CN114471567B - 一种co2捕获转化耦合生物质氧化用光催化剂及其制备方法和应用 - Google Patents

一种co2捕获转化耦合生物质氧化用光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN114471567B
CN114471567B CN202111582145.3A CN202111582145A CN114471567B CN 114471567 B CN114471567 B CN 114471567B CN 202111582145 A CN202111582145 A CN 202111582145A CN 114471567 B CN114471567 B CN 114471567B
Authority
CN
China
Prior art keywords
catalyst
ldhs
reaction
solution
biomass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111582145.3A
Other languages
English (en)
Other versions
CN114471567A (zh
Inventor
冯俊婷
李殿卿
岳晓雪
范嘉烜
贺宇飞
刘雅楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202111582145.3A priority Critical patent/CN114471567B/zh
Publication of CN114471567A publication Critical patent/CN114471567A/zh
Priority to US18/074,494 priority patent/US20230191373A1/en
Application granted granted Critical
Publication of CN114471567B publication Critical patent/CN114471567B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • B01J27/236Hydroxy carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/825Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/68Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/65Catalysts not containing noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4525Gas separation or purification devices adapted for specific applications for storage and dispensing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/802Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种CO2原位捕获还原及其与生物质氧化耦合的光催化剂及其制备方法和应用。该催化剂应用于光催化CO2还原‑生物质氧化的耦联反应中。该催化剂的制备是利用共沉淀、水热法、溶胶凝胶等方法合成层间含CO3 2‑的层状复合金属氢氧化物(LDHs),化学式为[M1‑x 2+Mx 3+(OH)2]x+(An‑)x/n·mH2O;其厚度为20‑30nm,平均粒径为60‑90nm。再用NaOH/KOH选择性刻蚀的方法在LDHs的层板上制造金属离子空位缺陷,得到相应的催化剂。该催化剂用于光催化反应中,其特点是反应过程CO3 2‑被不断消耗,反应后催化剂能够吸收空气中的CO2进行复原,重复多次使用从而不断消耗空气中的CO2,实现CO2的直接捕获和有效利用。

Description

一种CO2捕获转化耦合生物质氧化用光催化剂及其制备方法和应用
技术领域
本发明属于CO2综合利用以及光催化剂制备领域,具体涉及到一种光催化剂的制备方法及应用,该光催化用于催化CO2还原和生物质氧化耦合反应过程。
背景技术
能源对经济社会发展具有重要意义,化石燃料的广泛使用造成了各种污染问题,因此,减少化石能源的燃烧,积极寻找更环保的新能源,已成为当今社会迫切需要解决的重要问题。对CO2的高效利用已成为当前研究的热点。光催化作为一种绿色、环保的技术,可以将CO2还原转换为更有价值的一氧化碳、甲烷、乙烷、甲醇等碳氢化合物,是清洁能源的发展的一个重要方向。
为了提高光催化效率,很多研究者会在反应中加入牺牲剂,文献1在Boron CarbonNitride Semiconductors Decorated with CdS Nanoparticles for PhotocatalyticReduction of CO2 ACS Catal.2018,8,6,4928–4936.中以三乙醇胺(TEOA)作为牺牲剂提高光催化性能。在关注CO2还原产物的同时,牺牲剂氧化产物的可利用价值也值得关注。生物质能具有储量丰富、可再生、低污染、用途广泛等优点。其丰富的化学键与官能团可以通过氧化过程转化为高价值产品。更重要的是生物质中羟基的氧化比水更为容易,可以提供更多的H+用于还原反应,加快光催化反应速率。
水滑石是一种层状双金属氢氧化物物(Layered double Hydroxides,简写LDHs),是一种新型无机功能材料,在光功能材料、生物学、催化剂领域、电化学、医疗、离子交换剂等领域得到了越来越多的关注和广泛的应用。LDHs材料在光催化领域已有了广泛的应用,文献2在Superlattice assembly of two dimensional CoFe-LDHs nanosheets andtitania nanosheets nanohybrids for high visible light photocatalyticactivity.Materials Letters,2018,236(FEB.1):374-377.中制备合成了CoFe-LDHs和二氧化钛纳米片组成的超晶格结构光催化剂。在可见光照射下,复合光催化剂的光催化活性显著增强。该文献将具有光响应的Co元素和变价元素Fe元素引入到LDHs的层板中,有利于光催化反应的发生。
LDHs作CO2光还原催化剂也已得到了广泛研究,文献3在Ultrathin magnetic Mg-Al LDH photocatalyst for enhanced CO2 reduction:Fabrication andmechanism.Journal of Colloid and Interface Science,2019,555:1-10.中,合成了磁性Fe3O4改性的二维超薄Mg-Al层状双氢氧化物(Fe3O4/Mg-Al-LDH)用于光催化反应,Mg-Al-LDHs可为光催化反应提供空穴,空穴可与H2O反应生成O2和质子,提升CO2的光催化反应性能。
文献4在Trimetallic NiCoFe-Layered Double Hydroxides NanosheetsEfficient for Oxygen Evolution and Highly Selective Oxidation of Biomass-Derived 5-Hydroxymethylfurfural ACS Catal.2020,10,9,5179–5189中,制备了NiCoFe-LDHs用于呋喃类生物质化合物—5-羟甲基糠醛(5-HMF)的选择性氧化反应中。由此可见LDHs材料在生物质转化方面也有着广泛的应用。
作为一类阴离子型层状二维材料,LDHs对CO3 2-离子表现出较强的亲和力,在溶液环境中具有优异的CO2捕获及富集能力。利用LDHs这一特性,以其层间CO3 2-作为碳源,可以同时解决光催化反应中CO2的原位捕获和转化问题。利用LDHs对CO2的捕获能力,在每次光催化反应后让催化剂暴露在空气中常温搅拌充分吸收空气中的CO2,进行层间CO3 2-的补充,能够达到重复使用的目的。此外,基于LDHs层板元素的可调控性,选用具有吸光性的层板金属离子,LDHs在吸光后,电子和空穴分别被层板表面的金属离子和羟基所捕获,金属离子促进还原半反应的发生,层板羟基促进氧化半反应的发生。在此基础上对LDHs进行刻蚀制造金属缺陷,催化剂表面的金属缺陷能够促进呋喃类生物质的氧化。催化剂层板上的金属离子活化CO3 2-的还原,催化剂金属缺陷与金属离子的协同作用促进了反应的进行。
因此本发明选用生物质作为光催化反应的牺牲剂,将太阳能驱动的CO2还原和生物质氧化过程进行耦合,在提升CO2还原效率的同时,使生物质分子向更有价值的类精细化学品的定向转化,从而实现了过程创新。
发明内容
本发明的目的是提供一种CO2捕获转化耦合生物质氧化用光催化剂及其制备方法和应用。
本发明所制备的催化剂,化学表示式为:CO3 2--M2+M3+-LDHs,其中M2+为Mg2+、Co2+、Zn2 +、Mn2+、Ni2+、Cu2+中的一种,较优的是Zn2+、Co2+、Ni2+、Cu2+;M3+为Al3+、Fe3+、Cr3+、Ce3+、In3+、Ga3+中的一种,较优的是Al3+、Fe3+、Ga3+;其中M2+与M3+的摩尔比为2~4:1;该催化剂具有二维层状结构,层板上具有金属缺陷空位,层板间富含有CO3 2-。该催化剂在光催化反应中CO3 2-被不断消耗,反应后能够吸收空气中的CO2进行复原,可重复多次使用从而不断消耗空气中的CO2
上述催化剂的制备方法,以20-30nm厚度的水滑石LDHs为主体,LDHs通式为[M1-x 2+Mx 3+(OH)2]x+(CO3 2-)x/n·mH2O,其中M2+为Mg2+、Co2+、Zn2+、Mn2+、Ni2+、Cu2+中的一种,较优的是Zn2+、Co2+、Ni2+、Cu2+;M3+为Al3+、Fe3+、Cr3+、Ce3+、In3+、Ga3+中的一种,较优的是Al3+、Fe3+、Ga3+;M2+与M3+的摩尔比为2~4:1。采用碱溶液对该水滑石进行刻蚀,在水滑石层板上制造缺陷,调节金属离子结构制造出氧空位,从而促进光催化还原CO2的反应。其中,较为适合用于光催化剂的水滑石为CuCoAl-LDHs、CuCoFe-LDHs、ZnCoFe-LDHs、CuZnGa-LDHs。
本发明提供的催化剂的具体方法如下:
A.将可溶性金属盐M2+和M3+溶于去离子水中配制溶液A,其中M2+:M3+的摩尔比例为2~4:1,阴离子为CO3 2-;M2+与M3+离子总浓度为0.16-0.20mol/L。
M2+为Mg2+、Co2+、Zn2+、Mn2+、Ni2+、Cu2+中的一种,较优的是Zn2+、Co2+、Ni2+、Cu2+;M3+为Al3+、Fe3+、Cr3+、Ce3+、In3+、Ga3+中的一种,较优的是Al3+、Fe3+、Ga3+
B.用碱和碳酸盐溶于去离子水中配制沉淀剂溶液B,其中碱溶液浓度为0.1-0.2mol/L,碳酸根浓度为0.25-0.35mol/L;所述的碱为NaOH或KOH,所述的碳酸盐为Na2CO3或K2CO3
C.将等体积的溶液A和溶液B的同时滴入反应器中,滴定过程中保持溶液的pH在9~11,400~600r/min搅拌,得到LDHs悬浊液;再在60-80℃的水浴锅中老化12-18h,洗涤、离心分离直到中性;于50-60℃的干燥12-24h,取出,研磨,得到粉末状LDHs,其化学式为[M1-x 2+Mx 3+(OH)2]x+(An-)x/n·mH2O;厚度为20-30nm,平均粒径为60-90nm。
较佳的水滑石为CuCoAl-LDHs、CuCoFe-LDHs、ZnCoFe-LDHs、CuZnGa-LDHs中的一种。
D.配制刻蚀溶液,将LDHs粉末加入到碱刻蚀溶液,使溶液中的LDHs含量为2.3-2.8mg/ml,刻蚀1-2h,离心过滤、洗涤至中性,于50-60℃干燥12-24h;得到具有缺陷位点的催化剂;
所述的刻蚀溶液为浓度为1~2mol/L的KOH或NaOH溶液。
该催化剂的特点是:LDHs层板上的金属离子与OH-形成络合物从而脱离层板,在层板上形成缺陷位点,因此具有高催化性能。
CO3 2--M2+M3+-LDHs催化剂的应用
(1)、将CO3 2--M2+M3+-LDHs催化剂和生物质分散至乙腈或水中配制反应液,其中催化剂浓度为0.5-1mg/mL生物质浓度为1.5-2mg/mL;将该反应液置于顶照式不锈钢高压光催化反应釜中。采用惰性气体将釜内空气置换,并将压力控制在0.1~0.6MPa,用可见光光源照射使其发生反应。
反应方程式为:
CO3 2-+2R-CH2-OH(生物质分子)=2R-CH=O(生物质分子)+CO+2H2O
CO3 2-+2R-CH2-OH(生物质分子)+O2=2R-COOH(生物质分子)+CO+2H2O
其中,R代表生物质分子中的CxHy有机官能团,x=6-10,本催化剂适用于3-羟基丁内酯、甘油、山梨糖醇、木糖醇以及5-HMF等含羟基的生物质分子。
在该反应中催化剂在光照情况下生成光生电子和空穴,催化剂层间的CO3 2-与光生电子发生还原反应生成CO,生物质分子中的羟基与光生空穴发生氧化反应生成醛基,醛与氧气进一步反应形成酸,其中氧气来自于水被光生空穴氧化而产生。
(2)、反应5-6h后将反应液取出,置于空气中常温搅拌使催化剂复原12~24h,使催化剂层板间与空气充分接触,吸收空气中的CO2转换为层间的CO3 2-,达到捕获空气中CO2的目的,催化剂层板间发生的反应是:
CO2+2OH-=CO3 2-+H2O
经过复原的光催化重复用于步骤(1)中的反应,如此多次循环,直至生物质转化率接近100%,将反应溶液与催化剂离心分离,再采用蒸馏法分离产物与溶剂。
对制备的催化剂进行表征并进行应用实验,结果见图1-7
图1可见,合成的催化剂具有LDHs的特征峰,表明成功合成了CO3 2-型的CuCoAL-LDHs,刻蚀之后LDHs的特征峰变弱,LDHs的特征衍射峰逐渐减弱,但(003)(006)(009)等衍射峰位置并未发生改变,表明刻蚀使得LDHs的晶体结构遭到一定程度的破坏,但其晶体结构类型及层间间距没有发生明显的改变。
从图2的SEM照片可以看出,刻蚀前后的催化剂均保持着层状结构,刻蚀之后催化剂层状结构的保持能够保留对CO2的捕获和存储能力,作为一个良好的CO2储存和原位转化的纳米反应器。
从图3看出,200nm-400nm这段波长范围内为紫外光范围,在400-760nm波长范围内为可见光范围,催化剂在可见光区域和紫外光区域都有吸收,证明该催化剂的光响应范围大,有利于光催化反应。
由图4看出CoCuAl-LDHs的导带位置为-0.99eV,刻蚀60min后导带位置为-0.66eV,均高于CO2还原所要求的电极电势。CoCuAl-LDHs的价带位置为1.12eV,刻蚀60min后的CoCuAl-LDHs的价带位置为0.88eV,均低于5-HMF的氧化电动势,表明该催化剂在热力学上支持CO2还原反应的发生。
由图5看出,刻蚀之后的催化剂的性能明显提升,CO2光催化还原为CO的产率达到65.26μmol/g。
图6表明,催化剂用于光催化5-HMF氧化后,产物2,5-呋喃-二甲酸(FDCA)的产率最多达到了73.6%。
图7为刻蚀后的CuCoAl-LDHs催化剂重复使用5次的性能,在五次重复使用后CO产率为79.72μmol/g,为初次使用的80.5%,依旧具有稳定性。
本发明的有益效果:本发明制备的催化剂用于光催化还原CO2与生物质分子氧化相耦合的领域,LDHs层板上的缺陷促进了生物质分子与层间碳酸根的充分接触,加快反应进程。本催化剂利用LDHs的特性,LDHs间的OH-能够吸附空气中的CO2,使催化剂能够从空气中得到碳源的补充,催化剂在空气中复原,达到重复多次使用的目的。
附图说明
图1为实例1制备的CuCoAl-LDHs刻蚀前、后的XRD的衍射图,a为未刻蚀的CuCoAl-LDHs,b为刻蚀后的CuCoAl-LDHs。
图2为实施例1制备的CuCoAl-LDHs刻蚀前、后的扫描电子显微镜(SEM)照片,a为未刻蚀的CuCoAl-LDHs,b为刻蚀后的CuCoAl-LDHs。
图3为实例1制备的CuCoAl-LDHs刻蚀前、后的固体紫外漫反射光谱,a为未刻蚀的CuCoAl-LDHs,b为刻蚀后的CuCoAl-LDHs。
图4为实例1制备的催化剂的能带位置。
图5为实例1制备的CuCoAl-LDHs刻蚀前、后,按照应用例的条件得到的催化性能,a为未刻蚀的CuCoAl-LDHs,b为刻蚀后的CuCoAl-LDHs。
图6为实例1制备的催化剂按照应用例的条件用于光催化5-HMF氧化后6h的产率。
图7为实例1制备的催化剂按照应用例的条件用于光催化5-HMF重复使用后30h的累积产率。
具体实施方式
实施例1
A;称取0.002mol的Cu(NO3)2·6H2O,0.01mol的Co(NO3)2·6H2O和0.006mol的Al(NO3)3·9H2O固体,溶于盛有100mL的去离子水的烧杯中。
B:称取0.03mol的无水Na2CO3和0.015mol的NaOH固体,溶于盛有100mL去离子水的烧杯中。
C:在三口烧瓶中加入100mL去离子水,将步骤A、B中的两种液溶液以相同的滴定速率滴定进烧瓶中,保持滴定过程中的pH保持在9-11范围内,滴完后将三口烧瓶置于60℃水浴锅中晶化12h,离心、洗涤、干燥、研磨得到CuCoAl-LDHs。用
D:取0.1g的CuCoAl-LDHs样品,加入40mL1mol/L的KOH溶液,在60℃水浴锅中进行刻蚀1h;离心洗涤至中性,干燥、研磨得到具有缺陷点位催化剂CuCoAl-LDHs。
实施例2
A:称取0.002mol的Cu(NO3)2·6H2O固体,0.01mol的Co(NO3)2·6H2O固体和0.006mol的Fe(NO3)3·9H2O固体。将三种盐溶于盛有100mL的去离子水的烧杯中。
B:称取0.03mol的无水Na2CO3固体,0.015mol的NaOH固体,并溶于盛有100mL去离子水的烧杯中。
C:在三口烧瓶中加入100mL去离子水,将步骤A、B中的两种液溶液以相同的滴定速率滴定进烧瓶中,保持滴定过程中的pH保持在9-11范围内,再在60℃水浴锅中晶化12h。离心、洗涤、干燥、研磨得到CuCoFe-LDHs。
D:取0.1g的CuCoFe-LDHs样品,加入40mL1mol/L的KOH溶液在60℃水浴锅中进行刻蚀1h。离心洗涤至中性后,干燥、研磨得到高催化性能的光催化剂CuCoFe-LDHs。
实施例3
A;称取0.002mol的Zn(NO3)2·6H2O固体,0.01mol的Co(NO3)2·6H2O固体和0.006mol的Fe(NO3)3·9H2O固体。将三种盐溶于盛有100mL的去离子水的烧杯中。
B:称取0.03mol的无水Na2CO3固体,0.015mol的NaOH固体,并溶于盛有100mL去离子水的烧杯中。
C:用共沉淀方法合成ZnCoFe-LDHs,在三口烧瓶中加入100mL去离子水,将步骤A、B中的两种液溶液以相同的滴定速率滴定进500mL的烧瓶中,保持滴定过程中的pH保持在9-11范围内。在60℃水浴锅中晶化12h。离心、洗涤、干燥、研磨得到ZnCoFe-LDHs。
D:取0.2g的ZnCoFe-LDHs样品,加入40mL2mol/L的KOH溶液在60℃水浴锅中进行刻蚀2h。离心洗涤至中性后,干燥、研磨得到高催化性能的光催化剂。
催化剂的应用
实施例4
A;称取0.002mol的Cu(NO3)2·6H2O固体,0.01mol的Zn(NO3)2·6H2O固体和0.006mol的Ga(NO3)3·9H2O固体。将三种盐溶于盛有100mL的去离子水的烧杯中。
B:称取0.03mol的无水Na2CO3固体,0.015mol的NaOH固体,并溶于盛有100mL去离子水的烧杯中。
C:用共沉淀方法合成CuZnGa-LDHs,在三口烧瓶中加入100mL去离子水,将步骤A、B中的两种液溶液以相同的滴定速率滴定进500mL的烧瓶中,保持滴定过程中的pH保持在9-11范围内。在60℃水浴锅中晶化12h。离心、洗涤、干燥、研磨得到CuZnGa-LDHs。
D:取0.2g的CuZnGa-LDHs样品,加入40mL 2mol/L的KOH溶液在60℃水浴锅中进行刻蚀2h。离心洗涤至中性后,干燥、研磨得到高催化性能的光催化剂。
应用例
将实施例1-4制备的催化剂分别用于用于光催化CO2还原-5-HMF氧化偶联反应中:
反应条件为:将催化剂粉末30mg,5-HMF 120mg,乙腈溶液60mL放入顶照式反应釜中,旋紧反应釜并通入惰性气体置换出装置中的空气,关闭出气阀门通入惰性气体使反应釜内压力达到0.2MPa,封闭反应体系,静置一段时间观察反应釜是否漏气。在确保反应釜气密性良好的条件下,打开300W Xe灯照射反应,反应开始后,每间隔1h用不锈钢气密针取1mL气体打入气相色谱进行检测,通过检测气体中产物的浓度,评价催化剂反应活性。主要测试气体中CO,CH4以及H2的含量,图5为对实施例1的测试结果。
反应6h后,将反应内胆取出,在空气中常温搅拌12h,使催化剂充分吸收空气中的CO2,催化剂复原后,再次重复进行光催化反应,如此重复五次,将反应液取出,离心后采用液相色谱对其产物进行定量分析,结果见表1。
表1
Figure BDA0003426488240000071
由表1可以看出CO累计产率为298-326μmol/g,同时5-HMF氧化产物2.5-呋喃二甲酸(FDCA)的产率为71.5-74.1%。

Claims (4)

1.一种CO2捕获转化耦合生物质氧化用光催化剂的制备方法,其特征是按照如下步骤制备:
A.将可溶性金属盐M2+和M3+溶于去离子水中配制溶液A,其中M2+:M3+的摩尔比例为2~4:1,阴离子为CO3 2-;M2+与M3+离子总浓度为0.16-0.20mol/L;
B.用碱和碳酸盐溶于去离子水中配制沉淀剂溶液B,其中碱溶液浓度为0.1-0.2mol/L,碳酸根浓度为0.25-0.35mol/L;所述的碱为NaOH或KOH,所述的碳酸盐为Na2CO3或K2CO3
C. 将等体积的溶液A和溶液B的同时滴入反应器中,滴定过程中保持溶液的pH在9~11,400~600r/min搅拌,得到LDHs悬浊液;再在60-80℃的水浴锅中老化12-18 h,洗涤、离心分离直到中性;于50-60℃的干燥12-24 h,取出,研磨,得到粉末状LDHs,其化学式为[M1-x 2+Mx 3+(OH)2]x+ (CO3 2−)x/n·mH2O;厚度为20-30 nm;
D.配制刻蚀溶液,将LDHs粉末加入到刻蚀溶液中,使溶液中的LDHs含量为2.3-2.8 mg/ml,刻蚀1-2h,离心过滤、洗涤至中性,于50-60℃干燥12-24h;得到具有缺陷位点的催化剂;所述的刻蚀溶液为浓度为1 ~2 mol/L的 KOH或NaOH溶液;
步骤C制备的水滑石为CuCoAl-LDHs、CuCoFe-LDHs、ZnCoFe-LDHs、CuZnGa-LDHs中的一种。
2.一种根据权利要求1所述的方法制备的CO2捕获转化耦合生物质氧化用催化剂,其化学表示式为:CO3 2--M2+M3+- LDHs,其中M2+与M3+的摩尔比为2~4:1;该催化剂具有二维层状结构,层板上具有金属离子空位缺陷,层间富含有CO3 2-
3.一种权利要求2所述的CO2捕获转化耦合生物质氧化用催化剂的应用,该催化剂用于光催化反应中,其特点是反应过程CO3 2-被不断消耗,反应后催化剂能够吸收空气中的CO2进行复原,重复多次使用从而不断消耗空气中的CO2
4.根据权利要求3所述的CO2捕获转化耦合生物质氧化用催化剂的应用,其特征是按照如下步骤应用:
(1)、将CO3 2--M2+M3+-LDHs催化剂和生物质分散至乙腈或水中配制反应液,其中催化剂浓度为 0.5-1 mg/mL 生物质浓度为 1.5-2 mg/mL;将该反应液置于顶照式不锈钢高压光催化反应釜中,采用惰性气体将釜内空气置换,并将压力控制在0.1~0.6 MPa,用可见光光源照射使其发生反应;
所述的生物质为3-羟基丁内酯、甘油、山梨糖醇、木糖醇、5-HMF中的一种;
(2)、反应5-6h后将反应液取出,置于空气中常温搅拌使催化剂复原12~24h,使催化剂层间与空气充分接触,吸收空气中的CO2转换为层间的CO3 2-,达到捕获空气中CO2的目的,催化剂层板间发生的反应是:
CO2+2OH-=CO3 2-+H2O
经过复原的光催化重复用于步骤(1)中的反应,如此多次循环,直至生物质转化率接近100%,将反应溶液与催化剂离心分离,再采用蒸馏法分离产物与溶剂。
CN202111582145.3A 2021-12-22 2021-12-22 一种co2捕获转化耦合生物质氧化用光催化剂及其制备方法和应用 Active CN114471567B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111582145.3A CN114471567B (zh) 2021-12-22 2021-12-22 一种co2捕获转化耦合生物质氧化用光催化剂及其制备方法和应用
US18/074,494 US20230191373A1 (en) 2021-12-22 2022-12-04 A catalyst for CO2 capture and conversion coupling with biomass oxidation, a preparation method therefor and an application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111582145.3A CN114471567B (zh) 2021-12-22 2021-12-22 一种co2捕获转化耦合生物质氧化用光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114471567A CN114471567A (zh) 2022-05-13
CN114471567B true CN114471567B (zh) 2023-04-28

Family

ID=81493128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111582145.3A Active CN114471567B (zh) 2021-12-22 2021-12-22 一种co2捕获转化耦合生物质氧化用光催化剂及其制备方法和应用

Country Status (2)

Country Link
US (1) US20230191373A1 (zh)
CN (1) CN114471567B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114768843A (zh) * 2022-05-25 2022-07-22 北京化工大学 一种co2还原-生物质氧化耦合反应用光催化剂及其制备方法
CN115055192B (zh) * 2022-06-16 2023-06-30 中南大学 一种Al3+/Zn0.4(CuGa)0.3Ga2S4复合材料及其制备方法和应用
CN115709070B (zh) * 2022-11-08 2023-07-21 北京化工大学 一种用于二氧化碳还原反应的光催化剂及其制备方法
CN115739099A (zh) * 2022-12-07 2023-03-07 广东工业大学 一种富锌离子缺陷ZnNi LDHs纳米片材料及其制备方法与应用
CN116173956A (zh) * 2023-01-05 2023-05-30 北京化工大学 Co2捕获耦合制氢过程及所用层板吸附型催化剂和制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079203A (en) * 1990-05-25 1992-01-07 Board Of Trustees Operating Michigan State University Polyoxometalate intercalated layered double hydroxides
CN103599787B (zh) * 2013-12-02 2017-06-30 湖南理工学院 基于ZnCuAl类水滑石前驱体制备高效可见光催化剂的方法
CN104162444B (zh) * 2014-05-27 2017-01-25 北京化工大学 一种选择性氧化4‑甲基愈创木酚生成香兰素的层状催化剂及其制备方法
WO2018096103A1 (en) * 2016-11-25 2018-05-31 Cambridge Enterprise Limited Photocatalyst and photocatalytic methods
CN108654686B (zh) * 2018-04-19 2020-06-02 北京化工大学 一种光催化还原二氧化碳的催化剂及其制备方法
CN108554439B (zh) * 2018-05-11 2021-02-19 北京化工大学 一种光还原CO2用超薄Ti基LDHs复合光催化剂及其制备方法
CN109201061B (zh) * 2018-11-01 2022-01-28 陕西科技大学 一种树枝状双金属氢氧化物电催化剂及其制备方法
CN111450826A (zh) * 2020-05-25 2020-07-28 北京化工大学 一种光催化还原co2用莫特肖特基结催化剂及其制备方法

Also Published As

Publication number Publication date
CN114471567A (zh) 2022-05-13
US20230191373A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
CN114471567B (zh) 一种co2捕获转化耦合生物质氧化用光催化剂及其制备方法和应用
Al Obeidli et al. Recent advancements in MOFs synthesis and their green applications
Sohn et al. Recent progress and perspectives in the photocatalytic CO2 reduction of Ti-oxide-based nanomaterials
Wang et al. Overall utilization of photoexcited charges for simultaneous photocatalytic redox reactions
Olajire Recent progress on the nanoparticles-assisted greenhouse carbon dioxide conversion processes
Al-Ahmed Photocatalytic properties of graphitic carbon nitrides (g-C3N4) for sustainable green hydrogen production: Recent advancement
Ma et al. Au@ h-Al 2 O 3 analogic yolk–shell nanocatalyst for highly selective synthesis of biomass-derived d-xylonic acid via regulation of structure effects
CN109420484B (zh) 一类金属氧化物固溶体催化剂及制备和应用
Cao et al. Dual role of g-C3N4 microtubes in enhancing photocatalytic CO2 reduction of Co3O4 nanoparticles
WO2015025941A1 (ja) 水共存下での有機物の処理方法、接触反応装置及びこれを含むシステム、並びに低温源からの廃熱回収方法
CA2890789A1 (en) Nanostructured metal oxide compositions for applied photocatalysis
Cheng et al. Construction of hollow In 2 S 3/CdIn 2 S 4 heterostructures with high efficiency for Cr (vi) reduction
CN113101964A (zh) 一种介孔氧化铈光催化剂及其制备方法和应用
Yuan et al. Layered Mg-Al spinel supported Ce-Fe-Zr-O oxygen carriers for chemical looping reforming
Baniamer et al. A novel PEBAX-1657/PES-(BiFeO3@ ZnS) photocatalytic membrane for integrated hybrid systems coupling CO2 separation and photoreduction
CN114768843A (zh) 一种co2还原-生物质氧化耦合反应用光催化剂及其制备方法
Gao et al. Modification strategies of heterogeneous catalysts for water–gas shift reactions
Chang et al. Oxygen vacancy promoted carbon dioxide activation over Cu/ZrO 2 for CO 2-to-methanol conversion
Ni et al. Catalytic hydrogen storage in liquid hydrogen carriers
CN111054394A (zh) 一种p-n异质结光催化剂及制备方法和应用
Tan et al. Layered double hydroxides for air pollution control: Applications, mechanisms and trends
CN114931949B (zh) 一种用于二氧化碳还原的光催化剂及其制备方法与应用
Liang et al. Efficient photoreduction of diluted CO2 using lattice-strained Ni1− xSe nanoflowers
Pi et al. Metal‐organic framework stabilizes Cu7S4‐wrapped Cu2O heterostructure for photothermal‐promoted methanol/water reforming into hydrogen
CN112138654B (zh) 一种二氧化碳加氢甲烷化反应催化剂及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant