八面体Fe2O3(b)的SEM图。
图2为实施例1-4所制备Fe2O3纳米棒、八面体Fe2O3与Ce-Fe及Ce-W/Fe的NOx消除性能对比图。
图3为实施例4所制备Ce-W/Fe催化剂在300℃、5%H2O条件下的NOx转化率随时间变化的情况图。
图4为实施例4所制备Ce-W/Fe催化剂在300℃下的热稳定性情况图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1 Fe2O3纳米棒的制备
首先将0.2703 g FeCl3·6H2O和0.1661 g对苯二甲酸(H2BDC)分别单独溶解在10mL二甲基甲酰胺(DMF)中,在室温下进行搅拌;然后将FeCl3溶液缓慢加入到H2BDC溶液中,继续搅拌30 min;接着将所得混合溶液转移至水热釜中,150℃水热反应2 h;所得溶液离心、洗涤,收集得到的亮红色体产物在60 ℃下干燥24h,获得的MIL-53(Fe)纳米晶体粉末。将得到的MIL-53(Fe)纳米晶体粉末在玛瑙研钵中研磨并均匀撒入瓷舟;将瓷舟放入马弗炉中,在空气、500 ℃条件下退火处理30 min,升温速率为5℃/ min。最后放冷至室温,获得纳米棒状Fe2O3催化剂。
实施例2 Fe2O3八面体的制备
首先将0.2703 g FeCl3· 6H2O和0.1661 g对苯二甲酸(H2BDC)分别单独溶解在10mL二甲基甲酰胺(DMF)中,在室温下进行搅拌;然后将FeCl3溶液缓慢加入到H2BDC溶液中,继续搅拌30 min;接着将所得混合溶液转移至单模微波反应器中,在微波功率≤50%、150℃条件下搅拌反应2 h;将所得溶液离心、洗涤,收集得到的亮红色体产物在60℃下干燥24 h,获得MIL-53(Fe) 纳米晶体粉末。将得到的MIL-53(Fe)纳米晶体粉末在玛瑙研钵中研磨并均匀撒入瓷舟;将瓷舟放入马弗炉中,在空气、500℃条件下退火处理30 min,升温速率为5℃/ min。最后放冷至室温后,获得呈暗红色的八面体Fe2O3催化剂。
如图1所示,在单模微波条件下制得的 Fe2O3呈现八面体形貌,而未引入单模微波条件制得的Fe2O3为纳米棒状。
实施例3 Ce-Fe催化剂的制备
将6.311 g Ce(NO3)3· 6H2O完全溶解于去离子水配成100 mL溶液;然后量取所得溶液5 mL,分三次浸渍于1 g实施例2获得的八面体Fe2O3上;接着置于烘箱中,在60 ℃下干燥24 h,再置于马弗炉中,在空气、500℃条件下退火处理30 min,升温速率为5 ℃/ min。最后放冷至室温后,获得呈暗红色的Ce-Fe催化剂。
实施例4 Ce-W/Fe催化剂的制备
将6.311 gCe(NO3)3·6H2O和1.116 g (NH4)10H2(W2O7)6完全溶解于去离子水配成100 mL溶液;然后量取所得溶液5 mL,分三次浸渍于1 g实施例2获得的八面体Fe2O3上;接着置于烘箱中,在60 ℃下干燥24 h,再置于马弗炉中,在空气、500℃条件下退火处理30 min,升温速率为5℃/ min。最后放冷至室温后,获得呈暗红色的Ce-W/Fe催化剂。
NOx的选择性催化还原
NOx还原过程如下:在连续流动微型反应器上进行NOx转化率测定,样品用量0.5mL,空速150000 h-1,样品在100-400℃下恒温还原NOx,气体体积组成为294 ppm NO、350ppm NH3、3 vol% O2(Ar平衡气),NOx转化率通过化学发光NO-NO2-NOx烟气分析仪及GC-MS测试。
实施例1-4所得催化剂采用上述评价条件进行测定,催化性能如图2所示。由图2可见,300 ℃下Ce-W/Fe催化剂催化NOx转化为N2的转化率为90%。
在300 ℃通入5%H2O,Ce-W/Fe催化剂对NOx的转化率随时间变化的情况如图3所示。由图3可见,随着时间的延长,氮氧化物转化率没有出现明显的降低趋势,表明催化剂具有较高的抗水性能。
在300 ℃反应36 h,Ce-W/Fe催化剂对氮氧化物转化率的情况如图4所示。由图4可见,随着时间的延长,氮氧化物的转化率保持稳定,表明催化剂呈现较高的热稳定性。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (8)

1.一种低温﹑高效脱除NOx的Ce-Fe基催化剂的制备方法,其特征在于:所述催化剂的组成成分主要包括Ce、Fe或Ce、Fe、W,其采用单模微波耦合浸渍法进行制备;其具体包括如下步骤:
(1)单模微波合成MIL-53(Fe)纳米晶体:在单模微波条件下,将Fe的前驱体、苯二甲酸加入到N,N-二甲基甲酰胺中,高温搅拌,得到MIL-53(Fe)纳米晶体粉末;
(2)Fe2O3的制备:将MIL-53(Fe)纳米晶体粉末在玛瑙研钵中充分研磨,高温焙烧,得到Fe2O3
(3)采用等体积浸渍法,将Fe2O3于Ce的前驱体溶液或Ce与W的前驱体混合溶液中浸泡,然后经烘干,高温焙烧,制得Ce/Fe或Ce-W/Fe催化剂。
2.根据权利要求1所述的低温﹑高效脱除NOx的Ce-Fe基催化剂的制备方法,其特征在于:步骤1)中所述单模微波条件的微波功率≤50%,温度为150℃。
3.根据权利要求1所述的低温﹑高效脱除NOx的Ce-Fe基催化剂的制备方法,其特征在于:步骤1)中所述Fe的前驱体为氯化铁或者硝酸铁;
所用苯二甲酸与Fe的摩尔比为10:7。
4. 根据权利要求1所述的低温﹑高效脱除NOx的Ce-Fe基催化剂的制备方法,其特征在于:步骤1)中所述高温搅拌的温度为120-160 ℃,搅拌时间为1-4 h。
5.根据权利要求1所述的低温﹑高效脱除NOx的Ce-Fe基催化剂的制备方法,其特征在于:步骤2)所得Fe2O3为八面体结构。
6.根据权利要求1所述的低温﹑高效脱除NOx的Ce-Fe基催化剂的制备方法,其特征在于:步骤3)中所述Ce的前驱体为Ce(NO3)3·6H2O,所述W的前驱体为(NH4)10H2(W2O7)6
7. 根据权利要求1所述的低温﹑高效脱除NOx的Ce-Fe基催化剂的制备方法,其特征在于:步骤2)、3)中所述高温焙烧的温度为400-600℃,时间为0.5-4 h,升温速率为0.5-10℃/min。
8. 根据权利要求1所述的低温﹑高效脱除NOx的Ce-Fe基催化剂的制备方法,其特征在于:所得催化剂中Ce的理论含量为Fe2O3质量的10-20%.,W的理论含量为Fe2O3质量的0-6wt%。
CN201910600945.XA 2019-07-04 2019-07-04 一种低温﹑高效脱除氮氧化物的Ce-Fe基催化剂 Active CN110252317B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910600945.XA CN110252317B (zh) 2019-07-04 2019-07-04 一种低温﹑高效脱除氮氧化物的Ce-Fe基催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910600945.XA CN110252317B (zh) 2019-07-04 2019-07-04 一种低温﹑高效脱除氮氧化物的Ce-Fe基催化剂

Publications (2)

Publication Number Publication Date
CN110252317A CN110252317A (zh) 2019-09-20
CN110252317B true CN110252317B (zh) 2021-07-13

Family

ID=67924448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910600945.XA Active CN110252317B (zh) 2019-07-04 2019-07-04 一种低温﹑高效脱除氮氧化物的Ce-Fe基催化剂

Country Status (1)

Country Link
CN (1) CN110252317B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111185233B (zh) * 2019-12-03 2023-10-10 青岛大学 一种用于在水环境中降解抗生素的非均相类芬顿催化剂的制备方法及其应用
CN114870833A (zh) * 2022-05-18 2022-08-09 福州大学 一种低温低钒scr脱硝催化剂及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435412B1 (en) * 1989-12-28 1996-03-20 Mitsubishi Jukogyo Kabushiki Kaisha Denitration catalyst for high-temperature exhaust gas
CN101898136A (zh) * 2010-04-09 2010-12-01 上海交通大学 宽温度窗口NH3-SCR去除柴油机NOx的钛基多元金属氧化物催化剂
CN103084182A (zh) * 2011-11-03 2013-05-08 大连理工大学 一种用于烟气脱硝的无钒脱硝催化剂及其制备方法
CN106268952A (zh) * 2016-07-20 2017-01-04 大连理工大学 一种负载型双金属有机骨架材料MIL‑100(Fe‑Cu)的制备方法和脱硝应用
CN106391017A (zh) * 2016-09-30 2017-02-15 上海理工大学 一种FeOX催化剂、其制备方法和在防治环境污染中的应用
CN106955712A (zh) * 2017-03-10 2017-07-18 华南师范大学 一种适用于硫化氢催化还原脱硫脱硝工艺的Fe‑Ce基复合催化剂及其制备方法
CN108906127A (zh) * 2018-07-24 2018-11-30 河北工业大学 一种负载型金属有机骨架催化剂及其制备方法和应用
CN109261163A (zh) * 2018-09-25 2019-01-25 山东国铭球墨铸管科技有限公司 一种冶炼烟气脱氮氧化物的净化工艺
CN109482222A (zh) * 2017-09-09 2019-03-19 中国石油化工股份有限公司 一种脱硝催化剂及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435412B1 (en) * 1989-12-28 1996-03-20 Mitsubishi Jukogyo Kabushiki Kaisha Denitration catalyst for high-temperature exhaust gas
CN101898136A (zh) * 2010-04-09 2010-12-01 上海交通大学 宽温度窗口NH3-SCR去除柴油机NOx的钛基多元金属氧化物催化剂
CN103084182A (zh) * 2011-11-03 2013-05-08 大连理工大学 一种用于烟气脱硝的无钒脱硝催化剂及其制备方法
CN106268952A (zh) * 2016-07-20 2017-01-04 大连理工大学 一种负载型双金属有机骨架材料MIL‑100(Fe‑Cu)的制备方法和脱硝应用
CN106391017A (zh) * 2016-09-30 2017-02-15 上海理工大学 一种FeOX催化剂、其制备方法和在防治环境污染中的应用
CN106955712A (zh) * 2017-03-10 2017-07-18 华南师范大学 一种适用于硫化氢催化还原脱硫脱硝工艺的Fe‑Ce基复合催化剂及其制备方法
CN109482222A (zh) * 2017-09-09 2019-03-19 中国石油化工股份有限公司 一种脱硝催化剂及其制备方法
CN108906127A (zh) * 2018-07-24 2018-11-30 河北工业大学 一种负载型金属有机骨架催化剂及其制备方法和应用
CN109261163A (zh) * 2018-09-25 2019-01-25 山东国铭球墨铸管科技有限公司 一种冶炼烟气脱氮氧化物的净化工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOF-derived porous Fe2O3 with controllable shapes and improved catalytic activities in H2S selective oxidation;Yingying Zhan等;《CrystEngComm》;20180604;第20卷;第3449-3454页 *

Also Published As

Publication number Publication date
CN110252317A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
CN106925265B (zh) 一种过渡金属复合氧化物催化剂
JP2020507445A (ja) ホルムアルデヒド浄化に用いられている遷移金属と窒素を共ドープした炭素複合材料及びその調製方法
CN113413904B (zh) 一种g-C3N4负载型锰铈复合氧化物低温NH3-SCR催化剂及其制备方法与应用
CN111135860A (zh) 一种稀土金属修饰Cu-SSZ-13分子筛及其制备方法和应用
CN110773153B (zh) 一种担载型锰基中低温脱硝催化剂、制备方法及其应用
CN106732581A (zh) 一种用于低温SCR反应的Ru/CeTiOX催化剂的制备方法
CN109621962B (zh) 一种用于消除甲醛的规则形貌金属氧化物催化剂及其制备方法和应用
CN113952982B (zh) 一种锰基超低温脱硝催化剂及其制备方法
CN110252317B (zh) 一种低温﹑高效脱除氮氧化物的Ce-Fe基催化剂
CN108479845B (zh) 一种脱硝催化剂及其制备方法
CN112403488A (zh) 一种抗低硫型低温碳基脱硝催化剂及其制备方法和应用
CN112844404A (zh) 一种以TiO2纳米管为载体的低温脱硝催化剂及其制备和应用
CN104772038A (zh) 利用Pd-CeO2/Me-beta 分子筛净化丙烯腈装置吸收塔尾气的方法
CN108993481A (zh) 一种棒状氧化铈负载的钐锰复合氧化物催化剂及制备方法
CN110314685A (zh) 一种用于甲苯低温催化氧化的核壳结构催化剂制备方法
CN111905721B (zh) 二氧化钛纳米阵列低温脱硝脱汞用催化剂及制备方法
CN113289605A (zh) 一种低温no氧化催化剂及其制备方法
CN111036231B (zh) 一种抗硫抗碱金属低温脱硝催化剂及其制备方法及应用
CN112642450A (zh) 一种磷掺杂炭气凝胶负载锰铈催化剂的制备方法
CN102179252B (zh) 一种选择性催化氧化氨的Cu/CeOx-TiO2催化剂及其制备方法
CN115364868B (zh) 一种催化分解臭氧的催化剂及其制备方法
CN109289906B (zh) 一种氨气净化催化剂及其制备方法和用途
CN115245820B (zh) 一种尖晶石催化剂、其制备方法与应用
CN108448123B (zh) 一种用于低温水煤气变换反应的铈基催化剂及其制备方法
CN114308053A (zh) 一种以高熵氧化物为活性组分的脱硝催化剂及其制备与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant