CN112071654A - 一种三维结构导电聚合物基复合电极材料及其制备方法 - Google Patents

一种三维结构导电聚合物基复合电极材料及其制备方法 Download PDF

Info

Publication number
CN112071654A
CN112071654A CN202010939792.4A CN202010939792A CN112071654A CN 112071654 A CN112071654 A CN 112071654A CN 202010939792 A CN202010939792 A CN 202010939792A CN 112071654 A CN112071654 A CN 112071654A
Authority
CN
China
Prior art keywords
conductive polymer
electrode material
dimensional structure
composite electrode
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010939792.4A
Other languages
English (en)
Inventor
李世云
张玲
周海骏
张娇霞
刘�文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202010939792.4A priority Critical patent/CN112071654A/zh
Publication of CN112071654A publication Critical patent/CN112071654A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种基于导电聚合物的三维结构的复合电极材料,包括以金属氧化物为核,以聚吡咯导电聚合物为壳的“核‑壳”结构的纳米球和氧化石墨烯片层。本发明还提供了一种基于导电聚合物的的三维结构的复合电极材料的制作方法,包括如下步骤:制备“核‑壳”结构聚吡咯包覆金属氧化物纳米微球;采用原位聚合法制备导电聚合物包覆金属氧化物纳米微球和氧化石墨烯片层组成的三维结构的复合电极材料;所述金属氧化物为二氧化钛,所述导电聚合物为聚吡咯。本发明有益效果为:反应溶液为水溶液无毒无污染,操作简单,成本低廉。该项技术的发明,即基于导电聚合物的三维结构的电极材料,作为理想的超级电容器材料具有很好的应用前景。

Description

一种三维结构导电聚合物基复合电极材料及其制备方法
技术领域
本发明涉及电极材料技术领域,具体涉及一种基于三维结构导电聚合物基复合电极材料及其制备方法。
背景技术
随着全球经济快速发展,同时带来能源的大量消耗与日趋严重的环境污染等问题。为防止不可再生能源的枯竭及缓解环境压力,寻求高效、清洁和可持续发展的能量来源,及发展新型能源转化与储存技术尤为重要。当前,最有效的能源转化与储存技术主要有锂离子、燃料电池和超级电容器。超级电容器因其具有功率密度高、使用寿命长、充放电能力快、超大比容量等性能,引起了广泛的关注。目前研究人员普遍认为在超级电容器中涉及两种电荷存储机制,并且根据储能机制的不同将超级电容器分为两类。第一种是双电层电容,即依靠在电极与电解液的界面上的静电作用存储电荷。典型的双电层电容材料有活性炭、碳纳米管等具有高比表面积的碳材料。双电层电容具有价格低廉、电化学稳定性高等优点,但是由于碳材料与电解液间的接触面积有限,从而限制其能量存储性能的提高;另一种是赝电容,是依靠在电极表面的高度可逆的氧化还原反应存储电荷。典型的赝电容材料有金属氧化物和导电聚合物。相比于双电层电容,虽然赝电容的能量密度高,但是由于金属氧化物和导电聚合物的骨架结构可能会在电解质离子的过程中发生膨胀和收缩,从而导致电极的电化学稳定性能严重衰退。
超级电容器的实际应用主要受限于其较低的能量密度(通常低于10Wh/kg-1)和较高的成本。为了克服电极材料的缺陷,超级电容器较低的能量密度以及降低生产的高消耗,开发设计新型特殊纳米结构的材料作为超级电容器的电极材料显得尤为重要,也成为提高超级电容器能量密度一个途径。
发明内容
本发明为解决上述技术缺陷,提供一种三维结构导电聚合物基复合电极材料及其制备方法,
其包括如下步骤:
(1)在-4oC-4oC的条件下,水溶液中,利用化学氧化聚合法制备“核-壳”结构聚吡咯包覆二氧化钛纳米微球,二氧化钛悬浮水溶液浓度为0.1-5mg/ml,反应时间为5min-1h,二氧化钛与吡咯单体的质量比为0.05-1.00。
(2)在-4oC-4oC下,在所述步骤(1)溶液中采用原位化学氧化聚合法加入氧化石墨烯悬浮水溶液(0.1-5mg/ml),反应时间为2h-8h。
所述金属氧化物为金红石型二氧化钛或者锐钛型二氧化钛。
石墨烯片层与“核-壳”结构的导电聚合物包覆二氧化钛纳米微球形成三维结构。
所述导电聚合物为聚吡咯。
三维结构导电聚合物基复合电极材料,其结构为氧化石墨烯片层与“核-壳”结构的导电聚合物包覆二氧化钛纳米微球形成三维结构。
有益效果:
本发明制备的三维结构导电聚合物基复合电极材料,
(1)能够提高材料赝电容,增加比表面积,和提升材料的导电性。
(2)环境友好无污染,工艺流程简单,设备投入成本低。
(3)二氧化钛与聚吡咯形成“核-壳”结构的纳米球与氧化石墨烯复合,提升了材料的电化学性能。
(4)三维结构导电聚合物基复合电极材料中,二氧化钛、聚吡咯与氧化石墨烯的协同作用改善了在充放电过程中导电聚合物骨架结构的破坏,提高了电极材料循环寿命,作为理想的超级电容器电极材料具有很好的应用前景。
附图说明
图1本发明实例1中,预反应时间为20min时,“核-壳”结构聚吡咯包覆二氧化钛纳米微球TEM图;
图2本发明实例1中制备的复合电极材料SEM图;
图3本发明实施例3中制备的复合电极材料与纯聚吡咯循环伏安图比较;
图4本发明实施例3中制备的复合电极材料在不同电流密度下恒电流充放电图;
图5本发明实施例6中制备的复合电极材料的循环稳定测试图;
图6纯聚吡咯循环稳定测试图。
具体实施例
下面结合实施例对本发明技术方案做进一步说明,以下实施例不对本发明产生限制。
实施例一
(1)100 mL去离子水中加入10g六水合三氯化铁作为氧化剂充分溶解,加入0.2g的二氧化钛充分分散,再逐步滴加吡咯单体10ml;
(2)保持-4℃-4℃温度范围内,连续搅拌20min;
(3)加入0.1mg/ml氧化石墨烯水悬浮溶液10ml, 反应时间为3h;
(4)洗涤过滤后收集,在60℃烘箱中真空干燥24h得到二氧化钛/聚吡咯/氧化石墨烯纳米复合材料。
实施例二
(1)100 mL去离子水中加入10g六水合三氯化铁作为氧化剂充分溶解,加入0.2g的二氧化钛充分分散,再逐步滴加吡咯单体10ml;
(2)保持-4℃-4℃温度范围内,连续搅拌20min;
(3)加入0.5mg/ml氧化石墨烯水悬浮溶液10ml,,反应时间为3h;
(4)洗涤过滤后收集,在60℃烘箱中真空干燥24h得到二氧化钛/聚吡咯/氧化石墨烯纳米复合材料。
实施例三
(1)100 mL去离子水中加入10g六水合三氯化铁作为氧化剂充分溶解,加入0.2g的二氧化钛充分分散,再逐步滴加吡咯单体10ml;
(2)保持-4℃-4℃温度范围内,连续搅拌20min;
(3)加入1.0 mg/ml氧化石墨烯水悬浮溶液10ml,反应时间为3h;
(4)洗涤过滤后收集,在60℃烘箱中真空干燥24h得到二氧化钛/聚吡咯/氧化石墨烯纳米复合材料。
实施例四
(1)100 mL去离子水中加入10g六水合三氯化铁作为氧化剂充分溶解,加入0.5g的二氧化钛充分分散,再逐步滴加吡咯单体10ml;
(2)保持-4℃-4℃温度范围内,连续搅拌20min;
(3)加入0.1 mg/ml氧化石墨烯水悬浮溶液10ml,反应时间为3h;
(4)洗涤过滤后收集,在60℃烘箱中真空干燥24h得到二氧化钛/聚吡咯/氧化石墨烯纳米复合材料。
实施例五
(1)100 mL去离子水中加入10g六水合三氯化铁作为氧化剂充分溶解,加入0.5g的二氧化钛充分分散,再逐步滴加吡咯单体10ml;
(2)保持-4℃-4℃温度范围内,连续搅拌20min;
(3)加入0.5mg/ml氧化石墨烯水悬浮溶液10ml,,反应时间为3h;
(4)洗涤过滤后收集,在60℃烘箱中真空干燥24h得到二氧化钛/聚吡咯/氧化石墨烯纳米复合材料。
实施例六
(1)100 mL去离子水中加入10g六水合三氯化铁作为氧化剂充分溶解,加入0.5g的二氧化钛充分分散,再逐步滴加吡咯单体10ml;
(2)保持-4℃-4℃温度范围内,连续搅拌20min;
(3)加入1.0 mg/ml氧化石墨烯水悬浮溶液10ml,,反应时间为3h;
(4)洗涤过滤后收集,在60℃烘箱中真空干燥24h得到二氧化钛/聚吡咯/氧化石墨烯纳米复合材料。
图1中可以到以二氧化钛为核,以聚吡咯为壳的“核-壳”结构。
如图3中可知三维结构TiO2/聚吡咯/GO复合电极材料的比电容为 396.7F.g-1与纯聚吡咯材料(42.6F.g-1)相比有较大提高。
图4中可知恒电流测试中,比电容随着电流密度的减小而增大。
图5与图6可以看到,纯聚吡咯电极在1000次循环后衰减约为70%,而三维结构TiO2/聚吡咯/GO复合电极材料在1500次循环后衰减仅为30%,说明与纯聚吡咯相比,三维结构TiO2/聚吡咯/GO复合电极材料具有更高的稳定性。

Claims (9)

1.一种三维结构导电聚合物基复合电极材料的制作方法,其特征在于,
(1)在-4oC-4oC的条件下,水溶液中,利用化学氧化聚合法制备“核-壳”结构聚吡咯包覆二氧化钛纳米微球;
(2)在-4oC-4oC下,在所述步骤(1)溶液中采用原位化学氧化聚合法加入氧化石墨烯悬浮水溶液,反应时间为2h-8h;
(3)洗涤过滤后收集,真空干燥。
2.根据权利要求1所述的三维结构导电聚合物基复合电极材料的制作方法,其中,所述步骤(1)还包括如下步骤:
1-1)在反应器内加入去离子水、六水合三氯化铁、二氧化钛,充分分散;
1-2)加入吡咯单体;
1-3)保持-4℃-4℃温度范围内,连续搅拌5min-1h。
3.根据权利要求2所述的三维结构导电聚合物基复合电极材料的制作方法,其中,所述步骤(2)还包括如下步骤:
2-1)加入浓度为0.1-5mg/ml氧化石墨烯水悬浮溶液,反应时间为2h-8h。
4.权利要求2所述三维结构导电聚合物基复合电极材料的制作方法,其中,所述二氧化钛为金红石型二氧化钛。
5.根据权利要求2所述的三维结构导电聚合物基复合电极材料的制作方法,其中,所述步骤1-1)中,去离子水与二氧化钛质量比为10000:1-100:1。
6.根据权利要求2所述的三维结构导电聚合物基复合电极材料的制作方法,其中,步骤1-2)中二氧化钛与吡咯单体的质量比为0.05-1.00,氧化石墨烯与吡咯单体的质量比0.01-0.55。
7.一种三维结构导电聚合物基复合电极材料,其特征在于,由上述权利要求1至6任一种方法制备而成。
8.根据权利要求7所述的一种三维结构导电聚合物基复合电极材料,其中,氧化石墨烯片层与“核-壳”结构的导电聚合物包覆二氧化钛纳米微球形成三维结构。
9.根据权利要求8所述的一种三维结构导电聚合物基复合电极材料,其中,所述导电聚合物为聚吡咯。
CN202010939792.4A 2020-09-09 2020-09-09 一种三维结构导电聚合物基复合电极材料及其制备方法 Pending CN112071654A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010939792.4A CN112071654A (zh) 2020-09-09 2020-09-09 一种三维结构导电聚合物基复合电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010939792.4A CN112071654A (zh) 2020-09-09 2020-09-09 一种三维结构导电聚合物基复合电极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112071654A true CN112071654A (zh) 2020-12-11

Family

ID=73663004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010939792.4A Pending CN112071654A (zh) 2020-09-09 2020-09-09 一种三维结构导电聚合物基复合电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112071654A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114512353A (zh) * 2022-03-06 2022-05-17 桂林理工大学 一种三维石墨烯/导电聚吡咯/导电mof复合电极材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638256A (zh) * 2015-02-03 2015-05-20 中国科学院合肥物质科学研究院 一种纳米复合材料及其制备方法和锂离子电池
US20170069404A1 (en) * 2015-09-03 2017-03-09 Korea Advanced Institute Of Science And Technology Graphene-nanomaterial complex, flexible and stretchable complex comprising the same and methods for manufacturing complexes
CN106783212A (zh) * 2016-11-22 2017-05-31 张家港智电芳华蓄电研究所有限公司 一种多孔炭电极的制备方法
CN107140626A (zh) * 2017-05-24 2017-09-08 华中科技大学 一种三维石墨烯材料的低温热成型方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638256A (zh) * 2015-02-03 2015-05-20 中国科学院合肥物质科学研究院 一种纳米复合材料及其制备方法和锂离子电池
US20170069404A1 (en) * 2015-09-03 2017-03-09 Korea Advanced Institute Of Science And Technology Graphene-nanomaterial complex, flexible and stretchable complex comprising the same and methods for manufacturing complexes
CN106783212A (zh) * 2016-11-22 2017-05-31 张家港智电芳华蓄电研究所有限公司 一种多孔炭电极的制备方法
CN107140626A (zh) * 2017-05-24 2017-09-08 华中科技大学 一种三维石墨烯材料的低温热成型方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ADIL SULTAN, TARIQUE ANWER, SHARIQUE AHMAD, FAIZ MOHAMMAD: ""Preparation, characterization, and dynamic adsorption–desorption studies on polypyrrole encapsulated TiO2 nanoparticles"", 《JOURNAL OF APPLIED POLYMER SCIENCE》 *
R.B. CHOUDHARY,R. KANDULNA: ""2-D rGO impregnated circular-tetragonal-bipyramidal structure of PPYTiO2-rGO nanocomposite as ETL for OLED and supercapacitor electrode materials"", 《MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114512353A (zh) * 2022-03-06 2022-05-17 桂林理工大学 一种三维石墨烯/导电聚吡咯/导电mof复合电极材料及其制备方法

Similar Documents

Publication Publication Date Title
Wu et al. Recent advances of asymmetric supercapacitors
Aadil et al. Fabrication of CNTs supported binary nanocomposite with multiple strategies to boost electrochemical activities
Roy et al. NiO-CNT composite for high performance supercapacitor electrode and oxygen evolution reaction
Lokhande et al. Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers
Zang et al. Polypyrrole nanotube-interconnected NiCo-LDH nanocages derived by ZIF-67 for supercapacitors
Wang et al. Electrochemical capacitors: mechanism, materials, systems, characterization and applications
Zhao et al. A review for aqueous electrochemical supercapacitors
Zhang et al. Electrochemical investigation of MnO2 electrode material for supercapacitors
CN107958791B (zh) 一种三维材料、其制备方法及超级电容器用电极
CN109326456B (zh) 一种超级电容器及其制备方法
Li et al. MXene-MnO2-CoNi layered double hydroxides//activated carbon flexible asymmetric supercapacitor
Guo et al. Facile fabrication of CoNi-Layered Double Hydroxide/NiCo2S4/Reduced Graphene Oxide composites by in situ hydrothermal growth strategy for supercapacitor performance
CN109741966B (zh) 一种Ni6MnO8@碳纳米管复合材料及其制备方法和应用
Aboagye et al. Hierarchical carbon composite nanofibrous electrode material for high-performance aqueous supercapacitors
CN105632776A (zh) 一种具有超长循环稳定性非对称超级电容器及其制备方法
Tang et al. Hemispherical flower-like N-doped porous carbon/NiCo2O4 hybrid electrode for supercapacitors
Ge et al. Electrochemical performance of MoO3-RuO2/Ti in H2SO4 electrolyte as anodes for asymmetric supercapacitors
Li et al. Olive Leaves‐Derived Hierarchical Porous Carbon as Cathode Material for Anti‐Self‐Discharge Zinc‐Ion Hybrid Capacitor
CN110078130B (zh) 一种中空结构铁基化合物的制备方法及其作为超级电容器负极材料的应用
CN109545573B (zh) 金属1t相硫化铼中空纳米球超级电容器电极材料的制备方法
Shanavaz et al. Niobium doped triazine based covalent organic frameworks for supercapacitor applications
Hu et al. Nanoscale nickel phosphide encapsulated in carbon microsphere from a spherical MOF toward high-performance supercapacitors
CN112071654A (zh) 一种三维结构导电聚合物基复合电极材料及其制备方法
CN114974916B (zh) 一种纤维状MXene负载NiCoS复合材料及其制备方法和应用
CN113539703B (zh) 一种MOFs衍生物Co-Ni-B-P复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201211