CN111054394A - 一种p-n异质结光催化剂及制备方法和应用 - Google Patents

一种p-n异质结光催化剂及制备方法和应用 Download PDF

Info

Publication number
CN111054394A
CN111054394A CN201911368017.1A CN201911368017A CN111054394A CN 111054394 A CN111054394 A CN 111054394A CN 201911368017 A CN201911368017 A CN 201911368017A CN 111054394 A CN111054394 A CN 111054394A
Authority
CN
China
Prior art keywords
cofe
znin
photocatalyst
heterojunction photocatalyst
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911368017.1A
Other languages
English (en)
Inventor
李春雪
刘春波
车慧楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201911368017.1A priority Critical patent/CN111054394A/zh
Publication of CN111054394A publication Critical patent/CN111054394A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1094Promotors or activators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种可见光下分解水制氢的p‑n异质结光催化剂及制备方法和应用。本发明中的ZnIn2S4是由紧致排列的纳米片组成的三维花球形貌,这一结构限域了CoFe2O4提高了其分散性的同时也限域了H2O分子,提高了催化剂对H2O分子的吸附能力。催化剂对H2O分子较强的吸附能力保证了光催化分解水制氢过程中活性位点的充分利用和氧化还原反应最大程度的发生,这一特点大大提高了光催化制氢活性。该发明的制备过程简单易控、操作方便、重复性强,产品具有产率高、产品性能稳定的优点。

Description

一种p-n异质结光催化剂及制备方法和应用
技术领域
本发明涉及一种可见光下分解水制氢的p-n异质结光催化剂及制备方法和应用。利用简单的水热、高温煅烧、原位合成等系列方法制备了CoFe2O4/ZnIn2S4 p-n异质结光催化剂,并将该光催化剂应用于可见光下分解水制氢。
背景技术
随着科技和工业的日益发展,在推动社会进步的同时,也给我们的生活带来了许多负面影响。目前我国能源体系存在不安全、不平衡、不可持续等突出问题。因此,开发利用安全、可靠的清洁和可再生能源,并提高其在能源结构中的比重,是实现经济社会可持续发展的一种重要保证。氢能被视为21世纪最具发展潜力的清洁能源,其来源广泛、能量效率高、能量密度高、可再生循环且本身无污染、可以达到零碳排放,排放物仅为水和热量。传统制备H2的方法有多种,但存在许多缺点和弊端,其中:水煤气制氢和石油裂解或CH4水蒸气重整制氢,其原料是化石燃料,本身是不可再生资源;电解食盐水制氢是氯碱工业的副产品,也有其局限性;电解水制氢原理简单,缺点是耗能大、制氢成本高。近年来,太阳光催化分解水制氢技术引起了科研工作者的广泛关注,也是当今能源领域研究的热点问题。
近年来,窄带隙的ZnIn2S4由于其形貌的多样性且能够高效地利用可见光在分解水制氢、CO2及Cr(VI)还原和选择性有机合成等领域迅猛发展。尤其在光催化制氢领域因具有如下独特优势吸引了众多研究人员:首先,ZnIn2S4与单金属硫化物如CdS、ZnS和Ag2S等相比,其双金属组分(Zn和In)间的协同作用以及丰富的边缘活性位点使其具有较好的光催化前景;其次,Zn-S和In-S的同时形成能优化材料的电子结构、平衡表面吸附/脱附自由能,进而具有较高的光催化活性。然而,ZnIn2S4的光催化能力往往比我们预期的要低,因此,需要对单一相ZnIn2S4进行修饰或者改性,提高其比表面积、加快光生载流子分离效率以及提高对可见光的吸收能力,从而提高光催化活性。而通过引入其他类型半导体与ZnIn2S4形成异质结是提高其光催化性能一种非常高效的途径。
尖晶石型CoFe2O4由于具有低成本、来源丰富和环境友好等优点而在光催化领域备受关注。此外,CoFe2O4具有较高的吸附能力,近年来在光催化领域被广泛应用。CoFe2O4和ZnIn2S4具有合适的能带结构,若将CoFe2O4成功与ZnIn2S4复合形成异质结,有望制备出具有高活性的光催化剂。
发明内容
本发明的目的是提供一种CoFe2O4/ZnIn2S4 p-n异质结光催化剂的制备方法,并考察其在可见光下分解水制氢的性能。本发明中的ZnIn2S4是由紧致排列的纳米片组成的三维花球形貌,这一结构限域了CoFe2O4,提高了CoFe2O4分散性的同时也限域了H2O分子,提高了催化剂对H2O分子的吸附能力。催化剂对H2O分子较强的吸附能力保证了光催化分解水制氢过程中活性位点的充分利用和氧化还原反应最大程度的发生,这一特点大大提高了光催化制氢活性。该发明的制备过程简单易控、操作方便、重复性强,产品具有产率高、产品性能稳定的优点。
一种CoFe2O4/ZnIn2S4 p-n异质结光催化剂的制备方法,主要包括如下步骤:
步骤S1:纯CoFe2O4的制备
将1-3mmol Co(NO3)2·6H2O和3-6mmol Fe(NO3)3·9H2O两种物质置于20-50mL去离子水中,室温下进行第一次搅拌15-30min使其完全溶解,随后加入0.5-1.5g聚乙烯吡咯烷酮(PVP)进行第二次搅拌20-50min,用1-3M的KOH溶液调节上述混合溶液的pH=10-13后进行第三次搅拌1-3h,将获得的悬浮液移至25-100mL聚四氟乙烯内衬的反应釜中,在140-180℃的条件下反应6-12h,然后随箱体冷却至室温,最后用去离子水和无水乙醇洗涤数次,40-80℃的条件下真空干燥10-20h。最后,将获得的粉末在300-500℃的条件下高温煅烧1-5h即可获得CoFe2O4
优选条件:
1-3mmol Co(NO3)2·6H2O,优选2.5mmol Co(NO3)2·6H2O。
3-6mmol Fe(NO3)3·9H2O,优选5mmol Fe(NO3)3·9H2O。
20-50mL去离子水,优选40mL。
所述第一次搅拌的时间为15-30min,优选30min。
0.5-1.5g PVP,优选0.75g。
所述第二次搅拌的时间为20-50min,优选30min。
1-3M的KOH溶液,优选2M。
pH=10-13,优选12。
所述第三次搅拌的时间为1-3h,优选1h。
25-100mL聚四氟乙烯内衬的反应釜,优选100mL。
140-180℃的条件下反应6-12h,优选180℃和9h。
40-80℃的条件下真空干燥10-20h,优选80℃和12h。
300-500℃的条件下高温煅烧1-5h,优选500℃和2h。
步骤S2:CoFe2O4/ZnIn2S4 p-n异质结光催化剂的制备
将CoFe2O4置于Zn(NO3)2·6H2O、In(NO3)2·4.5H2O、硫代乙酰胺三种物质的混合水溶液中超声分散,随后将获得的悬浮液移至聚四氟乙烯内衬的反应釜中,在140-180℃的条件下反应10-16h,然后随箱体冷却至室温,最后用去离子水和无水乙醇洗涤、真空干燥后即可获得CoFe2O4/ZnIn2S4粉末。
所述CoFe2O4的加入量为理论上生成ZnIn2S4质量的0.5%-2.0%,优选1%。
所述Zn(NO3)2·6H2O、In(NO3)2·4.5H2O、硫代乙酰胺的摩尔比为1-4:2-5:8-12;优选1.439:2.439:10。
所述Zn(NO3)2·6H2O与混合水溶液中水的比例为1-4mmol:20-50mL,优选1.439mmol:35mL。
所述超声分散时间为20-60min,优选40min。
所述水热反应温度优选为160℃,反应时间优选为12h。
所述真空干燥条件为:40-80℃的条件下真空干燥12-24h,优选60℃的条件下真空干燥12h。
本发明的有益效果
本发明的目的是提供一种CoFe2O4/ZnIn2S4 p-n异质结光催化剂的制备方法,并考察引入不同含量的CoFe2O4对可见光下光催化分解水制氢性能的影响。本发明所提供的光催化剂提高了对H2O分子的吸附能力进而保证了催化剂与H2O分子的充分接触、加快了光生载流子的分离效率提高了光催化活性,且光催化剂具有良好的化学稳定性。
附图说明
图1a是所制备催化剂的XRD图谱。如图1a,0.5%CoFe2O4/ZnIn2S4和1%CoFe2O4/ZnIn2S4的复合光催化剂中观察不到CoFe2O4衍射峰的存在,这可归因于CoFe2O4的尺寸较小且含量较低。在1.5%CoFe2O4/ZnIn2S4和2%CoFe2O4/ZnIn2S4复合光催化剂的XRD衍射图中可以同时观察到CoFe2O4和ZnIn2S4的相应衍射峰。在复合物中,CoFe2O4的衍射峰发生略微偏移,说明CoFe2O4和ZnIn2S4之间不仅仅是简单的物理混合,两者之间化学键的相互作用导致衍射峰发生偏移。能量色散X射线光谱图1b中,证明了在CoFe2O4/ZnIn2S4光催化剂中存在Co、Fe、O、Zn、In、S六种元素。图1测试结果初步证明了催化剂的成功合成。
图2a-b为ZnIn2S4的SEM图。图2c为CoFe2O4的SEM图。从图2a中可观察到,ZnIn2S4是三维花球状结构,图2b可以看出三维花球是由紧致排列的纳米片组成的,此结构可大大增强催化剂对H2O分子的吸附能力,使得光催化剂和H2O分子充分接触进行高效制氢。CoFe2O4为小尺寸纳米颗粒。为了证明CoFe2O4/ZnIn2S4的成功合成,对复合型光催化剂进行了TEM分析。图2d是CoFe2O4/ZnIn2S4的TEM图。通过图2d可观察到纯的CoFe2O4 NPs已经成功负载在三维花球ZnIn2S4上。综合图1和图2实验结果,充分说明了催化剂的成功合成。
图3a为所制备催化剂的固体紫外漫反射图。通过图3a我们发现相比于纯的ZnIn2S4,不同比例CoFe2O4/ZnIn2S4光催化剂对可见光的吸收能力明显增强。图3b为ZIS的带隙谱图,通过图3b可以确定,纯的ZnIn2S4的带隙值约为2.08eV。图3c-d分别为所制备催化剂的光电流和阻抗谱图。图3c中,在所有制备的催化剂中,1%CoFe2O4/ZnIn2S4(1%指理论上复合物中CoFe2O4的质量占ZnIn2S4质量的1%)光催化剂具有最大的光电流响应,与之相对于的是图3d中1%CoFe2O4/ZnIn2S4光催化剂具有最小的圆弧半径,说明1%CoFe2O4/ZnIn2S4光催化剂有效地抑制了光生载流子的重组,更加有利于光生载流子的高效分离,加快光催化制氢效率。
为了进一步确定价导带位置,我们进行了莫特肖特基测试,图4a-b为莫特肖特基测试谱图。由图可知,ZnIn2S4为n型半导体,CoFe2O4为p型半导体,基于此,CoFe2O4/ZnIn2S4光催化剂为p-n异质结。根据相关文献和系列关系式,最终可估算ZnIn2S4和CoFe2O4的导带位置分别为-0.45V和0.49V,价带位置分别为1.63V和2.16V。
图5a-c分别为所合成催化剂分解水制氢性能示意图、循环实验图、循环前后的XRD图。通过图5a可以说明我们优化出的最佳比例1%CoFe2O4/ZnIn2S4在可见光下具有最高的光催化分解水制氢活性。图5b表示1%CoFe2O4/ZnIn2S4光催化剂在经过四次循环之后仍具有良好的稳定性。通过观察反应前后样品的XRD说明经过四次循环之后样品的晶相以及结构并没有发生明显的改变。
具体实施方式
实施例1
(1)纯CoFe2O4的制备
将2.5mmol Co(NO3)2·6H2O和5mmol Fe(NO3)3·9H2O两种物质置于40mL去离子水中,室温下搅拌30min使其完全溶解,随后加入0.75g PVP搅拌30min,用2M的KOH溶液调节上述混合溶液的pH=12后搅拌1h,将获得的悬浮液移至100mL聚四氟乙烯内衬的反应釜中,在180℃的条件下反应9h,然后随箱体冷却至室温,最后用去离子水和无水乙醇洗涤,80℃的条件下真空干燥12h。最后,将获得的粉末在500℃的条件下高温煅烧2h即可获得CoFe2O4
(2)0.5%CoFe2O4/ZnIn2S4 p-n异质结光催化剂的制备
将3.04mg CoFe2O4置于1.439mmol Zn(NO3)2·6H2O、2.439mmol In(NO3)2·4.5H2O、10mmol硫代乙酰胺三种物质的混合溶液(35mL H2O)中超声分散40min,随后将获得的悬浮液移至50mL聚四氟乙烯内衬的反应釜中,在160℃的条件下反应12h,然后随箱体冷却至室温,最后用去离子水和无水乙醇洗涤数次,60℃的条件下真空干燥12h即可获得0.5%CoFe2O4/ZnIn2S4粉末。
实施例2
(1)纯CoFe2O4的制备:同实施例1
(2)1%CoFe2O4/ZnIn2S4 p-n异质结光催化剂的制备
将6.08mg CoFe2O4置于1.439mmol Zn(NO3)2·6H2O、2.439mmol In(NO3)2·4.5H2O、10mmol硫代乙酰胺三种物质的混合溶液(35mL H2O)中超声分散40min,随后将获得的悬浮液移至50mL聚四氟乙烯内衬的反应釜中,在160℃的条件下反应12h,然后随箱体冷却至室温,最后用去离子水和无水乙醇洗涤数次,60℃的条件下真空干燥12h即可获得1%CoFe2O4/ZnIn2S4粉末。
实施例3
(1)纯CoFe2O4的制备:同实施例1
(2)1.5%CoFe2O4/ZnIn2S4 p-n异质结光催化剂的制备
将9.13mg CoFe2O4置于1.439mmol Zn(NO3)2·6H2O、2.439mmol In(NO3)2·4.5H2O、10mmol硫代乙酰胺三种物质的混合溶液(35mL H2O)中超声分散40min,随后将获得的悬浮液移至50mL聚四氟乙烯内衬的反应釜中,在160℃的条件下反应12h,然后随箱体冷却至室温,最后用去离子水和无水乙醇洗涤数次,60℃的条件下真空干燥12h即可获得1.5%CoFe2O4/ZnIn2S4粉末。
实施例4
(1)纯CoFe2O4的制备:同实施例1
(2)2%CoFe2O4/ZnIn2S4 p-n异质结光催化剂的制备
将12.18mg CoFe2O4置于1.439mmol Zn(NO3)2·6H2O、2.439mmol In(NO3)2·4.5H2O、10mmol硫代乙酰胺三种物质的混合溶液(35mL H2O)中超声分散40min,随后将获得的悬浮液移至50mL聚四氟乙烯内衬的反应釜中,在160℃的条件下反应12h,然后随箱体冷却至室温,最后用去离子水和无水乙醇洗涤数次,60℃的条件下真空干燥12h即可获得2%CoFe2O4/ZnIn2S4粉末。

Claims (8)

1.一种p-n异质结光催化剂,其特征在于,所述p-n异质结光催化剂为CoFe2O4/ZnIn2S4p-n异质结光催化剂,CoFe2O4纳米颗粒负载在三维花球ZnIn2S4上,ZnIn2S4是三维花球状结构,三维花球是由紧致排列的纳米片组成的,三维花球状结构限域了CoFe2O4,提高了CoFe2O4分散性的同时也限域了H2O分子,能够增强催化剂对H2O分子的吸附能力,使得光催化剂和H2O分子充分接触,在可见光下光催化分解水高效制氢。
2.如权利要求1所述的一种p-n异质结光催化剂的制备方法,其特征在于,将CoFe2O4置于Zn(NO3)2·6H2O、In(NO3)2·4.5H2O、硫代乙酰胺三种物质的混合水溶液中超声分散,随后将获得的悬浮液移至聚四氟乙烯内衬的反应釜中,在140-180℃的条件下反应10-16h,然后随箱体冷却至室温,用去离子水和无水乙醇洗涤,真空干燥后即可获得p-n异质结光催化剂。
3.如权利要求2所述的一种p-n异质结光催化剂的制备方法,其特征在于,所述CoFe2O4的加入量为理论上生成ZnIn2S4质量的0.5%-2.0%。
4.如权利要求3所述的一种p-n异质结光催化剂的制备方法,其特征在于,所述CoFe2O4的加入量为理论上生成ZnIn2S4质量的1%。
5.如权利要求2所述的一种p-n异质结光催化剂的制备方法,其特征在于,所述Zn(NO3)2·6H2O、In(NO3)2·4.5H2O、硫代乙酰胺的摩尔比为1-4:2-5:8-12;所述Zn(NO3)2·6H2O与混合水溶液中水的比例为1-4mmol:20-50mL。
6.如权利要求5所述的一种p-n异质结光催化剂的制备方法,其特征在于,所述Zn(NO3)2·6H2O、In(NO3)2·4.5H2O、硫代乙酰胺的摩尔比为1.439:2.439:10;所述Zn(NO3)2·6H2O与混合水溶液中水的比例为1.439mmol:35mL。
7.如权利要求2所述的一种p-n异质结光催化剂的制备方法,其特征在于,所述超声分散时间为20-60min;所述水热反应温度为160℃,反应时间为12h;所述真空干燥条件为:40-80℃的条件下真空干燥12-24h。
8.如权利要求7所述的一种p-n异质结光催化剂的制备方法,其特征在于,所述超声分散时间为40min;所述真空干燥条件为:60℃的条件下真空干燥12h。
CN201911368017.1A 2019-12-26 2019-12-26 一种p-n异质结光催化剂及制备方法和应用 Pending CN111054394A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911368017.1A CN111054394A (zh) 2019-12-26 2019-12-26 一种p-n异质结光催化剂及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911368017.1A CN111054394A (zh) 2019-12-26 2019-12-26 一种p-n异质结光催化剂及制备方法和应用

Publications (1)

Publication Number Publication Date
CN111054394A true CN111054394A (zh) 2020-04-24

Family

ID=70303901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911368017.1A Pending CN111054394A (zh) 2019-12-26 2019-12-26 一种p-n异质结光催化剂及制备方法和应用

Country Status (1)

Country Link
CN (1) CN111054394A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111790404A (zh) * 2020-07-08 2020-10-20 齐鲁工业大学 一种缺陷型硫铟锌微球可见光催化剂及制备方法与应用
CN115007152A (zh) * 2022-07-22 2022-09-06 成都大学 一种水解制氢催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106540717A (zh) * 2016-10-21 2017-03-29 江苏大学 一种水热法合成可回收CdS/CoFe2O4/rGO复合光催化剂的制备方法及其用途
CN107099818A (zh) * 2017-04-27 2017-08-29 西北师范大学 铁氧磁体/钒酸铋复合材料的制备及应用
CN108745378A (zh) * 2018-06-12 2018-11-06 常州大学 一种LaFeO3/ZnIn2S4复合光催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106540717A (zh) * 2016-10-21 2017-03-29 江苏大学 一种水热法合成可回收CdS/CoFe2O4/rGO复合光催化剂的制备方法及其用途
CN107099818A (zh) * 2017-04-27 2017-08-29 西北师范大学 铁氧磁体/钒酸铋复合材料的制备及应用
CN108745378A (zh) * 2018-06-12 2018-11-06 常州大学 一种LaFeO3/ZnIn2S4复合光催化剂的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WU YANG等: ""Enhanced photocatalytic properties of ZnFe2O4-doped ZnIn2S4 heterostructure under visible light irradiation"", 《RSC ADVANCES》 *
ZHUWANG SHAO等: ""A novel magnetically separable CoFe2O4/Cd0.9Zn0.1S photocatalyst with remarkably enhanced H2 evolution activity under visible light irradiation"", 《CHEMICAL ENGINEERING JOURNAL》 *
吴欢文等: ""p-n复合半导体光催化剂研究进展"", 《化工进展》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111790404A (zh) * 2020-07-08 2020-10-20 齐鲁工业大学 一种缺陷型硫铟锌微球可见光催化剂及制备方法与应用
CN111790404B (zh) * 2020-07-08 2022-07-26 齐鲁工业大学 一种缺陷型硫铟锌微球可见光催化剂及制备方法与应用
CN115007152A (zh) * 2022-07-22 2022-09-06 成都大学 一种水解制氢催化剂及其制备方法和应用
CN115007152B (zh) * 2022-07-22 2023-11-21 成都大学 一种水解制氢催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
Wang et al. A review on TiO 2− x-based materials for photocatalytic CO 2 reduction
Yuan et al. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production
Zhu et al. Highly selective CO2 capture and photoreduction over porous carbon nitride foams/LDH monolith
WO2017012210A1 (zh) 金属氧化物-氮化碳复合材料及其制备方法和应用
Bi et al. Direct Z-scheme CoS/g-C3N4 heterojunction with NiS co-catalyst for efficient photocatalytic hydrogen generation
Yang et al. Indium-based ternary metal sulfide for photocatalytic CO2 reduction application
Shi et al. In situ topotactic formation of 2D/2D direct Z-scheme Cu 2 S/Zn 0.67 Cd 0.33 S in-plane intergrowth nanosheet heterojunctions for enhanced photocatalytic hydrogen production
Guo et al. CeO2 nanoparticles dispersed on CoAl-LDH hexagonal nanosheets as 0D/2D binary composite for enhanced photocatalytic hydrogen evolution
CN110624550B (zh) 一种原位碳包覆的铜镍合金纳米颗粒光催化剂及其制备方法和应用
Debnath et al. Recent developments in the design of CdxZn1− xS‐based photocatalysts for sustainable production of hydrogen
CN113145138B (zh) 热响应型复合光催化剂及其制备方法和应用
CN110252353B (zh) 一种三元异质结构的BiOI/Bi/TiO2复合光催化材料及其制备与应用
CN112871186A (zh) 二硒化镍/硫铟锌复合光催化剂及其制备方法和应用
CN116139867B (zh) 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用
CN111054394A (zh) 一种p-n异质结光催化剂及制备方法和应用
Ran et al. Two-dimensional building blocks for photocatalytic ammonia production
CN112958096B (zh) 花球状镍铝水滑石/二氧化钛原位生长在片状二碳化三钛复合光催化剂的制备方法及应用
Yan et al. 2D Atomic Layers for CO2 Photoreduction
Liu et al. g-C3N4/MnFe2O4 pn hollow stratified heterojunction to improve the photocatalytic CO2 reduction activity
Huang et al. Insights into the role of S-Ti-O bond in Titanium-Based catalyst for photocatalytic CH4 reforming: Experimental and DFT exploration
CN110773220B (zh) 多孔二维氮化碳@石墨烯@氮化碳三明治结构光催化材料的制备方法及应用
CN116726973A (zh) 花球状硫铟锌/氮化碳异质结光催化剂及制备方法与应用
Qin et al. Multiobjective optimization of a gC 3 N 4/Cd-Zn 3 In 2 S 6 heterojunction for high-efficiency photocatalytic hydrogen evolution
Li et al. In situ preparation of a novel Z-scheme BiOBr/BiVO 4 composite film with enhanced photocatalytic CO 2 reduction performance
CN114100682B (zh) 一种羽状叶异质结光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200424

RJ01 Rejection of invention patent application after publication