CN107827464B - 一种燃烧合成制备ZrTiCB四元陶瓷粉体的方法 - Google Patents

一种燃烧合成制备ZrTiCB四元陶瓷粉体的方法 Download PDF

Info

Publication number
CN107827464B
CN107827464B CN201711343924.1A CN201711343924A CN107827464B CN 107827464 B CN107827464 B CN 107827464B CN 201711343924 A CN201711343924 A CN 201711343924A CN 107827464 B CN107827464 B CN 107827464B
Authority
CN
China
Prior art keywords
powder
preparing
reaction
ceramic powder
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711343924.1A
Other languages
English (en)
Other versions
CN107827464A (zh
Inventor
贺刚
李宏华
杨潇
李江涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN201711343924.1A priority Critical patent/CN107827464B/zh
Publication of CN107827464A publication Critical patent/CN107827464A/zh
Application granted granted Critical
Publication of CN107827464B publication Critical patent/CN107827464B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种燃烧合成制备ZrTiCB四元陶瓷粉体的方法,包括如下步骤:将锆粉、钛粉、碳粉和硼粉混匀并压坯,得到相对密度为40%~60%的预制块;采用通电钨丝发热诱导预制块中各原料组分之间发生自蔓延燃烧反应;反应得到的产物冷却后研磨制得Zr0.8Ti0.2C1‑xBx陶瓷粉体;其中,x取值范围为:0≤x≤0.15。本发明的燃烧合成制备Zr0.8Ti0.2C1‑xBx陶瓷的方法,使用单质粉末作为原料,利用原料间反应放热来完成材料的合成,具有工艺简单、制备周期短、能耗低成本低等特点。

Description

一种燃烧合成制备ZrTiCB四元陶瓷粉体的方法
技术领域
本发明涉及燃烧合成技术领域。更具体地,涉及一种燃烧合成制备ZrTiCB四元陶瓷粉体的方法。
背景技术
ZrC、ZrB2均为常见的超高温陶瓷材料,具有高熔点、高硬度、高热导、抗热震、抗氧化、以及耐烧蚀等特性,可作为高温结构材料应用于高超声速飞行器的鼻锥、前缘以及超燃冲压发动机燃烧室的关键热端部件。Zr和Ti,C和B的原子半径接近,能够形成置换固溶体,使材料性能得到进一步的提升。已有报道,发现四元Zr0.8Ti0.2C0.74B0.26陶瓷具有优良的高温耐氧化、抗烧蚀等性能。通过Ti、B的固溶形成的四元Zr0.8Ti0.2C1-xBx陶瓷在硬度、韧性等机械性能,较ZrC、ZrB2等超高温陶瓷材料性能显著提升,是一类性能优异的新型超高温陶瓷材料。
目前Zr0.8Ti0.2C1-xBx体系的制备方法包括反应熔渗、包埋渗,然而现有的方法制备周期长,工艺复杂,成本高,且产物中的B含量不易调控,无法获得Zr、Ti、C、B比例稳定的产物。
因此,本发明提供了一种B含量可控的燃烧合成制备ZrTiCB四元陶瓷粉体的方法。
发明内容
本发明的一个目的在于提供一种燃烧合成制备ZrTiCB四元陶瓷粉体的方法。
为达到上述目的,本发明采用下述技术方案:
一种燃烧合成制备ZrTiCB四元陶瓷粉体的方法,包括如下步骤:
将锆粉、钛粉、碳粉和硼粉混匀并压坯,得到相对密度为40%~60%的预制块;采用通电钨丝发热诱导预制块中各原料组分之间发生自蔓延燃烧反应;反应得到的产物冷却后研磨制得Zr0.8Ti0.2C1-xBx陶瓷粉体;其中,x取值范围为:0≤x≤0.15。本发明采用的燃烧合成法是一种利用原料自身反应放热完成材料合成的制备方法,具有工艺简单、制备周期短、低能耗低成本等优势;此外,通过Zr、Ti、C、B原料比例的精确控制,同时利用粉体原料之间的强放热反应,可燃烧合成制得四元Zr0.8Ti0.2C1-xBx陶瓷。
优选地,所述锆粉、钛粉、碳粉和硼粉的摩尔比为0.8:0.2:1-x:x,其中0≤x≤0.15。
优选地,所述自蔓延燃烧反应在氩气气氛且气压为0.1~10MPa条件下进行。本发明中的气压范围内,气压的变化对陶瓷粉体的性能几乎无影响。
如无特殊说明,本发明所记载的任何范围包括端值以及端值之间的任何数值以及端值或者端值之间的任意数值所构成的任意子范围。
本发明的有益效果如下:
本发明的燃烧合成制备Zr0.8Ti0.2C1-xBx陶瓷的方法,使用单质粉末作为原料,利用原料间反应放热来完成材料的合成,具有工艺简单、制备周期短、能耗低成本低等特点。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1示出本发明中实施例1~4制得的Zr0.8Ti0.2C1-xBx陶瓷粉体的XRD图谱示意图;其中,(a)示出本发明实施例1制得的Zr0.8Ti0.2C陶瓷粉体的XRD图,(b)示出本发明实施例2制得的Zr0.8Ti0.2C0.95B0.05陶瓷粉体的XRD图,(c)示出本发明实施例3制得的Zr0.8Ti0.2C0.9B0.1陶瓷粉体的XRD图,(d)示出本发明实施例4制得的Zr0.8Ti0.2C0.85B0.15陶瓷粉体的XRD图。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
本发明中,制备方法如无特殊说明则均为常规方法。所用的原料如无特别说明均可从公开的商业途径获得,所述百分比如无特殊说明均为质量百分比。
实施例1
一种陶瓷粉体的制备,包括如下步骤:
将Zr、Ti、C、B原料粉末按Zr:Ti:C:B=0.8:0.2:1:0的比例混合均匀并压坯,得到相对密度为40%的预制块;将预制块放入石墨模具中,并将整体置于反应釜中;然后在氩气作为保护气氛,气压为0.1MPa的反应釜中,利用通电钨螺旋丝发热诱导预制块中各原料之间发生自蔓延燃烧反应;反应的产物冷却后经破碎研磨,得到Zr0.8Ti0.2C陶瓷粉体。
对得到的粉末进行XRD测试,结果如图1(a)所示,结果表明,产物成分为Zr0.8Ti0.2C,无杂相生成。
实施例2
一种陶瓷粉体的制备,包括如下步骤:
将Zr、Ti、C、B原料粉末按Zr:Ti:C:B=0.8:0.2:0.95:0.05的比例混合均匀并压坯,得到相对密度为50%的预制块;将预制块放入石墨模具中,并将整体置于反应釜中;然后在氩气作为保护气氛,气压为0.1MPa的反应釜中,利用通电钨螺旋丝发热诱导预制块中各原料之间发生自蔓延燃烧反应;反应的产物冷却后经破碎研磨,得到Zr0.8Ti0.2C0.95B0.05陶瓷粉体。
对得到的粉末进行XRD测试,结果如图1(b)所示,表明产物成分为Zr0.8Ti0.2C0.95B0.05,无杂相生成。
实施例3
一种陶瓷粉体的制备,包括如下步骤:
将Zr、Ti、C、B原料粉末按Zr:Ti:C:B=0.8:0.2:0.9:0.1的比例混合均匀并压坯,得到相对密度为60%的预制块;将预制块放入石墨模具中,并将整体置于反应釜中;然后在氩气作为保护气氛,气压为1MPa的反应釜中,利用通电钨螺旋丝发热诱导预制块中各原料之间发生自蔓延燃烧反应;反应的产物冷却后经破碎研磨,得到Zr0.8Ti0.2C0.9B0.1陶瓷粉体。
对得到的粉末进行XRD测试,结果如图1(c)所示,表明产物成分为Zr0.8Ti0.2C0.9B0.1,无杂相生成。
实施例4
一种陶瓷粉体的制备,包括如下步骤:
将Zr、Ti、C、B原料粉末按Zr:Ti:C:B=0.8:0.2:0.85:0.15的比例混合均匀并压坯,得到相对密度为40%的预制块;将预制块放入石墨模具中,并将整体置于反应釜中;然后在氩气作为保护气氛,气压为10MPa的反应釜中,利用通电钨螺旋丝发热诱导预制块中各原料之间发生自蔓延燃烧反应;反应的产物冷却后经破碎研磨,得到Zr0.8Ti0.2C0.85B0.15陶瓷粉体。
对得到的粉末进行XRD测试,结果如图1(d)所示,表明产物成分为Zr0.8Ti0.2C0.85B0.15,无杂相生成。
一些实施例
为检验原料比例对陶瓷粉体化学组成的影响,即方法步骤同实施例1,仅改变原料中C和B比例,结果如下表。
表1不同原料比例的结果
实施例编号 Zr:Ti:C:B 陶瓷粉末组成
5 0.8:0.2:0.8:0.2 ZrCx、TiCx、ZrB<sub>2</sub>
6 0.8:0.2:0.75:0.25 ZrCx、TiCx、ZrB<sub>2</sub>
7 0.8:0.2:0.7:0.3 ZrCx、TiCx、ZrB<sub>2</sub>
8 0.8:0.2:0.65:0.35 ZrCx、TiCx、ZrB<sub>2</sub>
9 0.8:0.2:0.6:0.40 ZrCx、TiCx、ZrB<sub>2</sub>
10 0.8:0.2:0.55:0.45 ZrCx、TiCx、ZrB<sub>2</sub>
结果表明:当原料比例中,C<0.85且B>0.15时,合成的陶瓷粉体化学组成为ZrCx、TiCx和ZrB2,得不到单相的Zr0.8Ti0.2C1-xBx陶瓷粉体。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (3)

1.一种燃烧合成制备ZrTiCB四元陶瓷粉体的方法,其特征在于,包括如下步骤:
将锆粉、钛粉、碳粉和硼粉混匀并压坯,得到相对密度为40%~60%的预制块;采用通电钨丝发热诱导预制块中各原料组分之间发生自蔓延燃烧反应;反应得到的产物冷却后研磨制得Zr0.8Ti0.2C1-xBx陶瓷粉体;其中,x取值范围为:0<x≤0.15。
2.根据权利要求1所述的方法,其特征在于,所述锆粉、钛粉、碳粉和硼粉的摩尔比为0.8:0.2:1-x:x,其中0<x≤0.15。
3.根据权利要求1所述的方法,其特征在于,所述自蔓延燃烧反应在氩气气氛且气压为0.1~10MPa条件下进行。
CN201711343924.1A 2017-12-15 2017-12-15 一种燃烧合成制备ZrTiCB四元陶瓷粉体的方法 Active CN107827464B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711343924.1A CN107827464B (zh) 2017-12-15 2017-12-15 一种燃烧合成制备ZrTiCB四元陶瓷粉体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711343924.1A CN107827464B (zh) 2017-12-15 2017-12-15 一种燃烧合成制备ZrTiCB四元陶瓷粉体的方法

Publications (2)

Publication Number Publication Date
CN107827464A CN107827464A (zh) 2018-03-23
CN107827464B true CN107827464B (zh) 2020-04-24

Family

ID=61644390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711343924.1A Active CN107827464B (zh) 2017-12-15 2017-12-15 一种燃烧合成制备ZrTiCB四元陶瓷粉体的方法

Country Status (1)

Country Link
CN (1) CN107827464B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181604A1 (ja) * 2018-03-23 2019-09-26 日清エンジニアリング株式会社 複合粒子および複合粒子の製造方法
RU2706913C1 (ru) * 2019-07-16 2019-11-21 федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Способ получения материала, содержащего борид вольфрама
CN114380600B (zh) * 2020-10-22 2023-06-20 中国科学院理化技术研究所 一种高通量制备陶瓷材料的合成方法
CN114477996B (zh) * 2020-10-23 2023-04-28 中国科学院理化技术研究所 一种钛酸钡基陶瓷的制备方法
CN115894043B (zh) * 2022-11-08 2023-10-27 深圳市蓝海永兴实业有限公司 一种高熵MAlB陶瓷材料及其制备方法
CN116444276A (zh) * 2023-03-22 2023-07-18 华南理工大学 一种高熵硼化物陶瓷纳米粉体及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5220353B2 (ja) * 2007-04-12 2013-06-26 独立行政法人科学技術振興機構 自己伝播高温合成方法
CN101343183B (zh) * 2007-07-13 2010-10-27 中国科学院金属研究所 碳化锆钛颗粒增强硅铝碳化钛锆基复合材料及其制备方法
US9580323B2 (en) * 2013-05-31 2017-02-28 University Of Notre Dame Du Lac Method of producing graphene and other carbon materials
CN105924175B (zh) * 2016-04-21 2019-02-12 河北工程大学 一种细晶碳化硼陶瓷及其制备方法
CN106829988B (zh) * 2017-01-16 2018-06-01 西安建筑科技大学 一种硼化锆粉体
CN107021773B (zh) * 2017-05-22 2018-03-30 中南大学 一种新型超高温陶瓷一体化改性抗烧蚀炭/炭复合材料及其制备方法

Also Published As

Publication number Publication date
CN107827464A (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
CN107827464B (zh) 一种燃烧合成制备ZrTiCB四元陶瓷粉体的方法
CN104150940B (zh) 氮化硅与碳化硅复相多孔陶瓷及其制备方法
CN104745908B (zh) 硼化钛复合碳化钛基金属陶瓷刀具材料的制备方法
CN108439983A (zh) 一种石墨陶瓷复合管成型方法
CN109180161B (zh) 一种高纯钛硅化碳/氧化铝复合材料及其制备方法
CN104926309B (zh) 一种无硼或稀土元素的致密碳化硅陶瓷的制备方法
CN106587969A (zh) 一种低介电常数绝缘复合陶瓷材料及其制备方法
CN105198433B (zh) 一种二硅化钼/碳化硅/碳化硼三相强度复合陶瓷的制备方法
CN110668821A (zh) 一种无压制备max相陶瓷的方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN107244918B (zh) 一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法
CN108251670B (zh) 耐高温金属间化合物合金的制备方法
CN108455623A (zh) 一种超细过渡金属硼化物粉体及其制备方法和应用
CN105060896A (zh) 一种碳化硅陶瓷精密器件的制备方法
CN102731096A (zh) 一种织构化硼化物基超高温陶瓷材料及其制备方法
CN103274701A (zh) 一种含碳耐火材料抗氧化剂Al4O4C的制备方法
CN104591769A (zh) 一种铝镁硼增韧增强陶瓷及其制备方法
CN102503501B (zh) 原位生长二硼化锆晶须增韧陶瓷刀具材料及其一体化制备工艺
CN108892528B (zh) 一种多孔氮化硅陶瓷材料及其制备方法
CN105481365A (zh) 一种高致密化碳化钛陶瓷的制备方法
CN114835496B (zh) 一种Cr3C2块体材料的制备方法
CN104591743B (zh) 氮化硅-碳化铪复相陶瓷的制备方法
EP2258811A1 (en) Method for producing porous ceramics and multiphasic materials from cellulosic precursors
CN108341670B (zh) 单相Ti3SiC2金属陶瓷的制备方法
Zavareh et al. Fabrication of TiB2-TiC composites optimized by different amount of carbon in the initial Ti-BC powder mixture

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant