CN114613847B - 硅基AlGaN/GaN HEMT外延薄膜及其生长方法 - Google Patents

硅基AlGaN/GaN HEMT外延薄膜及其生长方法 Download PDF

Info

Publication number
CN114613847B
CN114613847B CN202210500579.2A CN202210500579A CN114613847B CN 114613847 B CN114613847 B CN 114613847B CN 202210500579 A CN202210500579 A CN 202210500579A CN 114613847 B CN114613847 B CN 114613847B
Authority
CN
China
Prior art keywords
layer
gan
aln
flow rate
superlattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210500579.2A
Other languages
English (en)
Other versions
CN114613847A (zh
Inventor
吴春艳
鲁德
朱晨岳
周昆楠
戴一航
罗林保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202210500579.2A priority Critical patent/CN114613847B/zh
Publication of CN114613847A publication Critical patent/CN114613847A/zh
Application granted granted Critical
Publication of CN114613847B publication Critical patent/CN114613847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了硅基AlGaN/GaN HEMT外延薄膜及其生长方法,是在Si衬底上利用金属有机气相化学沉积的方法外延生长基于AlGaN/GaN异质结的HEMT外延薄膜。本发明通过在Si衬底上生长缓冲层控制Al组分渐变,并且加入AlGaN/AlN超晶格和AlN/GaN超晶格的双层超晶格缓冲层来降低晶格失配和热失配,实现大尺寸硅基AlGaN/GaN HEMT外延薄膜的生长,得到高质量的AlGaN/GaN异质结,获得高浓度高迁移率的二维电子气(2DEG)。

Description

硅基AlGaN/GaN HEMT外延薄膜及其生长方法
技术领域
本发明属于薄膜生长技术领域,具体涉及一种大尺寸高质量硅基AlGaN/GaN HEMT外延薄膜及其生长方法。
背景技术
当今社会最重要的挑战之一是世界能源消耗的稳定增长。在未来的20年里,全球的能源消耗预计将增加40%,届时电力将覆盖最大比例的能源使用(高达60%)。在这种背景下,电力电子学作为专用于电力控制和管理的技术,在优化电力电子器件特性上起到了至关重要的作用。发展至今,硅(Si)材料在半导体市场中所占比重较大,在半导体科技的发展过程中承担着主要作用,目前成熟的Si基产品约占电力电子器件市场份额的87%。由于Si材料自身理论极限较低,无法满足当下低能耗的需求,人们逐渐将目光转向具有高热导率、高电子饱和速度、高击穿场强的第三代宽禁带半导体材料。以GaN和SiC为首的宽禁带半导体材料被认为是低损耗电力电子器件的最佳选择,相较于Si基器件在降低导通电阻的同时提高击穿电压,从而全面降低功率损耗。因此,GaN基器件可以在很多重要领域得以应用,包括各类电子产品、新能源汽车、工业应用、可再生能源、交通运输工具等。AlGaN/GaN高电子迁移率晶体管(High Electron Mobility Transistor,HEMT)由于具有以下优异特性,成为目前研究热点:(1)AlGaN/GaN HEMT异质结界面处二维电子气(2DEG)浓度高,并且由于GaN层作为沟道层而AlGaN层作为势垒层提供电子,在空间上保证了电子与提供电子的杂质互相分离,使得电子迁移率免于杂质散射的影响而大幅度提高。(2)由于GaN基器件宽禁带、耐高温的特性,AlGaN/GaN HEMT能在高温、高电场、大功率状态下工作且直流特性不发生显著退化。
GaN外延生长常用的衬底有氮化镓(GaN)、碳化硅(SiC)、蓝宝石(Al2O3)和硅(Si)。Si衬底价格低廉,大尺寸制备技术成熟,容易获得不同尺寸(2-12英寸)不同类型(n型/p型/高阻)的衬底,并且GaN-on-Si外延片后续器件工艺可与传统的硅器件工艺兼容,大幅降低了工艺研发成本。基于以上这些优点,硅衬底上GaN基HEMT外延迅速成为国内外企业高校的研究热点。
然而,虽然在硅衬底上外延GaN基HEMT外延薄膜有着诸多优势,但是GaN-on-Si的难度很大,面临很多技术问题,比如GaN和Si之间的晶格失配(17%)和热失配(56%)导致厚层GaN龟裂、大尺寸外延片的翘曲控制、Ga原子扩散到Si衬底时发生的回熔腐蚀现象等。
发明内容
基于上述现有技术所存在的问题,本发明提供一种大尺寸高质量硅基AlGaN/GaNHEMT外延薄膜及其生长方法,是在硅(111)衬底上利用有机金属化学气相沉积的方法生长HEMT外延薄膜,旨在通过合理的薄膜结构设计和工艺参数设计生长出Si衬底GaN基HEMT无裂痕高均匀高质量的外延薄膜,通过应力控制层生长高质量高均匀性的AlGaN/GaN异质结获得高浓度高迁移率的二维电子气(2DEG)。
本发明为解决技术问题,采用如下技术方案:
一种大尺寸高质量硅基AlGaN/GaN HEMT外延薄膜,其特点在于:所述HEMT是在Si衬底上从下至上依次形成有2500-3000 nm厚的应力控制层、1200-1500 nm厚的GaN高阻层、250-300 nm厚的GaN沟道层、1-2 nm厚的AlN插入层、20 nm厚的AlGaN势垒层和1-2 nm厚的GaN帽层。
进一步地,所述应力控制层从下至上依次包括160nm-280 nm厚的AlN缓冲层、350-450 nm厚的AlN/AlGaN超晶格、700-1000 nm厚的Al0.3Ga0.7N和1200-1500 nm的AlN/GaN超晶格。
进一步地,所述160nm-280 nm厚的AlN缓冲层从下至上依次包括10-30 nm厚的低温AlN缓冲层、150-250 nm厚的高温AlN缓冲层。
本发明所述大尺寸高质量硅基AlGaN/GaN HEMT外延薄膜的生长方法,是按如下步骤进行:
步骤1、预处理
将(111)晶向的轻掺杂硅晶圆片放置在石墨托盘上,然后放入MOCVD系统的反应腔中;
设置反应腔压力为50 Torr、石墨托盘转速为1000 rpm,将石墨托盘升温至1000-1050℃,以90-120 slm(slm表示标况下(0℃,1 atm)升每分钟)的流量向反应腔中通过H2气对Si衬底表面的SiO2进行还原反应,时间为5 min,以去除氧杂质,打开表面悬浮键,使表面充满活性;
步骤2、应力控制层的生长
步骤21、维持反应腔压力为40 Torr、石墨托盘转速为1150 rpm;降温到700-800℃,以200-250 sccm(sccm表示标况下(0℃,1 atm )毫升每分钟)的流量通入三甲基铝气体(TMAl)5-10 s,进行Al的预铺;然后保持三甲基铝流量和温度不变,以3-4 slm的流量通入NH3气25-35 s,从而在Si衬底表面生长一层10-30 nm厚的低温AlN缓冲层;随后升温到1050-1120℃,以150-200 sccm的流量通入三甲基铝气体(TMAl),同时以3-4 slm的流量通入NH3,生长50-60 min,使低温AlN缓冲层上生长一层150-250 nm厚的高温AlN缓冲层;
步骤22、维持反应腔压力为40 Torr、石墨托盘转速为1150 rpm;设置温度为1020-1070℃并保持恒温,进行AlN/AlGaN超晶格的生长,即单层AlN超晶格和单层AlGaN超晶格的交替生长;
所述单层AlN超晶格的生长方法为:同时以480-550 sccm的流量通入三甲基铝气体(TMAl)、以3-3.5 slm的流量通入NH3,生长28 s;
所述单层AlGaN超晶格的生长方法为:同时以300-350 sccm的流量通入TMAl、以70-80 sccm的流量通入三甲基镓气体(TMGa)、以5-5.5 slm的流量通入NH3、以50-70 sccm的流量通入C3H8,生长20 s;
交替生长单层AlN超晶格和单层AlGaN超晶格,直至在AlN缓冲层上形成总厚度为350-450 nm AlN/AlGaN超晶格;
步骤23、维持反应腔压力为40 Torr、石墨托盘转速为1150 rpm;设置温度为1010-1060℃并保持恒温,同时以10-12 slm的流量通入NH3、以80-85 sccm的流量通入C3H8、以500-550 sccm的流量通入三甲基铝气体(TMAl)、以100-120 sccm的流量通入三甲基镓气体(TMGa),生长50-60 min,从而在AlN/AlGaN超晶格上形成700-1000 nm厚的Al0.3Ga0.7N;
步骤24、维持反应腔压力为40 Torr、石墨托盘转速为1150 rpm;设置温度为1000-1050℃并保持恒温,进行AlN/GaN超晶格的生长,即单层AlN超晶格和单层GaN超晶格的交替生长;
所述单层AlN超晶格的生长方法为:同时以500-550 sccm的流量通入三甲基铝气体(TMAl)、以4.5-5 slm的流量通入NH3,生长33 s;
所述单层GaN超晶格的生长方法为:同时以250-350 sccm的流量通入三甲基镓气体(TMGa)、以16-20 slm的流量通入NH3、以150-200 sccm的流量通入C3H8气,生长30 s;
交替生长单层AlN超晶格和单层GaN超晶格,直至在Al0.3Ga0.7N上形成1200-1500nm 厚的AlN/GaN超晶格;
步骤3、GaN高阻层和GaN沟道层的生长
维持反应腔压力为50 Torr、石墨托盘转速为1150 rpm;设置温度为1020-1090℃并保持恒温,以450-550 sccm的流量通入三甲基镓气体(TMGa)、以30-40 slm的流量通入NH3、以750-900 sccm的流量通入C3H8,生长14-15 min,从而在AlN/GaN超晶格上形成1200-1500 nm厚的GaN高阻层;
继续维持石墨托盘转速为1150 rpm、温度为1020-1090℃,反应腔压力升高到150Torr,同时以200-300 sccm的流量通入三甲基镓气体(TMGa)、以55-65 slm的流量通入NH3,生长5-7 min,从而在GaN高阻层上形成250-300 nm厚的GaN沟道层;
步骤4、AlN插入层和AlGaN势垒层的生长
维持反应腔压力为75 Torr、石墨托盘转速为1150 rpm;设置温度为980-1050 ℃并保持恒温,同时以35-40 sccm的流量通入三甲基铝气体(TMAl)、以10-12 slm的流量通入NH3,生长1 min,即在GaN沟道层上形成1-2 nm厚的AlN插入层;
继续维持反应腔压力为75 Torr、石墨托盘转速为1150 rpm、温度为980-1050℃,同时以35-40 sccm的流量通入三甲基铝气体(TMAl)、以25-30 sccm的流量通入三甲基镓气体(TMGa)、以10-12 slm的流量通入NH3,生长5 min,即在AlN插入层上形成20 nm厚的AlGaN势垒层;
步骤5、GaN帽层的生长
维持反应腔压力为75 Torr、石墨托盘转速为1150 rpm;设置温度为980-1050℃并保持恒温,同时以10-12 slm的流量通入NH3、以25-30 sccm的流量通入三甲基镓气体(TMGa),生长30s,即在AlGaN势垒层上形成1-2 nm厚的GaN帽层。
与已有技术相比,本发明的有益效果体现在:
1. 本发明的外延片是采用有机金属化学气相沉积的方法,通过在Si衬底上生长缓冲层控制Al组分渐变,并且加入AlGaN/AlN超晶格和AlN/GaN超晶格的双层超晶格缓冲层来降低晶格失配和热失配,实现大尺寸硅基AlGaN/GaN HEMT外延薄膜的生长,得到高质量的AlGaN/GaN异质结,获得高浓度高迁移率的二维电子气(2DEG)。
2. 本发明所得外延薄膜厚度均匀性(厚度标准偏差(Std)与总膜厚的比值)<2%,衡量电子气高迁移率的AlGaN势垒层中Al组分最大和最小值之差<2%,远超过一般薄膜机台等常规方法生长的外延薄膜的均匀性指标。
3. 本发明适用于6-8英寸的大尺寸生长,成本低廉,很适合大面积投入生产,具有强大的商业优势。
4. 本发明在硅(111)晶向的轻掺杂硅片上采取缓冲层技术,通过控制Al的组分渐变在GaN外延生长过程中引入一个压应力,进而抵消部分GaN与Si之间由于热膨胀系数差别大而产生的张应力,从而缓解外延层开裂的问题。同时加入了AlGaN/AlN和AlN/GaN双层超晶格结构,实现质量良好的Al组分渐变,释放AlN缓冲层和GaN外延层之间的晶格失配和热失配应力,减小GaN外延层中的张应力。同时,AlGaN的晶格常数小于GaN的晶格常数,上层Al0.3Ga0.7N过渡层也会给GaN沟道层引入一个可观的压应力,可有效补偿GaN层中的一部分生长张应力,这两方面都能有效的抑制裂纹的产生,更好地减少晶格失配带来的影响,更加精准主动控制组分和厚度,使得晶圆的裂纹水平、晶体质量、翘曲水平进一步达到理想结果。
5. 本发明加入AlN插入层,在极化作用的影响下能够提高AlGaN势垒层和GaN沟道层的有效价带差,实现窄而深的三角形量子阱,抑制2DEG渗透到AlGaN合金中,降低合金散射提高迁移率。
附图说明
图1为本发明硅基AlGaN/GaN HEMT外延薄膜的结构示意图。
图2为实施例1所生长的6英寸AlGaN/GaNA HEMT外延薄膜的照片。
图3为实施例1所生长的6英寸AlGaN/GaN HEMT外延薄膜中心区域和边缘区域的光学显微镜图片。
图4为实施例1所生长的6英寸AlGaN/GaN HEMT外延薄膜的原子力显微镜(AFM)照片。
图5为实施例1所生长的6英寸AlGaN/GaN HEMT外延薄膜的总膜厚分布图。
图6为实施例1所生长的6英寸AlGaN/GaN HEMT外延薄膜的AlGaN势垒层的Al组分分布。
图7为实施例1所生长的6英寸AlGaN/GaN HEMT外延薄膜的外延翘曲值分布。
图8为实施例1所生长的6英寸AlGaN/GaN HEMT外延薄膜的AlGaN势垒层的厚度,右侧表格对应左侧外延片各个位置的具体厚度。
图9为实施例1所生长的6英寸AlGaN/GaN HEMT外延薄膜的X射线衍射(XRD)图谱。
图10为实施例1所生长的6英寸AlGaN/GaN HEMT外延薄膜的关态下的电流-电压(I-V)特性曲线。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
参见图1,本实施例的硅基AlGaN/GaN HEMT外延薄膜是在6英寸的硅(111)晶向的轻掺杂硅片上利用MOCVD沉积形成的。在Si衬底上从下至上依次生长有200 nm AlN缓冲层,400 nm AlN/AlGaN超晶格,800 nm Al0.3Ga0.7N,1400 nm AlN/GaN超晶格,1300 nm GaN高阻层,270 nm GaN沟道层,2 nm AlN插入层,20 nm AlGaN势垒层和1 nm GaN帽层。其中270 nmGaN沟道层、2 nm AlN插入层、20 nm AlGaN势垒层形成异质结,获得迁移率为1980 cm-2、载流子浓度为8.9×1012 cm2/Vs的二维电子气(2DEG)。
本实施例的大尺寸高质量硅基AlGaN/GaN HEMT外延薄膜按如下步骤制得:
步骤1、预处理
将(111)晶向的轻掺杂硅晶圆片放置在石墨托盘上,然后放入MOCVD系统的反应腔中;
设置反应腔压力为50 Torr、石墨托盘转速为1000 rpm,将石墨托盘升温至1050℃,以100 slm的流量向反应腔中通过H2气对Si衬底表面的SiO2进行还原反应,时间为5min,以去除氧杂质,打开表面悬浮键,使表面充满活性。
步骤2、应力控制层的生长
步骤21、维持反应腔压力为40 Torr、石墨托盘转速为1150 rpm;降温到750℃,以205 sccm的流量通入TMAl 6 s,进行Al的预铺;然后保持TMAl流量和温度不变,以3.9 slm的流量通入NH3气30 s,从而在Si衬底表面生长一层10nm厚的低温AlN缓冲层;随后升温到1090℃,以160 sccm的流量通入TMAl,同时以3 slm的流量通入NH3,生长50 min,使低温AlN缓冲层上生长一层190 nm厚的高温AlN缓冲层。
步骤22、维持反应腔压力为40 Torr、石墨托盘转速为1150 rpm;设置温度为1070℃并保持恒温,进行AlN/AlGaN超晶格的生长,即单层AlN超晶格和单层AlGaN超晶格的交替生长。
单层AlN超晶格的生长方法为:同时以500 sccm的流量通入TMAl、以3.2 slm的流量通入NH3,生长28 s;
单层AlGaN超晶格的生长方法为:同时以320 sccm的流量通入TMAl、以75 sccm的流量通入TMGa、以5.45 slm的流量通入NH3、以60 sccm的流量通入C3H8,生长20 s;
交替生长单层AlN超晶格和单层AlGaN超晶格,直至在AlN缓冲层上形成总厚度为400 nm AlN/AlGaN超晶格。
步骤23、维持反应腔压力为40 Torr、石墨托盘转速为1150 rpm;设置温度为1060℃并保持恒温,同时以10.8 slm的流量通入NH3、以84 sccm的流量通入C3H8、以500 sccm的流量通入TMAl、以100 sccm的流量通入TMGa,生长55 min,从而在AlN/AlGaN超晶格上形成900 nm厚的Al0.3Ga0.7N。
步骤24、维持反应腔压力为40 Torr、石墨托盘转速为1150 rpm;设置温度为1050℃并保持恒温,进行AlN/GaN超晶格的生长,即单层AlN超晶格和单层GaN超晶格的交替生长。
单层AlN超晶格的生长方法为:同时以540 sccm的流量通入TMAl、以4.7 slm的流量通入NH3,生长33 s;
单层GaN超晶格的生长方法为:同时以300 sccm的流量通入TMGa、以16.2 slm的流量通入NH3、以180 sccm的流量通入C3H8气,生长30 s;
交替生长单层AlN超晶格和单层GaN超晶格,直至在Al0.3Ga0.7N上形成1400 nm厚的AlN/GaN超晶格。
步骤3、GaN高阻层和GaN沟道层的生长
维持反应腔压力为50 Torr、石墨托盘转速为1150 rpm;设置温度为1085℃并保持恒温,以500 sccm的流量通入TMGa、以35 slm的流量通入NH3、以850 sccm的流量通入C3H8,生长15 min,从而在AlN/GaN超晶格上形成1300 nm厚的GaN高阻层。
继续维持石墨托盘转速为1150 rpm、温度为1090℃,反应腔压力升高到150 Torr,同时以240 sccm的流量通入TMGa、以62.4 slm的流量通入NH3,生长6 min,从而在GaN高阻层上形成270 nm厚的GaN沟道层。
步骤4、AlN插入层和AlGaN势垒层的生长
维持反应腔压力为75 Torr、石墨托盘转速为1150 rpm;设置温度为1045℃并保持恒温,同时以39 sccm的流量通入TMAl、以10.5 slm的流量通入NH3,生长1 min,即在GaN沟道层上形成2 nm厚的AlN插入层;
继续维持反应腔压力为75 Torr、石墨托盘转速为1150 rpm、温度为1045℃;同时以39 sccm的流量通入TMAl、以26 sccm的流量通入TMGa、以10.5 slm的流量通入NH3,生长5min,即在AlN插入层上形成20 nm厚的AlGaN势垒层。
步骤5、GaN帽层的生长
维持反应腔压力为75 Torr、石墨托盘转速为1150 rpm;设置温度为1045℃并保持恒温,同时以10.5 slm的流量通入NH3、以26 sccm的流量通入TMGa,生长30s,即在AlGaN势垒层上形成1 nm厚的GaN帽层。
图2为本实施例所生长的6英寸AlGaN/GaN HEMT外延薄膜的照片,薄膜整体表面光滑平整,没有明显的裂纹。
图3为本实施例所生长的6英寸AlGaN/GaN HEMT外延薄膜的光学显微镜照片。左侧是薄膜中心区域的光学显微镜图像,右侧是薄膜边缘的光学显微镜图像。薄膜中心区域未观察到明显的裂纹和瑕疵,在外延片的边缘300 μm范围以内,有少量垂直边沿的裂纹。
图4为本实施例所生长的6英寸AlGaN/GaN HEMT外延薄膜的原子力显微镜(AFM)照片,扫描区域为5 μm×5 μm,薄膜表面方均根粗糙度为0.146 nm,从图中可看到表面有清晰的原子台阶,这就说明AlGaN势垒层是在台阶流动模式下获得的,表明所得薄膜表面平整、形貌良好。
图5为本实施例所生长的6英寸AlGaN/GaN HEMT外延薄膜的总膜厚分布图。测试6英寸的AlGaN/GaN异质结HEMT的外延薄膜平均膜厚为4.53 μm,膜厚标准偏差为0.05 μm,片内膜厚均匀性为1.10%。
图6为本实施例所生长的6英寸AlGaN/GaN HEMT外延薄膜的AlGaN势垒层的Al组分分布。片内Al的平均组分在23.2%,从分布图上看出片内Al组分最大-最小值之差在0.69%,远小于2%业内水平,6英寸Al组分均匀性好。
图7为本实施例所生长的6英寸AlGaN/GaN HEMT外延薄膜的衬底弯曲度(Bow值)分布。HEMT外延片的翘曲均值Bow在22 μm,满足集成电路制程对晶圆片的翘曲度50 μm的要求,主要原因是引入超晶格作为AlGaN的应力控制层。
图8为本实施例所生长的6英寸AlGaN/GaN HEMT外延薄膜的AlGaN势垒层的厚度。左侧在外延片上取了13个不同位置进行测量,右侧是不同位置的具体数值,其中AlGaN势垒层的厚度均值为23.29 nm,厚度均匀性在1.40%。
图9为本实施例所生长的6英寸AlGaN/GaN HEMT外延薄膜的X射线衍射(XRD)图谱。测得GaN(002)面和(102)面摇摆曲线半高宽分别是590 arcsec和893 aresec,GaN晶体质量比较好,位错密度得到有效控制。
图10为本实施例所生长的6英寸AlGaN/GaN HEMT外延薄膜的关态下的I-V曲线。肖特基接触尺寸(Pad Size)为0.5 mm2时,关态状态下,源漏端加正向电压为810V时的漏极电流为1 μA/mm2,源漏端加反向电压为880 V时的漏极电流为1 μA/mm2,即电压>800 V时的漏极电流仅为1 μA/mm2,漏电性能好,大大增强AlGaN/GaN HEMT器件的稳定性。漏电性能表现好主要原因是外延生长引入AlN、双层超晶格结构作为AlGaN等多种缓冲层,缩小硅衬底与GaN晶格失配效应,多层缓冲层更有效降低界面位错缺陷,特别是刃位错缺陷密度,利于提高AlGaN/GaN外延薄膜的晶体质量,更有效阻挡界面的位错密度,有利于GaN表面合并,改善硅基AlGaN/GaN HEMT漏电性能。从关态IV曲线看,击穿耐压值接近950 V。硅基AlGaN/GaNHEMT耐压性能好主要原因是双层超晶格、Al0.3Ga0.7N等缓冲层。特别的,高阻率GaN结构中主动通入C3H8气体作为C源技术的主动掺C技术,相对于被动掺C技术,能够不降低晶体质量前提下,大幅提高掺C浓度,增强硅基AlGaN/GaN HEMT器件背压的耐压性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.硅基AlGaN/GaN HEMT外延薄膜,其特征在于:所述HEMT外延薄膜是在Si衬底上从下至上依次形成有2500-3000 nm厚的应力控制层、1200-1500 nm厚的GaN高阻层、250-300 nm厚的GaN沟道层、1-2 nm厚的AlN插入层、20 nm厚的AlGaN势垒层和1-2 nm厚的GaN帽层;
所述应力控制层从下至上依次包括160nm-280 nm厚的AlN缓冲层、350-450 nm厚的AlN/AlGaN超晶格、700-1000 nm厚的Al0.3Ga0.7N和1200-1500 nm的AlN/GaN超晶格。
2.根据权利要求1所述的硅基AlGaN/GaN HEMT外延薄膜,其特征在于:所述160nm-280nm厚的AlN缓冲层从下至上依次包括10-30 nm厚的低温AlN缓冲层、150-250 nm厚的高温AlN缓冲层。
3.一种权利要求1~2中任意一项所述硅基AlGaN/GaN HEMT外延薄膜的生长方法,其特征在于,按如下步骤进行:
步骤1、预处理
将(111)晶向的轻掺杂硅晶圆片放置在石墨托盘上,然后放入MOCVD系统的反应腔中;
设置反应腔压力为50 Torr、石墨托盘转速为1000 rpm,将石墨托盘升温至1000-1050℃,以90-120 slm的流量向反应腔中通过H2气对Si衬底表面的SiO2进行还原反应,时间为5min,以去除氧杂质;
步骤2、应力控制层的生长
步骤21、维持反应腔压力为40 Torr、石墨托盘转速为1150 rpm;降温到700-800℃,以200-250 sccm的流量通入三甲基铝气体5-10 s,进行Al的预铺;然后保持三甲基铝流量和温度不变,以3-4 slm的流量通入NH3气25-35 s,从而在Si衬底表面生长一层10-30 nm厚的低温AlN缓冲层;随后升温到1050-1120℃,以150-200 sccm的流量通入三甲基铝气体,同时以3-4 slm的流量通入NH3,生长50-60 min,使低温AlN缓冲层上生长一层150-250 nm厚的高温AlN缓冲层;
步骤22、维持反应腔压力为40 Torr、石墨托盘转速为1150 rpm;设置温度为1020-1070℃并保持恒温,进行AlN/AlGaN超晶格的生长,即单层AlN超晶格和单层AlGaN超晶格的交替生长;
所述单层AlN超晶格的生长方法为:同时以480-550 sccm的流量通入三甲基铝气体、以3-3.5 slm的流量通入NH3,生长28 s;
所述单层AlGaN超晶格的生长方法为:同时以300-350 sccm的流量通入TMAl、以70-80sccm的流量通入三甲基镓气体、以5-5.5 slm的流量通入NH3、以50-70 sccm的流量通入C3H8,生长20 s;
交替生长单层AlN超晶格和单层AlGaN超晶格,直至在AlN缓冲层上形成总厚度为350-450 nm AlN/AlGaN超晶格;
步骤23、维持反应腔压力为40 Torr、石墨托盘转速为1150 rpm;设置温度为1010-1060℃并保持恒温,同时以10-12 slm的流量通入NH3、以80-85 sccm的流量通入C3H8、以500-550sccm的流量通入三甲基铝气体、以100-120 sccm的流量通入三甲基镓气体,生长50-60min,从而在AlN/AlGaN超晶格上形成700-1000 nm厚的Al0.3Ga0.7N;
步骤24、维持反应腔压力为40 Torr、石墨托盘转速为1150 rpm;设置温度为1000-1050℃并保持恒温,进行AlN/GaN超晶格的生长,即单层AlN超晶格和单层GaN超晶格的交替生长;
所述单层AlN超晶格的生长方法为:同时以500-550 sccm的流量通入三甲基铝气体、以4.5-5 slm的流量通入NH3,生长33 s;
所述单层GaN超晶格的生长方法为:同时以250-350 sccm的流量通入三甲基镓气体、以16-20 slm的流量通入NH3、以150-200 sccm的流量通入C3H8气,生长30 s;
交替生长单层AlN超晶格和单层GaN超晶格,直至在Al0.3Ga0.7N上形成1200-1500 nm 厚的AlN/GaN超晶格;
步骤3、GaN高阻层和GaN沟道层的生长
维持反应腔压力为50 Torr、石墨托盘转速为1150 rpm;设置温度为1020-1090℃并保持恒温,以450-550 sccm的流量通入三甲基镓气体、以30-40 slm的流量通入NH3、以750-900 sccm的流量通入C3H8,生长14-15 min,从而在AlN/GaN超晶格上形成1200-1500 nm厚的GaN高阻层;
继续维持石墨托盘转速为1150 rpm、温度为1020-1090℃,反应腔压力升高到150Torr,同时以200-300 sccm的流量通入三甲基镓气体、以55-65 slm的流量通入NH3,生长5-7 min,从而在GaN高阻层上形成250-300 nm厚的GaN沟道层;
步骤4、AlN插入层和AlGaN势垒层的生长
维持反应腔压力为75 Torr、石墨托盘转速为1150 rpm;设置温度为980-1050 ℃并保持恒温,同时以35-40 sccm的流量通入三甲基铝气体、以10-12 slm的流量通入NH3,生长1min,即在GaN沟道层上形成1-2 nm厚的AlN插入层;
继续维持反应腔压力为75 Torr、石墨托盘转速为1150 rpm、温度为980-1050℃,同时以35-40 sccm的流量通入三甲基铝气体、以25-30 sccm的流量通入三甲基镓气体、以10-12slm的流量通入NH3,生长5 min,即在AlN插入层上形成20 nm厚的AlGaN势垒层;
步骤5、GaN帽层的生长
维持反应腔压力为75 Torr、石墨托盘转速为1150 rpm;设置温度为980-1050℃并保持恒温,同时以10-12 slm的流量通入NH3、以25-30 sccm的流量通入三甲基镓气体,生长30s,即在AlGaN势垒层上形成1-2 nm厚的GaN帽层。
CN202210500579.2A 2022-05-10 2022-05-10 硅基AlGaN/GaN HEMT外延薄膜及其生长方法 Active CN114613847B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210500579.2A CN114613847B (zh) 2022-05-10 2022-05-10 硅基AlGaN/GaN HEMT外延薄膜及其生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210500579.2A CN114613847B (zh) 2022-05-10 2022-05-10 硅基AlGaN/GaN HEMT外延薄膜及其生长方法

Publications (2)

Publication Number Publication Date
CN114613847A CN114613847A (zh) 2022-06-10
CN114613847B true CN114613847B (zh) 2022-08-09

Family

ID=81868749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210500579.2A Active CN114613847B (zh) 2022-05-10 2022-05-10 硅基AlGaN/GaN HEMT外延薄膜及其生长方法

Country Status (1)

Country Link
CN (1) CN114613847B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115799332B (zh) * 2023-02-13 2023-04-21 江西兆驰半导体有限公司 一种极性硅基高电子迁移率晶体管及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110379854A (zh) * 2019-07-26 2019-10-25 同辉电子科技股份有限公司 一种适用于功率器件的氮化镓外延技术
CN111129114A (zh) * 2019-12-26 2020-05-08 西安电子科技大学芜湖研究院 一种Si基GaN外延低位错薄膜及其制备方法
CN113889402A (zh) * 2020-07-01 2022-01-04 中国科学院苏州纳米技术与纳米仿生研究所 一种用于制备GaN基电子器件的方法
CN113948389B (zh) * 2021-08-30 2023-03-14 西安电子科技大学 一种基于衬底背面SiSn外延层的硅基AlGaN/GaN HEMT及制备方法
CN114361302B (zh) * 2022-03-17 2022-06-17 江西兆驰半导体有限公司 一种发光二极管外延片、发光二极管缓冲层及其制备方法

Also Published As

Publication number Publication date
CN114613847A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
CN110211865B (zh) 一种降低氮化镓高电子迁移率场效应管界面热阻的外延生长方法
CN109065438B (zh) AlN薄膜的制备方法
WO2015056714A1 (ja) n型窒化アルミニウム単結晶基板、および縦型窒化物半導体デバイス
WO2019144915A1 (zh) 具有多量子阱高阻缓冲层的hemt外延结构及制备方法
CN108987256B (zh) p型AlGaN半导体材料生长方法
CN112670161B (zh) 一种低热阻氮化镓高电子迁移率晶体管外延材料制备方法
CN108899365B (zh) 高阻GaN基缓冲层外延结构及其制备方法
CN111681947B (zh) 一种降低外延片堆垛层错缺陷的外延方法及其应用
CN114551593A (zh) 一种外延片、外延片生长方法及高电子迁移率晶体管
JP4468744B2 (ja) 窒化物半導体薄膜の作製方法
CN114613847B (zh) 硅基AlGaN/GaN HEMT外延薄膜及其生长方法
CN112687525B (zh) 一种提高超薄氮化镓场效应管晶体质量的外延方法
CN114420754A (zh) 改善高阻层的高电子迁移率晶体管外延片及其制备方法
CN107887255B (zh) 一种高阻GaN薄膜外延生长的方法
CN110429128B (zh) 一种低势垒多量子阱高阻缓冲层外延结构及其制备方法
CN111863945A (zh) 一种高阻氮化镓及其异质结构的制备方法
CN110610849B (zh) 一种InGaN半导体材料及其外延制备方法和应用
KR101373403B1 (ko) 실리콘 기판상에 ⅲ-질화계 에피층을 성장하는 방법 및 그 반도체 기판
CN111009579A (zh) 半导体异质结构及半导体器件
CN113488375B (zh) 一种抑制外延边缘Crown缺陷的方法
CN111009468A (zh) 一种半导体异质结构制备方法及其用途
CN114551594A (zh) 一种外延片、外延片生长方法及高电子迁移率晶体管
CN114823303A (zh) 半导体器件及其制备方法
CN113871473A (zh) 一种控制范德瓦耳斯外延与远程外延生长模式的装置及方法
CN114005728A (zh) 一种低应力高质量氮化物材料外延方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant