CN114551593A - 一种外延片、外延片生长方法及高电子迁移率晶体管 - Google Patents

一种外延片、外延片生长方法及高电子迁移率晶体管 Download PDF

Info

Publication number
CN114551593A
CN114551593A CN202210049690.4A CN202210049690A CN114551593A CN 114551593 A CN114551593 A CN 114551593A CN 202210049690 A CN202210049690 A CN 202210049690A CN 114551593 A CN114551593 A CN 114551593A
Authority
CN
China
Prior art keywords
layer
carbon
doped algan
epitaxial wafer
algan layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210049690.4A
Other languages
English (en)
Inventor
胡加辉
刘春杨
金从龙
顾伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Zhao Chi Semiconductor Co Ltd
Original Assignee
Jiangxi Zhao Chi Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Zhao Chi Semiconductor Co Ltd filed Critical Jiangxi Zhao Chi Semiconductor Co Ltd
Priority to CN202210049690.4A priority Critical patent/CN114551593A/zh
Publication of CN114551593A publication Critical patent/CN114551593A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提供一种外延片、外延片生长方法及高电子迁移率晶体管,该外延片包括依次层叠设置的Si衬底,AlN成核层,高阻缓冲层,GaN沟道层,AlN插入层,AlGaN势垒层及GaN盖帽层,所述高阻缓冲层包括依次层叠设置的第一碳掺杂AlGaN层、第二碳掺杂AlGaN层以及第三碳掺杂AlGaN层,所述第一碳掺杂AlGaN层设置在靠近所述AlN成核层的一侧;其中,所述第一碳掺杂AlGaN层的掺杂浓度由高到低均匀渐变,所述第二碳掺杂AlGaN层的掺杂浓度恒定不变,所述第三碳掺杂AlGaN层的掺杂浓度由低到高均匀渐变。与现有技术相比,本发明提出的外延片既能实现高阻又具有很高的晶体质量。

Description

一种外延片、外延片生长方法及高电子迁移率晶体管
技术领域
本发明涉及半导体技术领域,特别涉及一种外延片、外延片生长方法及高电子迁移率晶体管。
背景技术
作为第三代半导体材料,GaN基材料由于具有禁带宽度大、电子饱和漂移速度大、化学稳定好、抗辐射耐高温、易形成异质结等优势,成为了制造高温、高频、大功率、抗辐射的高电子迁移率晶体管(HEMT)结构的首选材料。另一方面,由于GaN基异质结构具有很高的载流子浓度和电子迁移率,其导通电阻小,并且禁带宽度大的优势使得其能够承受很高的工作电压。因此,GaN基的高电子迁移率晶体管也适用于高温高频大功率器件、低损耗率开关器件等应用领域。
在上述领域中生长GaN薄膜的常用衬底为蓝宝石(Al2O3)、碳化硅(SiC)和硅(Si),其中蓝宝石和SiC衬底外延生长GaN薄膜已经非常成熟,但其价格偏贵,特别是SiC价格昂贵,大大增加了生产成本高,而且蓝宝石本身散热效果不好,很难实现大尺寸外延生长。因此,通常采用Si衬底外延生长GaN薄膜,其导热性好,可实现大尺寸外延,特别是6寸、8寸和12寸外延片,可降低生产成本,具有极大的市场竞争力。但由于Si衬底表面含有的氧化物(例如SiO2)在高温中分解出的氧原子会随着外延层生长中向缓冲层扩散,使得缓冲层漏电,不能实现高阻,降低器件性能,且靠近沟道层的二维电子气浓度较高,容易溢出到向缓冲层,也使得缓冲层不能实现高阻。
为了解决上述问题,现有技术中通常通过对缓冲层进行高浓度的Fe掺杂或C掺杂以实现高阻,减小缓冲层的漏电,但高浓度的掺杂影响外延层的晶体质量,不利于器件性能的提升,而低浓度掺杂虽然可以提高外延层晶体质量,却难以实现高阻。
发明内容
有鉴于此,本发明的目的是提供一种外延片、外延片生长方法及高电子迁移率晶体管,从而实现外延层的高阻以及提升外延层的晶体质量。
本发明实施例是这样实现的,一种外延片,包括依次层叠设置的Si衬底,AlN成核层,高阻缓冲层,GaN沟道层,AlN插入层,AlGaN势垒层及GaN盖帽层,所述高阻缓冲层包括依次层叠设置的第一碳掺杂AlGaN层、第二碳掺杂AlGaN层以及第三碳掺杂AlGaN层,所述第一碳掺杂AlGaN层设置在靠近所述AlN成核层的一侧;
其中,所述第一碳掺杂AlGaN层的掺杂浓度由高到低均匀渐变,所述第二碳掺杂AlGaN层的掺杂浓度恒定不变,所述第三碳掺杂AlGaN层的掺杂浓度由低到高均匀渐变。
进一步的,上述外延片,其中,所述第一碳掺杂AlGaN层中AlGaN的Al组分为0.50~0.80,所述第一碳掺杂AlGaN层的掺杂浓度为5*1017cm-3-5*1020cm-3
进一步的,上述外延片,其中,所述第二碳掺杂AlGaN层中AlGaN的Al组分为0.40~0.50,所述第二碳掺杂AlGaN层的掺杂浓度为5*1015cm-3-5*1016cm-3
进一步的,所述第三碳掺杂AlGaN层中AlGaN的Al组分为0.20~0.40,所述第二碳掺杂AlGaN层的掺杂浓度为5*1017cm-3-5*1020cm-3
进一步的,上述外延片,其中,所述第一碳掺杂AlGaN层的厚度为0.5~1.0μm,所述第二碳掺杂AlGaN层的厚度为0.5~1.0μm,所述第三碳掺杂AlGaN层的厚度为300~600nm。
进一步的,上述外延片,其中,所述Si衬底与所述AlN成核层之间还设有预铺Al层,所述预铺Al层厚度为1~5nm。
本发明的另一个目的在于提供一种外延片生长方法,用于生长上述的外延片,所述方法包括:
提供Si衬底,在所述Si衬底上进行预铺Al层;
在所述预铺Al层上依次生长AlN成核层、第一碳掺杂AlGaN层、第二碳掺杂AlGaN层、第三碳掺杂AlGaN层、GaN沟道层、AlN插入层、AlGaN势垒层以及GaN盖帽层。
进一步的,上述外延片生长方法,其中,所述在所述预铺Al层上依次生长AlN成核层、第一碳掺杂AlGaN层、第二碳掺杂AlGaN层、第三碳掺杂AlGaN层、GaN沟道层、AlN插入层、AlGaN势垒层以及GaN盖帽层的步骤中,所述第一碳掺杂AlGaN层和所述第二碳掺杂AlGaN层生长温度均为1000℃-1200℃,压力均为40~70mbar,所述第三碳掺杂AlGaN层的生长温度为1050℃-1150℃,压力为150~250mbar。
进一步的,上述外延片生长方法,其中,所述提供Si衬底,在所述Si衬底上进行预铺Al层的步骤执之前还包括:
在腔体温度为1000~1200℃,腔体压力为50~150mbar,H2气氛下高温处理5~10min,对所述Si衬底进行去氧化处理。
本发明的另一个目的在于提供一种高电子迁移率晶体管,包括上述的外延片。
与现有技术相比,本发明通过设置AlGaN缓冲层并进行碳掺杂和改变碳掺杂方式,避免了需对缓冲层整段进行高浓度碳掺杂实现高阻,可以提高缓冲层整体的外延结晶质量;且第一碳掺杂AlGaN缓冲层的碳掺杂浓度由高到低渐变,可以阻挡由衬底向外延层扩散的Si原子和氧原子等杂质,由于靠近衬底一侧杂质浓度偏高,随着外延层的生长,杂质向外延层扩散的浓度会逐渐下降,既能有效阻挡杂质的扩散使缓冲层实现高阻,也不会降低晶体质量;由于第一碳掺杂AlGaN缓冲层已经阻挡绝大部分杂质的扩散,第二碳掺杂AlGaN缓冲层进行恒定的碳掺杂可以兼顾晶体质量和高阻特性,第三碳掺杂AlGaN缓冲层的碳掺杂浓度由低到高渐变,由于靠近GaN沟道层一侧的二维电子气浓度较高,容易向缓冲层溢出,设置第三碳掺杂AlGaN缓冲层碳掺杂浓度由低到高渐变,阻挡二维电子气向缓冲层溢出,使缓冲层实现高阻,降低缓冲层漏电,提高对器件的夹断特性和耐压特性,即实现了外延的高阻又保证了外延的晶体质量。
附图说明
图1为本发明第一实施例当中的外延片的结构示意图;
图2为本发明第二实施例当中的外延片的生长方法的流程图。
具体实施方式
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
此外,本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。在具体实施方式及权利要求书中,由术语“中的一者”连接的项目的列表可意味着所列项目中的任一者。例如,如果列出项目A及B,那么短语“A及B中的一者”意味着仅A或仅B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的一者”意味着仅A;仅B;或仅C。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。在具体实施方式及权利要求书中,由术语“中的至少一者”、“中的至少一种”或其他相似术语所连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一者”或“A或B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的至少一者”或“A、B或C中的至少一者”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。
实施例1
请参阅图1,为本发明第一实施例中提供的外延片,该外延片包括依次层叠设置的Si衬底1、AlN成核层3、高阻缓冲层4、GaN沟道层5、AlN插入层6、AlGaN势垒层7及GaN盖帽层8,高阻缓冲层4包括依次层叠设置的第一碳掺杂AlGaN层40、第二碳掺杂AlGaN层41以及第三碳掺杂AlGaN层42,第一碳掺杂AlGaN层40设置在靠近AlN成核层3的一侧;
其中,第一碳掺杂AlGaN层40的掺杂浓度由高到低均匀渐变,第二碳掺杂AlGaN层41的掺杂浓度恒定不变,第三碳掺杂AlGaN层42的掺杂浓度由低到高均匀渐变。
可以理解的,通过设置多个碳掺杂的AlGaN缓冲层,并对第一碳掺杂AlGaN层40的碳掺杂浓度由高到低渐变的掺杂,第二碳掺杂AlGaN层41的碳掺杂浓度进行恒定的掺杂,第三碳掺杂AlGaN层42的碳掺杂浓度由低到高渐变,第一碳掺杂AlGaN层40可以阻挡由衬底向外延层扩散的Si原子和氧原子等杂质,并且由于第一碳掺杂AlGaN层40已经阻挡绝大部分杂质的扩散,第二碳掺杂AlGaN层41进行恒定的碳掺杂可以兼顾晶体质量和高阻特性,由于靠近GaN沟道层一侧的二维电子气浓度较高,容易向缓冲层溢出,设置第三碳掺杂AlGaN层42碳掺杂浓度由低到高渐变,阻挡二维电子气向缓冲层溢出,使缓冲层实现高阻,降低缓冲层漏电,提高对器件的夹断特性和耐压特性,即实现了外延的高阻又保证了外延的晶体质量。
示例而非限定,在本发明一些较佳的实施例当中,第一碳掺杂AlGaN层40中AlGaN的Al组分为0.50~0.80,第一碳掺杂AlGaN层40的掺杂浓度为5*1017cm-3-5*1020cm-3;第二碳掺杂AlGaN层41中AlGaN的Al组分为0.40~0.50,第二碳掺杂AlGaN层41的掺杂浓度为5*1015cm-3-5*1016cm-3;第三碳掺杂AlGaN层42中AlGaN的Al组分为0.20~0.40,第二碳掺杂AlGaN层42的掺杂浓度为5*1017cm-3-5*1020cm-3
具体的,第一碳掺杂AlGaN层40的厚度为0.5~1.0μm,第二碳掺杂AlGaN层41的厚度为0.5~1.0μm,第三碳掺杂AlGaN层42的厚度为300~600nm。
进一步的,Si衬底1与AlN成核层3之间还设有预铺Al层2,预铺Al层2厚度为1~5nm,通过设置预铺Al层2,可以抑制Si衬底1与AlN成核层3之间的界面反应。
实施例2
请参阅图2,为本发明第二实施例中提供的外延片的生长方法,用于生长上述实施例一中的外延片,所述方法包括步骤S20~S21:
步骤S20,提供Si衬底,在所述Si衬底上进行预铺Al层;
其中,在衬底上首先预铺设一层Al层,可抑制Si衬底与外延层之间的界面反应,具体的,预铺Al层生长温度为1000~1100℃,压力为40~70mbar,通入Al源流量为50~200sccm。
另外,为了提升外延片的生长效果,在本发明一些可选的实施例当中,所述提供Si衬底,在所述Si衬底上进行预铺Al层的步骤之前还包括:
在腔体温度为1000~1200℃,腔体压力为50~150mbar,H2气氛下高温处理5~10min,对所述Si衬底进行去氧化处理。
其中,处理方法包括但不限于MOCVD。
步骤S21,在所述预铺Al层上依次生长AlN成核层、第一碳掺杂AlGaN层、第二碳掺杂AlGaN层、第三碳掺杂AlGaN层、GaN沟道层、AlN插入层、AlGaN势垒层以及GaN盖帽层。
具体的,第一碳掺杂AlGaN层和第二碳掺杂AlGaN层生长温度均为1000℃-1200℃,压力均为40~70mbar,第三碳掺杂AlGaN层的生长温度为1050℃-1150℃,压力为150~250mbar。
另外,在具体实施时,AlN成核层的生长温度为1100℃-1200℃,厚度为150~300nm,生长压力在40~70mbar之间;GaN沟道层的厚度在300~600nm之间,生长温度为1050℃-1150℃,生长压力为150~250mbar;AlN插入层的厚度为1nm,生长温度为1050℃-1150℃,生长压力为40~70mbar;AlGaN势垒层的厚度为20~25nm之间,生长温度为1050℃-1150℃,生长压力为40~70mbar,Al组分为0.20~0.25之间;GaN盖帽层的厚度为3~10nm,生长温度为1050℃-1150℃,压力为40~70mbar;其中,三甲基铝(TMAl)、三甲基镓(TMGa)或三乙基镓(TEGa)、NH3分别作为Ⅲ族源和Ⅴ族源的前驱体,四溴化碳(CBr4)作为碳(C)源的前驱体,N2和H2作为载气。
综上,本发明实施例当中的外延片和外延片生长方法,通过设置AlGaN缓冲层并进行碳掺杂和改变碳掺杂方式,避免了需对缓冲层整段进行高浓度碳掺杂实现高阻,可以提高缓冲层整体的外延结晶质量;且第一碳掺杂AlGaN层的碳掺杂浓度由高到低渐变,可以阻挡由衬底向外延层扩散的Si原子和氧原子等杂质,由于靠近衬底一侧杂质浓度偏高,随着外延层的生长,杂质向外延层扩散的浓度会逐渐下降,既能有效阻挡杂质的扩散使缓冲层实现高阻,也不会降低晶体质量;由于第一碳掺杂AlGaN层已经阻挡绝大部分杂质的扩散,第二碳掺杂AlGaN层进行恒定的碳掺杂可以兼顾晶体质量和高阻特性,第三碳掺杂AlGaN层的碳掺杂浓度由低到高渐变,由于靠近GaN沟道层一侧的二维电子气浓度较高,容易向缓冲层溢出,设置第三碳掺杂AlGaN层碳掺杂浓度由低到高渐变,阻挡二维电子气向缓冲层溢出,使缓冲层实现高阻,降低缓冲层漏电,提高对器件的夹断特性和耐压特性,即实现了外延的高阻又保证了外延的晶体质量。
实施例3
本发明实施例三提供一种高电子迁移率晶体管,包括上述实施例一当中的外延片,所述外延片可由上述实施例二当中的外延生长方法外延生长得到。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种外延片,其特征在于,包括依次层叠设置的Si衬底,AlN成核层,高阻缓冲层,GaN沟道层,AlN插入层,AlGaN势垒层及GaN盖帽层,所述高阻缓冲层包括依次层叠设置的第一碳掺杂AlGaN层、第二碳掺杂AlGaN层以及第三碳掺杂AlGaN层,所述第一碳掺杂AlGaN层设置在靠近所述AlN成核层的一侧;
其中,所述第一碳掺杂AlGaN层的掺杂浓度由高到低均匀渐变,所述第二碳掺杂AlGaN层的掺杂浓度恒定不变,所述第三碳掺杂AlGaN层的掺杂浓度由低到高均匀渐变。
2.根据权利要求1所述的外延片,其特征在于,所述第一碳掺杂AlGaN层中AlGaN的Al组分为0.50~0.80,所述第一碳掺杂AlGaN层的掺杂浓度为5*1017cm-3-5*1020cm-3
3.根据权利要求1所述的外延片,其特征在于,所述第二碳掺杂AlGaN层中AlGaN的Al组分为0.40~0.50,所述第二碳掺杂AlGaN层的掺杂浓度为5*1015cm-3-5*1016cm-3
4.根据权利要求1所述的外延片,其特征在于,所述第三碳掺杂AlGaN层中AlGaN的Al组分为0.20~0.40,所述第二碳掺杂AlGaN层的掺杂浓度为5*1017cm-3-5*1020cm-3
5.根据权利要求1所述的外延片,其特征在于,所述第一碳掺杂AlGaN层的厚度为0.5~1.0μm,所述第二碳掺杂AlGaN层的厚度为0.5~1.0μm,所述第三碳掺杂AlGaN层的厚度为300~600nm。
6.根据权利要求1所述的外延片,其特征在于,所述Si衬底与所述AlN成核层之间还设有预铺Al层,所述预铺Al层厚度为1~5nm。
7.一种外延片生长方法,用于生长权利要求1至6中任一项所述的外延片,其特征在于,所述方法包括:
提供Si衬底,在所述Si衬底上进行预铺Al层;
在所述预铺Al层上依次生长AlN成核层、第一碳掺杂AlGaN层、第二碳掺杂AlGaN层、第三碳掺杂AlGaN层、GaN沟道层、AlN插入层、AlGaN势垒层以及GaN盖帽层。
8.根据权利要求7所述的外延片的生长方法,其特征在于,所述在所述预铺Al层上依次生长AlN成核层、第一碳掺杂AlGaN层、第二碳掺杂AlGaN层、第三碳掺杂AlGaN层、GaN沟道层、AlN插入层、AlGaN势垒层以及GaN盖帽层的步骤中,所述第一碳掺杂AlGaN层和所述第二碳掺杂AlGaN层生长温度均为1000℃-1200℃,压力均为40~70mbar,所述第三碳掺杂AlGaN层的生长温度为1050℃-1150℃,压力为150~250mbar。
9.根据权利要求7所述的外延片生长方法,其特征在于,所述提供Si衬底,在所述Si衬底上进行预铺Al层的步骤之前还包括:
在腔体温度为1000~1200℃,腔体压力为50~150mbar,H2气氛下高温处理5~10min,对所述Si衬底进行去氧化处理。
10.一种高电子迁移率晶体管,其特征在于,包括权利要求1至6中任一项所述的外延片。
CN202210049690.4A 2022-01-17 2022-01-17 一种外延片、外延片生长方法及高电子迁移率晶体管 Pending CN114551593A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210049690.4A CN114551593A (zh) 2022-01-17 2022-01-17 一种外延片、外延片生长方法及高电子迁移率晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210049690.4A CN114551593A (zh) 2022-01-17 2022-01-17 一种外延片、外延片生长方法及高电子迁移率晶体管

Publications (1)

Publication Number Publication Date
CN114551593A true CN114551593A (zh) 2022-05-27

Family

ID=81671291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210049690.4A Pending CN114551593A (zh) 2022-01-17 2022-01-17 一种外延片、外延片生长方法及高电子迁移率晶体管

Country Status (1)

Country Link
CN (1) CN114551593A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116344590A (zh) * 2023-05-23 2023-06-27 合肥晶合集成电路股份有限公司 一种半导体器件及其制作方法
CN116646248A (zh) * 2023-06-25 2023-08-25 江西兆驰半导体有限公司 一种外延片制备方法及其外延片、高电子迁移率晶体管
CN116759505A (zh) * 2023-08-23 2023-09-15 江西兆驰半导体有限公司 基于硅衬底的led外延片及其制备方法、led

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116344590A (zh) * 2023-05-23 2023-06-27 合肥晶合集成电路股份有限公司 一种半导体器件及其制作方法
CN116646248A (zh) * 2023-06-25 2023-08-25 江西兆驰半导体有限公司 一种外延片制备方法及其外延片、高电子迁移率晶体管
CN116646248B (zh) * 2023-06-25 2024-02-09 江西兆驰半导体有限公司 一种外延片制备方法及其外延片、高电子迁移率晶体管
CN116759505A (zh) * 2023-08-23 2023-09-15 江西兆驰半导体有限公司 基于硅衬底的led外延片及其制备方法、led
CN116759505B (zh) * 2023-08-23 2023-11-17 江西兆驰半导体有限公司 基于硅衬底的led外延片及其制备方法、led

Similar Documents

Publication Publication Date Title
CN114551593A (zh) 一种外延片、外延片生长方法及高电子迁移率晶体管
CN116314278B (zh) 高电子迁移率晶体管外延结构及制备方法、hemt器件
JP2005167275A (ja) 半導体素子
JP2012015304A (ja) 半導体装置
US20200243668A1 (en) Method for producing semiconductor device and semiconductor device
CN116960173B (zh) 高电子迁移率晶体管外延结构及制备方法、hemt器件
CN113889402A (zh) 一种用于制备GaN基电子器件的方法
CN113314597B (zh) 一种氮极性面氮化镓高电子迁移率晶体管及其制作方法
CN115799332B (zh) 一种极性硅基高电子迁移率晶体管及其制备方法
CN114551594A (zh) 一种外延片、外延片生长方法及高电子迁移率晶体管
CN114855273B (zh) 一种外延片制备方法、外延片以及发光二极管
CN114914296B (zh) 一种外延片、外延片制备方法及高电子迁移率晶体管
JP5746927B2 (ja) 半導体基板、半導体デバイスおよび半導体基板の製造方法
CN112071897A (zh) 一种高频氮化镓肖特基二极管外延片及其制备方法
CN114250510B (zh) 一种用于氮化镓基射频器件的外延结构及其制备方法
CN111009579A (zh) 半导体异质结构及半导体器件
CN111009468A (zh) 一种半导体异质结构制备方法及其用途
JP2004289005A (ja) エピタキシャル基板、半導体素子および高電子移動度トランジスタ
CN114823303A (zh) 半导体器件及其制备方法
CN113140620B (zh) 宽禁带半导体BPN/GaN异质结材料及外延生长方法
CN110957354B (zh) 一种硅重掺杂氮化镓异质外延的材料结构及应力控制方法
CN114613847A (zh) 硅基AlGaN/GaN HEMT外延薄膜及其生长方法
JP5744784B2 (ja) 窒化物半導体エピタキシャルウェハの製造方法
CN113314598A (zh) 一种金刚石基氮极性面氮化镓高电子迁移率晶体管及其制作方法
JP2007042936A (ja) Iii−v族化合物半導体エピタキシャルウェハ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination