CN114477996B - 一种钛酸钡基陶瓷的制备方法 - Google Patents

一种钛酸钡基陶瓷的制备方法 Download PDF

Info

Publication number
CN114477996B
CN114477996B CN202011145869.7A CN202011145869A CN114477996B CN 114477996 B CN114477996 B CN 114477996B CN 202011145869 A CN202011145869 A CN 202011145869A CN 114477996 B CN114477996 B CN 114477996B
Authority
CN
China
Prior art keywords
powder
thermite
sample
barium titanate
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011145869.7A
Other languages
English (en)
Other versions
CN114477996A (zh
Inventor
杨增朝
杨潇
李江涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN202011145869.7A priority Critical patent/CN114477996B/zh
Publication of CN114477996A publication Critical patent/CN114477996A/zh
Application granted granted Critical
Publication of CN114477996B publication Critical patent/CN114477996B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本申请提供了一种钛酸钡基陶瓷的制备方法,该方法是利用化学炉的高加热速率与耗能低等特点,在封闭反应器中制备钛酸钡基陶瓷粉体,包括如下步骤:(1)按照钛酸钡基陶瓷的通式中各元素的化学计量进行配料,称取相应的原料粉体进行混合配料,压制成圆片;(2)制备铝热剂,所述铝热剂包括钛粉、碳粉、铝粉、氧化铁及氧化铝;(3)将所述铝热剂放置在坩埚中,然后将步骤(1)制得的样品用碳纸包裹埋入铝热剂中;(4)引燃铝热剂发生自蔓延。利用化学炉辅助燃烧合成技术制备陶瓷粉体的前驱体的平均粒径为30‑50nm,经焙烧处理后,陶瓷样品的微粒尺寸小于1μm。

Description

一种钛酸钡基陶瓷的制备方法
技术领域
本发明涉及一种压电陶瓷技术领域,更具体的,涉及一种制备钛酸钡基陶瓷的方法。
背景技术
压电材料是一类重要的功能电子材料,它能够实现机械能与电能之间的转换,在传感器、驱动器、超声换能器、蜂鸣器、电子点火器等各种电子器件方面有广泛的应用。如中国发明专利(申请号:201702580226)公开了一种共沉淀法制备锆钛酸钡无铅压电陶瓷材料的方法。将醋酸钡与醋酸钙按摩尔比为85:15完全溶解于蒸馏水中,得到A位前驱体液;将硝酸锆与四氯化钛按摩尔比为1:9完全溶解于蒸馏水中,得到B位前驱液;然后按照醋酸钡、醋酸钙的总摩尔量与硝酸锆、四氯化钛的总摩尔量之比为1.2~1.3:1制备前驱粉体;在850~950℃预烧3~5小时;将预烧粉进行造粒、压片、排胶后,在1240~1400℃下烧结4~7小时,得到锆钛酸钡钙无铅压电陶瓷材料,所制备的前驱体粉的粒径约500nm,烧结后的陶瓷粒径约10μm;该方法在引入沉淀剂的时可能会使局部浓度过高,产生团聚造成组成不均匀,从而影响性能。
中国发明专利(申请号:200810069885)公开了一种制备锆钛酸钡的方法。将碳酸钡、氧化锆、氧化钛按质量比混合,球磨,在1100~1250℃预烧2~10h,将预烧粉进行造粒、压片、排胶后,在1250~1600℃下烧结2~10h,得到锆钛酸钡陶瓷材料,烧结后的陶瓷粒径约30μm;本专利采用传统固相法制备压电陶瓷,其方法具有成本低、产量高以及制备工艺较简单等优点,但是该方法煅烧温度高,耗能大,烧结时间长,易造成组分的挥发,影响烧结样品的致密化,从而降低了样品性能。
克服已有技术的不足,提出一种利用化学炉辅助燃烧合成技术制备陶瓷粉体的方法。
发明内容
针对上述现有技术中的问题,本申请提出了一种利用化学炉辅助燃烧合成技术制备陶瓷粉体的方法,该方法制备的陶瓷粉尺度小;工艺简单、成本低、周期短,能够满足产业化的需求。
为了实现上述目的,本发明所采用的技术方案是:
一种钛酸钡基陶瓷的制备方法,包括如下步骤:(1)制备样品:按照钛酸钡基陶瓷的通式中各元素的化学计量进行配料,称取相应的原料粉体进行混合配料,压制成圆片;(2)制备铝热剂,铝热剂包括钛粉、碳粉、铝粉、氧化铁及氧化铝,按重量百分比计钛粉占11~16%,碳粉占3~4%,铝粉占12~17%,氧化铁占34~43%;氧化铝占20~30%;(3)将铝热剂放置在坩埚中,然后将步骤(1)制得的样品用碳纸包裹埋入铝热剂中;(4)引燃铝热剂发生自蔓延,直至通过自燃方式转化为产物,样品随炉冷却;(5)将由步骤(4)所得的样品研磨成粉末,再压制成圆片,然后烧结,得到钛酸钡基陶瓷,颗粒平均粒径为30-50nm。
需要说明的是,采用化学炉辅助燃烧合成技术制备钛酸钡基陶瓷,是当自蔓延反应开始时,而内置的混合原料粉体初坯被加热到红软化状态的过程,在这里自蔓延反应体系为铝热体系;铝热反应为瞬间加热,氧化物之间开始反应,但铝热反应持续时间短,降温快,这就导致反应物生成后,晶粒来不及长大,所以钛酸钡基陶瓷前驱体在表观上呈现出纳米级的晶粒。
进一步,步骤(1)中,混合配料后,还包括研磨、干燥、筛分步骤。
进一步,步骤(1)中,研磨是加入ZrO2球和乙醇进行研磨,ZrO2球和粉体总质量比为1.2-2:1,乙醇和粉体总质量比为1-2:1。
进一步,步骤(1)中,研磨为在100-1000转/分钟转速下球磨6-10h,干燥为在120°C下干燥2h,筛分为过1200目筛。
进一步,步骤(1)中,压制成圆片是在8~10MPa压力下压制。
进一步,步骤(3)中,坩埚是放在密闭的反应器中,反应器抽真空,充氩气至气压为0.5~1MPa。
进一步,步骤(3)中,样品用2~3层碳纸包裹。
进一步,步骤(4)中,通过钨丝引燃铝热剂,具体为使用25A的电流将铝热剂顶部的钨丝线圈点燃,引燃铝热剂。
使用权利要求以上钛酸钡基陶瓷的制备方法制备(1-x)Ba0.96Ca0.04TiO3-xBa(Mg1/ 3Nb2/3)O3无铅陶瓷,包括如下步骤:(1)制备样品,按照x的值,称取相应质量的BaCO3、CaCO3、TiO2、MgO、Nb2O5粉体,其中,各原料粉体的纯度≥99%,进行配料;加入ZrO2球和乙醇,在100-1000转/分钟转速下球磨6-10h,获得浆料,其中ZrO2球和粉体总质量比为1.2-2:1,乙醇和粉体总质量比为1-2:1然后在120℃下干燥2h,过1200目筛;在8~10MPa的压力下干压成圆片;其中x的取值范围为0≤x≤0.2;(2)制备铝热剂,铝热剂包括钛粉、碳粉、铝粉、氧化铁及氧化铝,按重量百分比计钛粉占11~16%,碳粉占3~4%,铝粉占12~17%,氧化铁占34~43%;氧化铝占20~30%;(3)将铝热剂放置在坩埚中,然后将步骤(1)制得的样品用碳纸包裹埋入铝热剂中;(4)引燃铝热剂发生自蔓延,直至通过自燃方式转化为产物,样品随炉冷却;(5)将由步骤(4)所得的样品研磨成粉末,再压制成圆片,然后烧结,得到钛酸钡基陶瓷。
进一步,制备(1-x)Ba0.96Ca0.04TiO3-xBa(Mg1/3Nb2/3)O3无铅陶瓷的步骤(5)中,烧结为在1285℃下烧结2h成块。
与现有技术相比,本发明产生了以下有益的技术效果:本发明的钛酸钡基陶瓷的制备方法,利用化学炉辅助燃烧合成技术,其烧结时间短,升温迅速,高加热速率,耗能低,有效抑制晶粒长大,获得均匀的显微结构,同时提高样品的致密度,利用化学炉辅助燃烧合成技术制备陶瓷粉体的前驱体的平均粒径为30-50nm,经焙烧处理后,陶瓷样品的微粒尺寸小于1μm;本发明方法制备的陶瓷粉尺度小;工艺简单、成本低、周期短,能够满足产业化的需求。
附图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描述。其中:
图1显示了化学炉辅助燃烧合成BCT-xBMN陶瓷粉的反应温度曲线;
图2显示了实施例1中,化学炉辅助燃烧合成BCT-0.07BMN陶瓷粉的TEM图;
图3显示了实施例1中,化学炉辅助燃烧合成BCT-0.07BMN陶瓷粉的XRD图;
图4显示了实施例1中,BCT-0.07BMN陶瓷烧结后的SEM图;
图5显示了实施例2中,BCT陶瓷烧结后的SEM图;
图6显示了实施例3中,BCT-0.2BMN陶瓷烧结后的SEM图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步详细说明,但本发明的保护范围不仅限于这些实施例。基于本发明中的实施例,本领域普通人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
化学炉铝热剂的选择为Ti,C,Al,Fe2O3,Al2O3,其中Ti占总质量3wt%、C占总质量的11wt%;Al占总质量的14wt%,Fe2O3占总质量的44wt%,Al2O3占总质量的28wt%。化学炉辅助燃烧合成的反应温度曲线如图1所示,从图中可以看出燃烧合成反应迅速且样品被立即加热,可以看到当反应开始时,反应曲线的温度在大约5s内迅速升高到1600℃以上,当反应结束时,温度迅速下降,在1200℃以上,反应持续约200s。
实施例1
(1)按照0.93Ba0.96Ca0.04TiO3-0.07Ba(Mg1/3Nb2/3)O3的化学计量比,称取纯度≥99%的原料BaCO3、CaCO3、TiO2、MgO、Nb2O5粉体进行配料,得到原料混合物;加入ZrO2球和乙醇,在1000转/分钟转速下球磨10h,获得浆料,其中ZrO2球和粉体总质量比为2:1,乙醇和粉体总质量比为1:1然后在120℃下干燥2h,过1200目筛;在8MPa的压力下干压成圆片。
(2)铝热剂的选择为Ti,C,Al,Fe2O3,Al2O3,其中Ti占总质量3wt%、C占总质量的11wt%;Al占总质量的14wt%,Fe2O3占总质量的44wt%,Al2O3占总质量的28wt%。
(3)化学炉辅助燃烧合成是在封闭反应器中进行的。将120g的铝热剂放置在直径80mm的石墨坩埚中,然后将样品用2层碳纸包裹埋于其中。之后将反应器抽真空,充氩气至气压为1MPa。用25A的电流将铝热剂顶部的钨丝线圈点燃,铝热剂就开始了燃烧反应,直至通过自燃方式转化为产物为止,样品随炉冷却。此后,将煅烧的样品放入研钵中研磨成粉末。
用透射电镜分析该化学炉辅助燃烧合成制备的BCT-0.07BMN陶瓷粉,其TEM图如图2所示,从TEM图中可以看出BCT-0.07BMN陶瓷粉体的前驱体的平均粒径为30-50nm。BCT-0.07BMN陶瓷粉的XRD如图3所示,从图中可以看出样品主晶相为钙钛矿结构,存在杂峰这可能是由于样品在快速反应过程中未完全晶化,生成主晶相。
(4)将BCT-0.07BMN陶瓷粉体压制成直径为20mm的圆片。在1285℃中烧结2h成块。BCT-0.07BMN陶瓷烧结后的SEM图如图4所示,从图中可以看出,BCT基陶瓷的微观结构均匀分布,气孔率比较低,平均晶粒尺寸小于1μm。
测试上述BCT-BMN陶瓷的压电常数d33为335pC/N,相对密度93.2%,平均晶粒尺寸约为0.96μm,晶粒尺寸的大小和电畴尺寸有很大的关系。平均晶粒尺寸较小的样品的畴壁运动比较容易,因此畴尺寸的减小将有助于改善小尺寸样品的压电性能。
实施例2
(1)按照Ba0.96Ca0.04TiO3化学计量比,称取纯度≥99%的原料BaCO3、CaCO3、TiO2粉体进行配料,得到原料混合物;加入ZrO2球和乙醇,在1000转/分钟转速下球磨10h,获得浆料,其中ZrO2球和粉体总质量比为2:1,乙醇和粉体总质量比为1:1然后在120℃下干燥2h,过1200目筛;在8MPa的压力下干压成圆片。
(2)铝热剂的选择为Ti,C,Al,Fe2O3,Al2O3,其中Ti占总质量3wt%、C占总质量的11wt%;Al占总质量的14wt%,Fe2O3占总质量的44wt%,Al2O3占总质量的28wt%。
化学炉辅助燃烧合成是在封闭反应器中进行的。将100g的铝热剂放置在直径80mm的石墨坩埚中,然后将样品用3层碳纸包裹埋于其中。之后将反应器抽真空,充氩气至气压为1MPa。用25A的电流将铝热剂顶部的钨丝线圈点燃,铝热剂就开始了燃烧反应,直至通过自燃方式转化为产物为止,样品随炉冷却。此后,将煅烧的样品放入研钵中研磨成粉末,压制成直径为20mm的圆片。在1285℃中烧结2h成块。其SEM图如图5所示,从图中可以看出,BCT基陶瓷的微观结构均匀分布,样品存在空隙,相对致密度不高,晶粒尺寸小于1μm。
测试上述BCT陶瓷的压电常数d33为236pC/N,相对密度88.7%,这使得性能得到改善。
实施例3
(1)按照0.8Ba0.96Ca0.04TiO3-0.2Ba(Mg1/3Nb2/3)O3的化学计量比,称取纯度≥99%的原料BaCO3、CaCO3、TiO2、MgO、Nb2O5粉体进行配料,得到原料混合物;加入ZrO2球和乙醇,在800转/分钟转速下球磨8h,获得浆料,其中ZrO2球和粉体总质量比为2:1,乙醇和粉体总质量比为1:1然后在120℃下干燥2h,过1200目筛;在8MPa的压力下干压成圆片。
(2)铝热剂的选择为Ti,C,Al,Fe2O3,Al2O3,其中Ti占总质量3wt%、C占总质量的11wt%;Al占总质量的14wt%,Fe2O3占总质量的44wt%,Al2O3占总质量的28wt%。
化学炉辅助燃烧合成是在封闭反应器中进行的。将100g的铝热剂放置在直径80mm的石墨坩埚中,然后将样品用3层碳纸包裹埋于其中。之后将反应器抽真空,充氩气至气压为1MPa。用25A的电流将铝热剂顶部的钨丝线圈点燃,铝热剂就开始了燃烧反应,直至通过自燃方式转化为产物为止,样品随炉冷却。此后,将煅烧的样品放入研钵中研磨成粉末,压制成直径为20mm的圆片。在1285℃中烧结2h成块。其SEM图如图6所示,从图中可以看出,BCT基陶瓷的微观结构均匀分布,样品存在空隙,相对致密度不高,晶粒尺寸小于1μm。
测试上述BCT-BMN陶瓷的压电常数d33为103pC/N,相对密度85.6%。

Claims (12)

1.一种钛酸钡基陶瓷的制备方法,其特征在于,所述方法包括如下步骤:(1)制备样品:按照钛酸钡基陶瓷的通式中各元素的化学计量进行配料,称取相应的原料粉体进行混合配料,压制成圆片;(2)制备铝热剂,所述铝热剂包括钛粉、碳粉、铝粉、氧化铁及氧化铝,按重量百分比计所述钛粉占11~16%,碳粉占3~4%,铝粉占12~17%,氧化铁占34~43%,所述氧化铝占20~30%;(3)将所述铝热剂放置在坩埚中,然后将步骤(1)制得的样品用碳纸包裹埋入铝热剂中;(4)引燃铝热剂发生自蔓延,直至通过自燃方式转化为产物,样品随炉冷却;(5)将步骤(4)所得的样品研磨成粉末得到陶瓷粉体,其平均粒径为30-50nm,再将所述陶瓷粉体压制成圆片,然后烧结,得到钛酸钡基陶瓷。
2.根据权利要求1所述的钛酸钡基陶瓷的制备方法,其特征在于,所述步骤(1)中,所述混合配料后,还包括研磨、干燥、筛分步骤。
3.根据权利要求2所述钛酸钡基陶瓷的制备方法,其特征在于,所述步骤(1)中,所述研磨是加入ZrO2球和乙醇进行研磨,所述ZrO2球和粉体总质量比为1.2-2:1,所述乙醇和粉体总质量比为1-2:1。
4.根据权利要求2或3所述钛酸钡基陶瓷的制备方法,其特征在于,所述步骤(1)中,所述研磨为在100-1000转/分钟转速下球磨6-10h,所述干燥为在120°C下干燥2h,所述筛分为过1200目筛。
5.根据权利要求1所述的钛酸钡基陶瓷的制备方法,其特征在于,所述步骤(1)中,所述压制成圆片是在8~10MPa压力下压制。
6.根据权利要求1所述的钛酸钡基陶瓷的制备方法,其特征在于,所述步骤(3)中,所述坩埚是放在密闭的反应器中,反应器抽真空,充氩气至气压为0.5~1MPa。
7.根据权利要求1所述的钛酸钡基陶瓷的制备方法,其特征在于,所述步骤(3)中,所述样品用2~3层碳纸包裹。
8.根据权利要求1所述的钛酸钡基陶瓷的制备方法,其特征在于,所述步骤(4)中,通过钨丝引燃铝热剂。
9.根据权利要求8所述的钛酸钡基陶瓷的制备方法,其特征在于,通入25A的电流将铝热剂顶部的钨丝线圈点燃、引燃铝热剂。
10.一种(1-x)Ba0.96Ca0.04TiO3-xBa(Mg1/3Nb2/3)O3无铅陶瓷的制备方法,其特征在于,包括如下步骤:(1)制备样品,按照x的值,称取相应质量的BaCO3、CaCO3、TiO2、MgO、Nb2O5粉体,其中,各原料粉体的纯度≥99%,进行配料;加入ZrO2球和乙醇,在100-1000转/分钟转速下球磨6-10h,获得浆料,其中ZrO2球和粉体总质量比为1.2-2:1,乙醇和粉体总质量比为1-2:1然后在120°C下干燥2h,过1200目筛;在8~10 MPa的压力下干压成圆片,其中x的取值范围为0≤x≤0.2;(2)制备铝热剂,所述铝热剂包括钛粉、碳粉、铝粉、氧化铁及氧化铝,按重量百分比计所述钛粉占11~16%,碳粉占3~4%,铝粉占12~17%,氧化铁占34~43%;所述氧化铝占20~30%;(3)将所述铝热剂放置在坩埚中,然后将步骤(1)制得的样品用碳纸包裹埋入铝热剂中;(4)引燃铝热剂发生自蔓延,直至通过自燃方式转化为产物,样品随炉冷却;(5)将由步骤(4)所得的样品研磨成粉末,再压制成圆片,然后烧结,得到钛酸钡基陶瓷。
11.根据权利要求10所述的制备方法,其特征在于,所述步骤(5)中,所述烧结为在1285℃下烧结2h成块。
12.一种如权利要求10或11所述的制备方法制备得到的(1-x)Ba0.96Ca0.04TiO3-xBa(Mg1/3Nb2/3)O3无铅陶瓷。
CN202011145869.7A 2020-10-23 2020-10-23 一种钛酸钡基陶瓷的制备方法 Active CN114477996B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011145869.7A CN114477996B (zh) 2020-10-23 2020-10-23 一种钛酸钡基陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011145869.7A CN114477996B (zh) 2020-10-23 2020-10-23 一种钛酸钡基陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN114477996A CN114477996A (zh) 2022-05-13
CN114477996B true CN114477996B (zh) 2023-04-28

Family

ID=81470890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011145869.7A Active CN114477996B (zh) 2020-10-23 2020-10-23 一种钛酸钡基陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN114477996B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012997A (ja) * 2007-07-03 2009-01-22 National Institute Of Advanced Industrial & Technology 無鉛圧電磁器組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800651B2 (ja) * 1994-11-30 2006-07-26 住友化学株式会社 複合金属酸化物粉末の製造方法
TW556237B (en) * 2001-09-14 2003-10-01 Matsushita Electric Ind Co Ltd Ceramic capacitor
CN1826299B (zh) * 2004-03-01 2010-06-16 株式会社村田制作所 绝缘体陶瓷组合物、绝缘性陶瓷烧结体及层叠型陶瓷电子部件
CN101775517B (zh) * 2009-09-18 2012-07-18 江阴东大新材料研究院 TiC/Al2O3/Fe复合陶瓷基复合材料的制备方法
CN103214237B (zh) * 2013-04-02 2014-08-13 武汉理工大学 一种巨介电常数钛酸钡陶瓷的制备方法
CN103553592B (zh) * 2013-11-01 2015-11-18 华北水利水电大学 一种改性钛酸钡粉体的制备方法
CN105948730B (zh) * 2016-04-28 2019-03-08 中国科学院理化技术研究所 一种铁铝尖晶石的制备方法
CN107827464B (zh) * 2017-12-15 2020-04-24 中国科学院理化技术研究所 一种燃烧合成制备ZrTiCB四元陶瓷粉体的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012997A (ja) * 2007-07-03 2009-01-22 National Institute Of Advanced Industrial & Technology 無鉛圧電磁器組成物

Also Published As

Publication number Publication date
CN114477996A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
Wang et al. Synthesizing nanocrystalline Pb (Zn1/3Nb2/3) O3 powders from mixed oxides
JP4582178B2 (ja) 複合酸化物粒子の製造方法および誘電体粒子の製造方法
JP4658689B2 (ja) チタン酸バリウム粉末の製法およびチタン酸バリウム粉末、並びにチタン酸バリウム焼結体
CN108530057A (zh) 溶胶-凝胶法制备应用于储能的形貌可控CaTiO3陶瓷的方法
CN106673648A (zh) 一种氧化镱掺杂低温制备pzt基压电陶瓷
CN114477996B (zh) 一种钛酸钡基陶瓷的制备方法
CN115417670B (zh) 一种在b位进行高熵化设计的高介电常数陶瓷及其制备方法
KR101786056B1 (ko) 코어쉘 구조를 갖는 저온소성용 무연압전 세라믹 및 그 제조 방법
TW202239735A (zh) 釔鋁石榴石粉末及其合成方法
JP2009114034A (ja) チタン酸バリウムの製造方法
JP2006256934A (ja) 高誘電体材料とその製造方法
CN112898020A (zh) 一种平均晶粒尺寸为160nm的铌酸钾钠基纳米细晶陶瓷的制备方法
JPH11335825A (ja) スパッタリングターゲット及びその製造方法
JP2003063877A (ja) 多成分系圧電材料の製造方法
Junmin et al. Synthesizing 0.9 PZN–0.1 BT by mechanically activating mixed oxides
Wan et al. Nanocrystalline 0.54 PZN–0.36 PMN–0.1 PT of perovskite structure by mechanical activation
JP2019108242A (ja) 結晶質酸化物セラミックス短時間焼成製法及び装置
RU2738880C9 (ru) Способ получения и материал алюмооксидной керамики
KR101110365B1 (ko) 압전 세라믹스 제조방법
JP5352218B2 (ja) 複合酸化物の製造方法
Kao et al. Microstructure and sintering properties of La2O3-doped SrTiO3 ceramics from crystalline powders
JP2003073173A (ja) 焼結体の製造方法、得られる焼結体及びそれを用いたスパッタリングターゲット
JPH0262496B2 (zh)
JPH11292627A (ja) 圧電材料およびその製造方法
JP4243515B2 (ja) チタン酸ジルコン酸鉛系粉末製造用原料粉末の製造方法、チタン酸ジルコン酸鉛系粉末の製造方法及びチタン酸ジルコン酸鉛系焼結体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant