CN114512353A - 一种三维石墨烯/导电聚吡咯/导电mof复合电极材料及其制备方法 - Google Patents

一种三维石墨烯/导电聚吡咯/导电mof复合电极材料及其制备方法 Download PDF

Info

Publication number
CN114512353A
CN114512353A CN202210215956.8A CN202210215956A CN114512353A CN 114512353 A CN114512353 A CN 114512353A CN 202210215956 A CN202210215956 A CN 202210215956A CN 114512353 A CN114512353 A CN 114512353A
Authority
CN
China
Prior art keywords
graphene oxide
conductive
polypyrrole
electrode material
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210215956.8A
Other languages
English (en)
Inventor
樊新
赵若妤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN202210215956.8A priority Critical patent/CN114512353A/zh
Publication of CN114512353A publication Critical patent/CN114512353A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种三维石墨烯/导电聚吡咯/导电MOF复合电极材料及其制备方法。以鳞片石墨为原料制备氧化石墨烯,利用氧化石墨烯表面含氧基团与吡咯分子中的‑NH基团间的静电引力作用将吡咯分子吸附在氧化石墨烯表面,然后采用原位聚合法合成氧化石墨烯/聚吡咯复合材料,然后将含有金属离子的溶液加入到氧化石墨烯/导电聚吡咯复合材料的溶液中制备氧化石墨烯/聚吡咯/导电MOF复合材料,然后还原氧化石墨烯制备三维石墨烯/导电聚吡咯/导电MOF复合材料。本发明方法制备过程简单、绿色环保、可靠,且制得的复合材料具有规整的空间结构、高功率密度、高能量密度和优异循环稳定性,是一种理想的超级电容器电极材料,尤其适合工业化生产。

Description

一种三维石墨烯/导电聚吡咯/导电MOF复合电极材料及其制 备方法
技术领域
本发明属于新型能源环保材料超级电容器领域,具体涉及一种三维石墨烯/导电聚吡咯/导电MOF复合电极材料及其制备方法
背景技术
由于全球化石燃料能源消耗和世界人口爆炸的迅速增加,人类对能源需求日益增长,迫切需要发展清洁,低成本,紧凑和高效的替代能源。近年来,超级电容器以其充放电速度快、周期寿命长、稳定性好等优点被认为是最有前途的储能器件。超级电容器主要是由阴极、阳极、电解液、隔膜组成。通常根据不同的电荷存储机制,分为双电层电容器和赝电容器。
随着科学技术的不断发展,超级电容器的电极材料也在不断的推陈出新,金属氧化物因其高理论比电容、环境友好性、低成本、最重要的是制备方法简单、范围广等优点,被认为是超级电容器的一个有前途的候选材料。聚吡咯环境稳定性较好、电导率较高、氧化还原特性良好、商业可用性强和合成过程简单等优点而被广泛应用于超级电容器电极材料。氧化石墨烯的比表面积大、力学性能优异,作为载体,将金属纳米粒子负载于其表面,得到性能更加优异的材料。与此同时,超级电容器选用的电解液一般为无毒无污染的水系电解液。因此,超级电容器与电池相比,具有充放电速度快,高的功率密度,长效的循环寿命以及环境友好、无污染等一系列优势。
发明内容
本发明的目的在于提供一种三维石墨烯/导电聚吡咯/导电MOF复合电极材料的制备方法,以解决复合电极材料在充放电过程中导电聚合物由于体积膨胀/收缩而导致的电化学性能衰减问题。
本发明思路:基于石墨烯稳定的空间结构、高比表面积、高导电性及良好的力学性能和电化学循环稳定性与导电聚吡咯分子的高比容量、环境相容性好、高传质速率、柔性和可操作性强以及导电MOF材料的多孔结构和良好的导电性能等优势,制备三维石墨烯/导电聚吡咯/导电MOF复合材料。
本发明的技术方案之一:一种三维石墨烯/导电聚吡咯/导电MOF复合电极材料的制备方法,包括如下步骤:
(1)以鳞片石墨为原料采用改进的Hummers法制备氧化石墨烯。将氧化石墨烯溶解于去离子水中,均匀搅拌得到氧化石墨烯溶液;
(2)向步骤(1)中制得的氧化石墨烯溶液中加入植酸,充分搅拌下加入已提纯的吡咯单体,滴加引发剂到上述溶液中合成氧化石墨烯/导电聚吡咯复合物;
(3)将含有金属离子的溶液加入到聚吡咯@氧化石墨烯复合材料的溶液中,然后还原氧化石墨烯制备聚吡咯@三维石墨烯/导电MOF复合电极材料。
进一步地,步骤(2)中,所述混合溶液具体包含浓度为0.07-0.17mol/L的植酸,0.36-0.38mol/L的吡咯单体和7.3-7.6mg/ml的氧化石墨烯。
进一步地,步骤(2)中,将混合溶液持续磁力搅拌12h得到均匀的溶液。
进一步地,步骤(3)中,所述金属离子为镍、锰、钛中的一种或多种。
本发明的技术方案之二:一种根据上述制备方法制备得到的电极材料。
本发明的技术方案之三:上述电极材料在制备超级电容器中的应用。
本发明方法制备过程简单、绿色环保、可靠,且制得的复合材料具有规整的空间结构、高功率密度、高能量密度和优异循环稳定性,是一种理想的超级电容器电极材料,尤其适合工业化生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,下面描述中的附图仅仅是本发明的一些实施例。
图1为实施例1中制备得到的聚吡咯@三维石墨烯/导电MOF电极材料的EDS面扫图像。
图2为实施例1中制备得到的聚吡咯@三维石墨烯/导电MOF电极材料的SEM图像。
图3为实施例1中制备得到的聚吡咯@三维石墨烯/导电MOF电极材料在5、10、20、50、100mv/s的扫描速度下的循环伏安曲线图。
图4为实施例1中制备得到的聚吡咯@三维石墨烯/导电MOF电极材料在0.2、0.5、1、2、5A/g的电流密度下的恒电流充放电曲线图。
图5为实施例1中制备得到的聚吡咯@三维石墨烯/导电MOF电极材料的交流阻抗图谱。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例进行详细描述。
实施例1
(1)采用改进的Hummers法制备氧化石墨烯。称取0.4g氧化石墨烯溶于20ml蒸馏水中,搅拌均匀制得氧化石墨烯溶液。
(2)向步骤(1)制得的氧化石墨烯溶液中加入1.4mL植酸,充分搅拌下加入1.4mL的新蒸吡咯单体,并机械搅拌5min直到吡咯单体完全均匀分散,然后加入30mL的过硫酸铵溶液。均匀搅拌12h,洗涤,干燥烘干。
(3)称取0.04g步骤(2)制得的复合材料,溶于20ml蒸馏水中,搅拌均匀。
(4)称取0.1mmolNi(NO3)26H2O溶于10ml水中,缓慢倒入步骤(3)制得的溶液中,搅拌2h。洗涤,干燥烘干,得到聚吡咯@三维石墨烯/导电MOF复合材料。
实施例2
(1)采用改进的Hummers法制备氧化石墨烯。称取0.4g氧化石墨烯溶于20ml蒸馏水中,搅拌均匀制得氧化石墨烯溶液。
(2)向步骤(1)制得的氧化石墨烯溶液中加入2.8mL植酸,充分搅拌下加入1.4mL的新蒸吡咯单体,并机械搅拌5min直到吡咯单体完全均匀分散,然后加入30mL的过硫酸铵溶液。均匀搅拌12h,洗涤,干燥烘干。
(3)称取0.04g步骤(2)制得的复合材料,溶于20ml蒸馏水中,搅拌均匀。
(4)称取0.1mmolNi(NO3)26H2O溶于10ml水中,缓慢倒入步骤(3)制得的溶液中,搅拌2h。洗涤,干燥烘干,得到聚吡咯@三维石墨烯/导电MOF复合材料。
实施例3
(1)采用改进的Hummers法制备氧化石墨烯。称取0.4g氧化石墨烯溶于20ml蒸馏水中,搅拌均匀制得氧化石墨烯溶液。
(2)向步骤(1)制得的氧化石墨烯溶液中加入3.6mL植酸,充分搅拌下加入1.4mL的新蒸吡咯单体,并机械搅拌5min直到吡咯单体完全均匀分散,然后加入30mL的过硫酸铵溶液。均匀搅拌12h,洗涤,干燥烘干。
(3)称取0.04g步骤(2)制得的复合材料,溶于20ml蒸馏水中,搅拌均匀。
(4)称取0.1mmolNi(NO3)26H2O溶于10ml水中,缓慢倒入步骤(3)制得的溶液中,搅拌2h。洗涤,干燥烘干,得到聚吡咯@三维石墨烯/导电MOF复合材料。
效果验证例1
使用扫描电镜对实施例1制备得到的电极材料的形貌进行观察,如图1、图2所示。由图1、图2可以看出,本发明制备得到的电极材料具有良好的形貌,均匀分布,形成了良好的电极材料。
效果验证例2
将实施例1-3制备得到的电极材料制作成电极,并进行性能测试。
电极制作步骤如下:
将电极材料、乙炔黑、聚偏氟乙烯以质量比为8:1:1在研钵中研磨,加入N,N-二甲基甲酰胺混合均匀并涂覆于1*1cm2的镍网,放于真空干燥箱中60℃真空干燥12h,将干燥好的极片,放在压片机上,压力为12Mpa,压12s,称量极片的重量,得到电极。
性能测试
测试仪器为上海辰华CHI660E,以三电极的方法对电极材料进行测试,其中电解液为1M Na2SO4,参比电极为饱和甘汞电极,对电极为铂片。分别进行循环伏安(CV)、计时电位(GCD)、交流阻抗(EIS)的电化学性能测试,其中,对实施例1制备得到的电极材料的测试结果如附图3-5所示。
由图3中的循环伏安曲线可以看出,其氧化还原电流基本关于i=0呈镜像对称,说明本发明制备的电极材料具有很好的可逆性;
由图4中的恒电流充放电曲线可以看出,充电曲线和放电曲线基本呈现镜像对称,说明电极具有良好的可逆性。
由图5中电极材料的交流阻抗图谱可以看出,高频区呈现为一个半圆,低频区呈现为一条直线,高频区向低频区过渡的区域出现一条45°斜线,这是由于电化学过程中电极受扩散控制引起的。说明本发明制备得到的电极材料导电性良好,可为电化学反应提供更多的活性点。

Claims (6)

1.一种三维石墨烯/导电聚吡咯/导电MOF复合电极材料的制备方法,其特征在于,所述方法的步骤为:
(1)以鳞片石墨为原料采用改进的Hummers法制备氧化石墨烯,将氧化石墨烯溶解于去离子水中,均匀搅拌得到氧化石墨烯溶液;
(2)向步骤(1)中制得的氧化石墨烯溶液中加入植酸,充分搅拌下加入已提纯的吡咯单体,滴加引发剂到上述溶液中合成氧化石墨烯/导电聚吡咯复合产物;
(3)将含有金属离子的溶液加入到聚吡咯@氧化石墨烯复合材料的溶液中,然后还原氧化石墨烯制备聚吡咯@三维石墨烯/导电MOF复合电极材料。
2.根据权利要求1所述的制备方法,其特征在于:步骤(2)中,所述混合溶液中植酸与吡咯单体的体积比为1:1~2.6:1。
3.根据权利要求1所述的制备方法,其特征在于:步骤(2)中,将混合溶液持续磁力搅拌12h得到均匀的溶液。
4.根据权利要求1所述的制备方法,其特征在于:步骤(3)中,所述金属离子为镍、锰、钛中的一种或多种。
5.一种根据权利要求1-4任一项所述制备方法制备得到的电极材料。
6.权利要求5中的电极材料在制备超级电容器中的应用。
CN202210215956.8A 2022-03-06 2022-03-06 一种三维石墨烯/导电聚吡咯/导电mof复合电极材料及其制备方法 Withdrawn CN114512353A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210215956.8A CN114512353A (zh) 2022-03-06 2022-03-06 一种三维石墨烯/导电聚吡咯/导电mof复合电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210215956.8A CN114512353A (zh) 2022-03-06 2022-03-06 一种三维石墨烯/导电聚吡咯/导电mof复合电极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114512353A true CN114512353A (zh) 2022-05-17

Family

ID=81554400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210215956.8A Withdrawn CN114512353A (zh) 2022-03-06 2022-03-06 一种三维石墨烯/导电聚吡咯/导电mof复合电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114512353A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602454A (zh) * 2022-12-12 2023-01-13 深圳市今朝时代股份有限公司(Cn) 一种超级电容器极片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103098162A (zh) * 2010-10-27 2013-05-08 海洋王照明科技股份有限公司 复合电极材料及其制备方法和应用
CN110299530A (zh) * 2019-07-22 2019-10-01 福州大学 一种zif-67基钴钼氧化物空心纳米笼/石墨烯复合材料及其制备方法与应用
CN110634685A (zh) * 2019-09-29 2019-12-31 华东师范大学 一种ppy@ZIF-67复合材料及制备方法和其应用
CN112071654A (zh) * 2020-09-09 2020-12-11 江苏科技大学 一种三维结构导电聚合物基复合电极材料及其制备方法
WO2021201807A1 (en) * 2020-04-02 2021-10-07 Maltepe Üni̇versi̇tesi̇ Teknoloji̇ Transfer Ofi̇si̇ Anoni̇m Şi̇rketi̇ Borophene nanocomposite material and a supercapacitor containing borophene nanocomposite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103098162A (zh) * 2010-10-27 2013-05-08 海洋王照明科技股份有限公司 复合电极材料及其制备方法和应用
CN110299530A (zh) * 2019-07-22 2019-10-01 福州大学 一种zif-67基钴钼氧化物空心纳米笼/石墨烯复合材料及其制备方法与应用
CN110634685A (zh) * 2019-09-29 2019-12-31 华东师范大学 一种ppy@ZIF-67复合材料及制备方法和其应用
WO2021201807A1 (en) * 2020-04-02 2021-10-07 Maltepe Üni̇versi̇tesi̇ Teknoloji̇ Transfer Ofi̇si̇ Anoni̇m Şi̇rketi̇ Borophene nanocomposite material and a supercapacitor containing borophene nanocomposite material
CN112071654A (zh) * 2020-09-09 2020-12-11 江苏科技大学 一种三维结构导电聚合物基复合电极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARJAN BARAKZEHI: "MOF-modified polyester fabric coated with reduced graphene oxide/polypyrrole as electrode or flexible supercapacitors", SCIENCEDIRECT, vol. 336, no. 10 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602454A (zh) * 2022-12-12 2023-01-13 深圳市今朝时代股份有限公司(Cn) 一种超级电容器极片及其制备方法

Similar Documents

Publication Publication Date Title
He et al. Quantum dots of molybdenum nitride embedded in continuously distributed polyaniline as novel electrode material for supercapacitor
Yang et al. Effects of PPy, GO and PPy/GO composites on the negative plate and on the high-rate partial-state-of-charge performance of lead-acid batteries
CN102800432A (zh) 一种氧化石墨烯/导电聚吡咯纳米线复合材料的制备方法
Gong et al. Facile synthesis of Ni 0.85 Se on Ni foam for high-performance asymmetric capacitors
CN110690057B (zh) 镍插层二氧化锰基柔性对称准固态超级电容器材料及其制备方法和应用
Chen et al. Effect of polyaniline-modified lignosulfonate added to the negative active material on the performance of lead-acid battery
CN105719846B (zh) 一种硫化钴/碳复合材料的制备方法及其产品与应用
CN110581027A (zh) 复合型赝电容器电极材料的制备方法
Qin et al. Ni-MOF composite polypyrrole applied to supercapacitor energy storage
Tong et al. Co2NiO4 nanoneedle networks for high performance pseudocapacitor
CN103359796A (zh) 一种超级电容器氧化钴电极材料的制备方法
CN114512353A (zh) 一种三维石墨烯/导电聚吡咯/导电mof复合电极材料及其制备方法
KR102012106B1 (ko) 금속산화물 및 유기리간드를 포함하는 금속-유기 복합체, 이를 이용한 슈퍼커패시터용 전극, 및 이의 제조방법
CN112038106B (zh) 一种电极材料及其制备方法和超级电容器电极
CN110010360B (zh) 一种近球状钼酸镍/亚酞菁复合材料及其制备方法和应用
CN114709085B (zh) 氮掺杂磺化多孔碳/聚苯胺复合电极材料及其制备方法
CN113444365B (zh) 一种杂化掺杂型聚吡咯纸基柔性电极材料及制备方法
CN115763096A (zh) 一种基于乌洛托品的Ni-MOF及其制备方法和应用
CN112420401B (zh) 一种氧化铋/氧化锰复合型超级电容器及其制备方法
Wang et al. Porous polymer cement composites for quasi-solid graphene supercapacitors
Ji et al. High-performance MoO3 nanoplate electrode for asymmetric supercapacitor with long-term electrochemical stability
CN114446671A (zh) MOF-5/PPy/GO纳米材料的制备方法及其在超级电容器方面的应用
CN111599600B (zh) 一种石墨烯/羟基氧化铁/聚苯胺的超级电容器正极材料的制备方法及应用
CN114566643A (zh) 一种聚苯胺-MXene-硅纳米粒子复合材料及其制备方法和应用
CN114758898A (zh) C/N-NiCoFeMn LDH复合电极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20220517