CN116173956A - Co2捕获耦合制氢过程及所用层板吸附型催化剂和制备方法 - Google Patents

Co2捕获耦合制氢过程及所用层板吸附型催化剂和制备方法 Download PDF

Info

Publication number
CN116173956A
CN116173956A CN202310010673.4A CN202310010673A CN116173956A CN 116173956 A CN116173956 A CN 116173956A CN 202310010673 A CN202310010673 A CN 202310010673A CN 116173956 A CN116173956 A CN 116173956A
Authority
CN
China
Prior art keywords
laminate
hydrogen production
adsorption catalyst
catalyst
capturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310010673.4A
Other languages
English (en)
Inventor
冯俊婷
李殿卿
段雪
高明宇
王倩
范嘉烜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202310010673.4A priority Critical patent/CN116173956A/zh
Publication of CN116173956A publication Critical patent/CN116173956A/zh
Priority to DE202023107430.8U priority patent/DE202023107430U1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts

Abstract

本发明提出了CO2捕获耦合制氢过程,并基于LDHs设计了用于该过程的层板吸附型催化剂。该层板吸附型催化剂兼具捕获气相CO2生成CO3 2‑的功能及储存/释放电子的特性。该层板吸附型催化剂在CO2捕获耦合制氢中的应用特点为,首先在光/电外场辅助下的光/电催化过程中层间发生CO3 2‑+4H++2e→CO+2H2O的化学反应并伴随层板发生e+Mn+→M(n‑1)+的化学反应。该过程后层间CO3 2‑阴离子被转化为还原产物,同时层板过渡金属离子的d轨道储存电子。在此基础上撤掉外场并向该体系中引入CO2+H2O混合气,层板过渡金属离子释放电子,同时层间捕获气相CO2而恢复层间CO3 2‑并释放当量氢气,即分别发生M(n‑1)+→Mn++e,CO2+H2O+2e→CO3 2‑+H2的化学反应,实现了低能耗下的CO2捕获耦合制氢的过程。

Description

CO2捕获耦合制氢过程及所用层板吸附型催化剂和制备方法
技术领域
本发明属于CO2捕获、利用以及制氢领域,具体涉及一种CO2捕获耦合制氢过程及该过程所用的层板吸附型催化剂和该催化剂的制备方法。
技术背景
资源和环境问题是人类21世纪面临的主要难题。日益枯竭的化石能源储量以及日渐严峻的碳排放形势使得开发和利用可再生清洁能源迫在眉睫。氢能是一种高效清洁的二次能源,是实现能源体系低碳转变的理想储能介质。目前化石燃料重整制氢仍然是最主要的工业制氢路线。但该反应是典型的碳密集过程,累计碳排放量占全球的~3%。因此,亟需开发一种新技术实现CO2捕获/转化与重整制氢的过程耦合。
层状复合金属氢氧化物(layereddoublehydroxides,LDHs),即水滑石是一类新型无机功能材料,在多相催化、环境吸附以及光电功能材料等领域具有广泛的应用。LDHs的主体层板由金属阳离子与氧原子形成的MO6八面体通过共边/棱形成,通常带正电荷;层间为客体阴离子An-进行电荷平衡,从而使得整体结构为电中性。基于层间阴离子储存顺序,LDHs层间对CO2表现出强的化学亲和力,可以捕获气相的CO2分子并以层间CO3 2-阴离子形式进行储存。此外,基于LDHs层板组成可调特性,可向LDHs层板引入具有氧化-还原活性的过渡金属离子,从而实现层板吸附型催化剂的构筑。
Zhang等人在文献1Single-atom Cu anchored catalysts for photocatalyticrenewable H2 production with a quantum efficiency of 56%以及Lee等人在文献2Reversible and cooperative photoactivation of single-atom Cu/TiO2photocatalysts中报道了过渡金属离子d轨道能够有效捕获并存储光生电子。基于过渡金属离子的这种特性,本发明提出在光/电外场辅助下首先将电子预储存在过渡金属离子中,并随后在CO2+H2O的条件下进行CO2捕获耦合制氢过程。
发明内容
本发明的目的是提供CO2耦合制氢过程,并提供用于该过程的层板吸附型催化剂及其制备方法。
所述CO2耦合制氢过程,是将化学反应方程式(1)CO3 2-+4H++2e-→CO+H2O,2e-+2Mn+→2M(n-1)+;(2)M(n-1)+→Mn++2e-,CO2+H2O+2e-→CO3 2-+H2集合成一个过程。为了实现该过程,我们设计了基于LDHs的层板吸附型催化剂,其结构特点为层间插层CO3 2-阴离子,层板上均匀分散氧化-还原活性的过渡金属阳离子,能够满足捕获气相CO2分子生成CO3 2-以及预存储电子的要求,因此在该层板吸附型催化剂作用下可一次实现CO2捕获耦合制氢过程。
本发明所提供的层板吸附型催化剂化学表示式为:M1M2-LDHs-CO3 2-,其中M1为Mg2+、Cu2+、Co2+、Ni2+及Zn2+中的一种或两种,较佳的为Cu2+或Ni2+;M2为Al3+、Fe3+、Ce3+及Ga3+中的一种,较佳的为Fe3+或Ga3+;M1与M2的摩尔比为2~4:1,较佳的为2~2.5:1;该层板吸附型催化剂具有二维层状结构,层板上为原子级分散的具有氧化还原活性的M1及M2阳离子,层间为电荷平衡的CO3 2-阴离子。
上述层板吸附型催化剂的具体制备方法如下:
A.将可溶性M1及M2硝酸盐与去离子水等体积混合配制混合盐溶液,其中M1+M2=0.1~0.3mol/L,M1/M2的摩尔比为2~4:1;所述M1为Mg2+、Cu2+、Co2+、Ni2+或Zn2+中的一种或两种,较佳的为Cu2+或Ni2+;M2为Al3+、Fe3+、Ce3+及Ga3+中的一种,较佳的为Fe3+或Ga3+
B.用碱及碳酸盐与去离子水配制碱溶液,其中碱+碳酸盐=0.2~0.9mol/L,碱/碳酸盐的摩尔比为1~3;所述碱为NaOH或KOH一种或两种,所述碳酸盐为Na2CO3或K2CO3中的一种或两种。
C.将上述盐溶液及碱溶液同时以1~3mL/min的速度滴加至反应器中,维持体系pH为9~11,完成后将所得悬浊液于60~80℃老化5~8h。过滤并洗涤至上清液呈中性,于60~90℃下干燥得到M1M2-LDHs-CO3 2-催化剂。
上述层板吸附型催化剂在CO2耦合制氢过程中的应用如下:
(1)光催化过程:取0.5~2mgM1M2-LDHs-CO3 2-催化剂均匀涂覆至毛玻璃片,将其置于顶照式石英反应釜内并加入1~10mL反应液。使用惰性气氛置换釜内空气并维持釜内压力为0.1~0.5Mpa。采用200~450W氙灯作为光源开启反应。所述反应液为水、乙醇、甘油及5-羟甲基糠醛中的一种。该过程遵循如下反应方程式:①CO3 2-+4H++2e-→CO+H2O;②2e-+2Mn+→2M(n-1)+
(2)CO2捕获耦合制氢过程:反应6~24h后停止光照并将反应液取出,常温常压下使用CO2混合气置换釜内气体并将H2O引入釜内。所述CO2混合气以氮气为平衡气,含有体积分数为0.04~100%的CO2,0.01~0.08%的SO2或/和0.01~0.05%的NO2。该过程遵循如下反应方程式:①M(n-1)+→Mn++2e-;②CO2+H2O+2e-→CO3 2-+H2
(3)经过步骤(2)的催化剂可重复用于步骤(1)的反应并可多次循环。
本发明的有益效果:
本发明针对CO2捕获耦合制氢过程设计了基于LDHs的层板吸附型催化剂。该层板吸附型催化剂兼具捕获气相CO2生成CO3 2-的功能及储存/释放电子的特性。该层板吸附型催化剂在CO2捕获耦合制氢中的应用特点为,首先在光/电外场辅助下的光/电催化过程中层间发生CO3 2-+4H++2e-→CO+2H2O的化学反应并伴随层板发生e-+Mn+→M(n-1)+的化学反应。该过程后层间CO3 2-阴离子被转化为还原产物,同时层板过渡金属离子的d轨道储存电子。在此基础上撤掉外场并向该体系中引入CO2+H2O混合气,层板过渡金属离子释放电子,同时层间捕获气相CO2而恢复层间CO3 2-,即分别发生M(n-1)+→Mn++e-,CO2+H2O+2e-→CO3 2-+H2的化学反应,实现了低能耗下的CO2捕获耦合制氢的过程(见图1)。
附图说明
图1为CO2捕获耦合制氢过程示意图。
图2为实施例1制备的CuMgFe-LDHs-CO3 2-层板吸附型催化剂的XRD图谱。
图3为实施例1制备的CuMgFe-LDHs-CO3 2-层板吸附型催化剂的FTIR图谱。
图4为实施例1制备的CuMgFe-LDHs-CO3 2-层板吸附型催化剂在光催化及CO2捕获耦合制氢过程中不同状态下的Fe 2pXPS谱图。其中a为初始状态的CuMgFe-LDHs-CO3 2-层板吸附型催化剂,b为经历光催化过程的CuMgFe-LDHs-CO3 2-层板吸附型催化剂,c为经历CO2捕获耦合制氢过程的CuMgFe-LDHs-CO3 2-层板吸附型催化剂。
图5为实施例1制备的CuMgFe-LDHs-CO3 2-层板吸附型催化剂用于CO2捕获耦合制氢过程的重复使用性能图。其中a为光催化的性能图,b为CO2捕获耦合制氢过程的性能图。
具体实施方式
下面结合实施例,对本发明进行进一步的详细说明,但不构成对本发明保护范围的限制。
实施例1:
称取0.01molCu(NO3)2·6H2O,0.02molMg(NO3)2·6H2O及0.06molFe(NO3)3·9H2O并溶于100mL去离子水中,配制为盐溶液;称取0.03molNa2CO3及0.015molNaOH并溶于100mL去离子水中,配制为碱溶液。向盛有100mL去离子水的三口烧瓶中同时滴加盐及碱溶液,通过控制滴速使体系pH维持在9.6。完成该操作后将三口烧瓶置于80℃下晶化6h。过滤并洗涤至上清液为中性。干燥并研磨得到CuMgFe-LDHs-CO3 2-
实施例2:
称取0.03mol Co(NO3)2·6H2O及0.06molAl(NO3)3·9H2O并溶于100mL去离子水中,配制为盐溶液;称取0.03molNa2CO3及0.015molNaOH并溶于100mL去离子水中,配制为碱溶液。向盛有100mL去离子水的三口烧瓶中同时滴加盐及碱溶液,通过控制滴速使体系pH维持在9.6。完成该操作后将三口烧瓶置于60℃下晶化8h。过滤并洗涤,干燥并研磨得到CoAl-LDHs-CO3 2-
实施例3:
称取0.03mol Zn(NO3)2·6H2O及0.06molGa(NO3)3·9H2O并溶于100mL去离子水中,配制为盐溶液;称取0.03molNa2CO3及0.015molNaOH并溶于100mL去离子水中,配制为碱溶液。向盛有100mL去离子水的三口烧瓶中同时滴加盐及碱溶液,通过控制滴速使体系pH维持在9.6。完成该操作后将三口烧瓶置于60℃下晶化12h。过滤并洗涤,干燥并研磨得到ZnGa-LDHs-CO3 2-
应用例4:
将实施例1~3制备的催化剂应用于CO2捕获耦合制氢过程中:
(1)将2mg层板吸附型催化剂均匀涂覆于毛玻璃片上并随后将其置于顶照式石英反应釜中,加入10mL摩尔浓度为0.1M的甘油水溶液并通入Ar气置换釜内空气。20min后封闭反应体系并打开300W氙灯,反应24h。用气密针取1mL气体打入气相色谱并检测气相产物种类及浓度,用取样针取1mL反应液打入液相色谱并分析液相产物种类及浓度。
(2)将反应液取出,通入Ar气置换釜内气体,20min后封闭体系。在常温常压下采用15% CO2/N2混合气将水通过鼓泡器引入反应釜中。反应12h。用气密针取1mL气体打入气相色谱中进行定性及定量分析。
具体光催化及CO2捕获耦合制氢过程的反应性能如下,其中产物的累积产率越高越佳:
表1
Figure BDA0004038142180000051
/>

Claims (6)

1.一种层板吸附型催化剂,其特征是该催化剂的化学表示式为M1M2-LDHs-CO3 2-,其中M1为Mg2+、Cu2+、Co2+、Ni2+及Zn2+中的一种或两种,;M2为Al3+、Fe3+、Ce3+及Ga3+中的一种;M1与M2的摩尔比为2~4:1;该层板吸附型催化剂具有二维层状结构,层板上为原子级分散的具有氧化还原活性的M1及M2阳离子,层间为电荷平衡的CO3 2-阴离子。
2.根据权利要求1所述的层板吸附型催化剂,其特征是M1为Cu2+或Ni2+;M2为Fe3+或Ga3+
3.一种权利要求1所述的层板吸附型催化剂的制备方法,其特征是按照如下步骤进行制备:
A.将可溶性M1及M2硝酸盐与去离子水等体积混合配制混合盐溶液,其中M1+M2=0.1~0.3mol/L,M1/M2的摩尔比为2~4:1;所述M1为Mg2+、Cu2+、Co2+、Ni2+或Zn2+中的一种或两种;M2为Al3+、Fe3+、Ce3+及Ga3+中的一种;
B.用碱及碳酸盐与去离子水配制碱溶液,其中碱+碳酸盐=0.2~0.9mol/L,碱/碳酸盐的摩尔比为1~3;所述碱为NaOH或KOH一种或两种,所述碳酸盐为Na2CO3或K2CO3中的一种或两种;
C.将上述盐溶液及碱溶液同时以1~3mL/min的速度滴加至反应器中,维持体系pH为9~11,完成后将所得悬浊液于60~80℃老化5~8h。过滤并洗涤至上清液呈中性,于60~90℃下干燥得到M1M2-LDHs-CO3 2-催化剂。
4.根据权利要求3所述层板吸附型催化剂的制备方法,其特征是M1为Cu2+或Ni2+;M2为Fe3 +或Ga3+
5.一种CO2捕获耦合制氢过程,其特征是按照如下方式进行,并在权利要求1所述层板吸附型催化剂作用下一次完成:(1)CO3 2-+4H++2e-→CO+H2O,2e-+2Mn+→2M(n-1)+;(2)M(n-1)+→Mn++2e-,CO2+H2O+2e-→CO3 2-+H2
6.根据权利要求5所述的CO2捕获耦合制氢过程,其特征是按照如下具体步骤进行:
(1)光催化过程:取0.5~2mgM1M2-LDHs-CO3 2-催化剂均匀涂覆至毛玻璃片,将其置于顶照式石英反应釜内并加入1~10mL反应液;使用惰性气氛置换釜内空气并维持釜内压力为0.1~0.5Mpa;采用200~450W氙灯作为光源开启反应;所述反应液为水、乙醇、甘油及5-羟甲基糠醛中的一种;
(2)CO2捕获耦合制氢过程:反应6~24h后停止光照并将反应液取出,常温常压下使用CO2混合气置换釜内气体并将H2O引入釜内;所述CO2混合气以氮气为平衡气,含有体积分数为0.04~100%的CO2,0.01~0.08%的SO2或/和0.01~0.05%的NO2
(3)经过步骤(2)的催化剂可重复用于步骤(1)的反应并可多次循环。
CN202310010673.4A 2023-01-05 2023-01-05 Co2捕获耦合制氢过程及所用层板吸附型催化剂和制备方法 Pending CN116173956A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310010673.4A CN116173956A (zh) 2023-01-05 2023-01-05 Co2捕获耦合制氢过程及所用层板吸附型催化剂和制备方法
DE202023107430.8U DE202023107430U1 (de) 2023-01-05 2023-12-15 Katalysator vom Laminat-Adsorptionstyp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310010673.4A CN116173956A (zh) 2023-01-05 2023-01-05 Co2捕获耦合制氢过程及所用层板吸附型催化剂和制备方法

Publications (1)

Publication Number Publication Date
CN116173956A true CN116173956A (zh) 2023-05-30

Family

ID=86432001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310010673.4A Pending CN116173956A (zh) 2023-01-05 2023-01-05 Co2捕获耦合制氢过程及所用层板吸附型催化剂和制备方法

Country Status (2)

Country Link
CN (1) CN116173956A (zh)
DE (1) DE202023107430U1 (zh)

Also Published As

Publication number Publication date
DE202023107430U1 (de) 2024-03-20

Similar Documents

Publication Publication Date Title
Bi et al. Research progress on photocatalytic reduction of CO 2 based on LDH materials
Alkhatib et al. Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications
Huang et al. ZnxCd1-xS based materials for photocatalytic hydrogen evolution, pollutants degradation and carbon dioxide reduction
Ma et al. Semi-solid and solid frustrated Lewis pair catalysts
Ramachandran et al. Efficient degradation of organic dye using Ni-MOF derived NiCo-LDH as peroxymonosulfate activator
Izumi Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond
CN111303445B (zh) 钴基金属有机框架材料与应用
Bai et al. A dual-cocatalyst-loaded Au/BiOI/MnO x system for enhanced photocatalytic greenhouse gas conversion into solar fuels
Chen et al. Boosted photoreduction of diluted CO 2 through oxygen vacancy engineering in NiO nanoplatelets
EP2636641B1 (en) Preparation of a semiconductor photocatalyst for the photocatalytic reforming of biomass derivatives for hydrogen generation
Duan et al. Efficient photocatalytic hydrogen production from formic acid on inexpensive and stable phosphide/Zn3In2S6 composite photocatalysts under mild conditions
Li et al. Direct Z-scheme charge transfer of Bi2WO6/InVO4 interface for efficient photocatalytic CO2 reduction
Han et al. Immobilization of metal–organic framework MIL-100 (Fe) on the surface of BiVO4: A new platform for enhanced visible-light-driven water oxidation
CN108479777B (zh) 一种凹凸棒石复合光催化剂的制备方法及其应用
CN111036243B (zh) 含氧空缺的过渡金属掺杂的BiOBr纳米片光催化剂及其制备方法和应用
Jin et al. Interface engineering: Synergism between S-scheme heterojunctions and Mo-O bonds for promote photocatalytic hydrogen evolution
Jin et al. Graphdiyne based GDY/CuI/NiO parallel double S-scheme heterojunction for efficient photocatalytic hydrogen evolution
CN109821562B (zh) 一种MoP-Zn3In2S6复合纳米材料的制备方法
Li et al. Noble‐metal‐free single‐and dual‐atom catalysts for artificial photosynthesis
CN116139867B (zh) 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用
Zhang et al. Cobalt-based metal–organic frameworks for the photocatalytic reduction of carbon dioxide
CN114471567A (zh) 一种co2捕获转化耦合生物质氧化用光催化剂及其制备方法和应用
Fan et al. An integration system derived from LDHs for CO2 direct capture and photocatalytic coupling reaction
Xu et al. Enhanced photocatalytic hydrogen evolution over coal-based carbon quantum dots modified CoMoO4/g-C3N4
Jalil et al. Insight into the development and proceedings of Au@ Al–CeVO 4 catalysts for water splitting: an advanced outlook for hydrogen generation with sunlight

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination