CN114457101A - 通过改造糖多孢红霉菌sace_1558基因提高红霉素产量的方法及应用 - Google Patents

通过改造糖多孢红霉菌sace_1558基因提高红霉素产量的方法及应用 Download PDF

Info

Publication number
CN114457101A
CN114457101A CN202210033346.6A CN202210033346A CN114457101A CN 114457101 A CN114457101 A CN 114457101A CN 202210033346 A CN202210033346 A CN 202210033346A CN 114457101 A CN114457101 A CN 114457101A
Authority
CN
China
Prior art keywords
sace
gene
erythromycin
yield
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210033346.6A
Other languages
English (en)
Other versions
CN114457101B (zh
Inventor
张部昌
章红霞
吴杭
方和事
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202210033346.6A priority Critical patent/CN114457101B/zh
Publication of CN114457101A publication Critical patent/CN114457101A/zh
Application granted granted Critical
Publication of CN114457101B publication Critical patent/CN114457101B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/60Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin
    • C12P19/62Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin the hetero ring having eight or more ring members and only oxygen as ring hetero atoms, e.g. erythromycin, spiramycin, nystatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/01Methyltransferases (2.1.1)
    • C12Y201/01037DNA (cytosine-5-)-methyltransferase (2.1.1.37)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了一种通过改造糖多孢红霉菌SACE_1558基因提高红霉素产量的方法,其通过基因工程方法使糖多孢红霉菌中SACE_1558‑L1257基因过表达,继而获得红霉素高产工程菌株,利用所得的红霉素高产工程菌株发酵生产红霉素即可;其中,SACE_1558‑L1257的核苷酸序列如SEQ ID NO.1所示,包括SEQ ID NO.2的SACE_1558基因及上游930位基因。本发明还提供了上述方法的应用。本发明的优点在于:用所获得的红霉素高产工程菌株发酵生产红霉素,可以大幅度提高产量,为工业生产提高红霉素产量提供新的技术支持。

Description

通过改造糖多孢红霉菌SACE_1558基因提高红霉素产量的方 法及应用
技术领域
本发明涉及基因工程技术领域,尤其涉及一种通过改造糖多孢红霉菌SACE_1558基因提高红霉素产量的方法及应用。
背景技术
红霉素主要是由糖多孢红霉菌次级代谢产生,属于典型的聚酮类抗生素,其组分包括红霉素A(Er-A)、红霉素B(Er-B)、红霉素C(Er-C)、红霉素D(Er-D)、红霉素E(Er-E)和红霉素F(Er-F)等。该类抗生素有广谱抗菌作用,其抗菌谱与青霉素相似,对革兰阳性菌有较强的抑制作用。红霉素各组分中临床上广泛应用的是红霉素A,它的抑菌活性最高,而红霉素系列化学衍生物,如克拉霉素、阿奇霉素、罗红霉素、泰利霉素等,也被广泛用来治疗感染性疾病,红霉素及其衍生物每年的销售额达数百亿美元。因此,提高红霉素发酵产率具有重要意义。传统优化发酵条件提高红霉素产量的方法耗时且不经济,而通过基因工程的方法,在糖多孢红霉菌染色体中增加基因的拷贝数,或通过基因敲除的方法获得红霉素高产菌株,有着很好的前景。
表观遗传作为调控基因表达的常见方式,其机制众多,其中DNA甲基化修饰是细菌中常见的一种表观调控方式,是指在DNA甲基转移酶(MTase)的催化下,将S-腺苷甲硫氨酸(SAM)中的甲基基团转移到DNA上的一种修饰方式。DNA甲基化修饰主要包括N-6位腺嘌呤甲基化修饰(6mA)、N-4位胞嘧啶甲基化修饰(4mC)和C-5位胞嘧啶甲基化修饰(5mC)三种类型。研究发现,DNA甲基转移酶抑制剂5-氮杂胞苷通过抑制抗生素链霉菌中DNA甲基转移酶的活性导致了其孢子滞后生长,并促使菌体早期产生紫红霉素,暗示DNA甲基化修饰参与调控相关放线菌次级代谢的生理过程。然而,迄今为止,在糖多孢红霉菌中尚未有DNA甲基转移酶参与红霉素合成的研究报道。
发明内容
本发明所要解决的技术问题在于提供一种通过改造糖多孢红霉菌SACE_1558基因提高红霉素产量的方法及应用,其中,SACE_1558基因编码的是一种胞嘧啶孤儿甲基转移酶。
本发明采用以下技术方案解决上述技术问题:
一种通过改造糖多孢红霉菌SACE_1558基因提高红霉素产量的方法,通过基因工程方法使糖多孢红霉菌中SACE_1558-L1257基因过表达,继而获得红霉素高产工程菌株,利用所得的红霉素高产工程菌株发酵生产红霉素即可;其中,所述SACE_1558-L1257基因的核苷酸序列如SEQ ID NO.1所示,包括SEQ ID NO.2所示序列的SACE_1558基因及其上游的930位序列基因。
作为本发明的优选方式之一,所述SACE_1558基因用于编码胞嘧啶孤儿甲基转移酶。
作为本发明的优选方式之一,所述SACE_1558-L1257基因的产物与红霉素生物合成正相关。
一种上述通过改造糖多孢红霉菌SACE_1558基因提高红霉素产量的方法的应用,在工业高产菌株中过表达SACE_1558-L1257基因,获得高产突变株,用于红霉素生产。
作为本发明的优选方式之一,所述工业高产菌株具体选择工业菌株WB。
本发明相比现有技术的优点在于:
本发明研究中筛选到了与红霉素产量正相关基因SACE_1558,并通过基因工程途径过表达糖多孢红霉菌长片段的SACE_1558、SACE_1558-L900(包括SACE_1558基因及其上游的573位序列基因,共900bp)与SACE_1558-L1257基因(包括SACE_1558基因及其上游的930位序列基因,共1257bp)后确定SACE_1558-L1257基因在红霉素生物合成中真正发挥作用,据此获得糖多孢红霉菌高产菌株,为工业生产提高红霉素产量提供技术支持。
经研究,在糖多孢红霉菌A226中过表达SACE_1558-L1257基因时红霉素A产量提高了51.34%,表明SACE_1558-L1257基因是一个参与红霉素生物合成的正调控因子;且该方法同样适用于工业高产菌株WB,使其红霉素产量提高约1倍。
附图说明
图1是SACE_1558基因及周边邻近基因在染色体上的位置信息图;
图2 A是ΔSACE_1558突变体构建示意图;
图2B是ΔSACE_1558突变体的PCR鉴定图(M:5000bp DNA Marker;1:ΔSACE_1558菌株);
图3是出发菌株A226及ΔSACE_1558的红霉素产量分析图;
图4是A226及ΔSACE_1558的生物量分析;
图5是SACE_1558、SACE_1558-L900和SACE_1558-L1257基因回补、过表达菌株和空载回补、过表达菌株的构建及红霉素产量分析图;
图6A是通过cDNA末端快速扩增技术确定转录起始位点步骤的基因特异性引物(GSP)扩增目标条带图M:5000bp DNA Marker);
图6B是通过cDNA末端快速扩增技术确定转录起始位点步骤的引物Sanger测序结果;
图7是从上游寻找两个起始密码子确定两条新基因序列SACE-1558-L900和SACE_1558-L1257的示意图;
图8A是回补菌株中ermE转录水平检测结果;
图8B是回补菌株中eryAI转录水平检测;
图8C是回补菌株中eryCI转录水平检测;
图8D是回补菌株中eryK转录水平检测;
图8E是回补菌株中eryBI转录水平检测;
图8F是回补菌株中eryBIII转录水平检测;
图8G是回补菌株中eryBIV转录水平检测;
图8H是回补菌株中eryBVI转录水平检测;
图9是红霉素高产工程菌株WB及过表达突变株WB/pIB139-1558-L1257和WB/pj23119-1558-L1257红霉素A产量的HPLC分析结果图。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
下述实施例中使用到的菌株和质粒见表1,合成的引物序列见表2。其中,出发菌株为糖多孢红霉菌A226(CGMCC 8279),高产菌株选择的是WB(CGMCC 8280),二者均为可直接购买获得的菌株。
同时,下述实施例中使用到的大肠杆菌在37℃的液体LB培养基或在添加1.25%琼脂的固体LB平板上培养。红霉素产生菌糖多孢红霉菌及其工程菌株在30℃胰蛋白胨大豆肉汤(TSB)培养基或在含有2.2%琼脂的R3M平板上培养。
下述实施例中使用到的PEG3350、溶菌酶、TES、酪蛋氨基酸、硫链丝菌肽、安普霉素从Sigma公司购买。TSB、酵母提取物、蛋白胨购买于Oxoid公司。甘氨酸、琼脂粉、氯化钠和其它生物学试剂都购于试剂公司。大肠杆菌和糖多孢红霉菌的一般操作技术按照标准操作。引物的合成和DNA测序由生工生物工程(上海)股份有限公司完成。
表1研究中所用的菌种和质粒
Figure BDA0003467365480000051
Figure BDA0003467365480000061
表2研究中所用的引物
Figure BDA0003467365480000071
Figure BDA0003467365480000081
Figure BDA0003467365480000091
实施例1
SACE_1558基因的相关信息:
SACE_1558与邻近基因在糖多孢红霉菌染色体上的位置参见图1。
根据糖多孢红霉菌基因组注释信息显示,SACE_1558基因的核苷酸序列如SEQ IDNO.2所示,长度为327bp,其编码的是一种胞嘧啶孤儿甲基转移酶。
由于在先研究发现,DNA甲基转移酶抑制剂5-氮杂胞苷通过抑制抗生素链霉菌中DNA甲基转移酶的活性导致了其孢子滞后生长,并促使菌体早期产生紫红霉素,暗示DNA甲基化修饰参与调控相关放线菌次级代谢的生理过程。而迄今为止,在糖多孢红霉菌中尚未有DNA甲基转移酶参与红霉素合成的研究报道。因此,可以尝试是否能通过改造糖多孢红霉菌SACE_1558基因与其邻近基因的方式来调控红霉素产量。
实施例2
SACE_1558基因缺失突变体ΔSACE_1558的构建(参见图2A):
实验中合成的引物序列见表2。pUCTSR质粒是在pUC18的BamHI和SmaI酶切位点之间插入1360bp的硫链丝菌肽抗性基因(tsr)。
(1)为了敲除糖多孢红霉菌中的SACE_1558基因,用引物SACE_1558U-F/R和SACE_1558D-F/R扩增出约1500bp的同源重组上下游同源片段1558-U和1558-D。
(2)分别将这两个片段1558-U和1558-D先后连接到pUCTSR的tsr抗性基因序列两侧,完成构建质粒pUCTSR-Δ1558;
(3)利用染色体同源重组技术将tsr-Δ1558大片段转化至糖多孢红霉菌A226中,通过硫链丝菌肽筛选阳性突变株,获得SACE_1558基因被tsr抗性基因替换的基因工程菌株。
(4)以1558-P1/P2作为鉴定引物,以质粒pUCTSR-Δ1558为阳性对照的模板,A226基因组为阴性对照的模板进行PCR鉴定,阳性缺失突变株命名为ΔSACE_1558。
实施例3
cDNA末端快速扩增技术确定转录起始位点:
取出发菌株A226的24h发酵液,提取总RNA,在M-MLV Reverse transcriptase的作用下,通过GSP1逆转录出第一条cDNA链,再通过RNase消化掉RNA链;以dATP为底物,使用末端转移酶(TdT)在第一条cDNA链的3’-OH末端加上poly(A)尾;将加尾后的第一条cDNA链作为模板,oligo(dT)和GSP2为引物扩增出第二条cDNA链;通过半巢氏PCR以oligo(dT)和GSP3为引物扩增出目的条带并送测。
实施例4
SACE_1558、SACE_1558-L900和SACE_1558-L1257基因回复菌株的构建:
(1)将A226基因组做为模板,用回补引物1558-P1/P2、1558-L900-P1/P2和1558-L1257-P1/P2扩增出完整的SACE_1558(序列如SEQ ID NO.2所示)、SACE_1558-L900(序列如SEQ ID NO.3所示)和SACE_1558-L1257(序列如SEQ ID NO.1所示)基因片段。
(2)对扩增产物进行电泳并利用试剂盒回收。将回收的SACE_1558、SACE_1558-L900和SACE_1558-L1257片段与质粒pIB139进行NdeI和XbaI双酶切,双酶切的SACE_1558、SACE_1558-L900和SACE_1558-L1257片段克隆到酶切质粒pIB139上。接着,对挑取的单克隆进行菌液PCR验证,筛选整合型质粒pIB139-1558、pIB139-1558-L900和pIB139-1558-L1257
(3)通过PEG介导的原生质体转化方法将pIB139-1558、pIB139-1558-L900和pIB139-1558-L1257导入ΔSACE_1558原生质体中。
(4)通过安普霉素初步筛选,以安普霉素抗性基因(aac(3)IV)为对象进行PCR鉴定,获得的回复菌株分别命名为ΔSACE_1558/pIB139-1558、ΔSACE_1558/pIB139-1558-L900和ΔSACE_1558/pIB139-1558-L1257
实施例5
A226中过表达SACE_1558、SACE_1558-L900和SACE_1558-L1257基因:
pIB139-1558、pIB139-1558-L900和pIB139-1558-L1257通过PEG介导的原生质体转化技术导入糖多孢红霉菌A226原生质体中,以安普霉素抗性基因(aac(3)IV)为对象进行PCR鉴定,获得阳性菌株命名为A226/pIB139-1558、A226/pIB139-1558-L900、A226/pIB139-1558-L1257。获得相应菌株后,分别对SACE_1558、SACE_1558-L900和SACE_1558-L1257基因进行过表达。
实施例6
红霉素高产菌株WB中过表达SACE_1558-L1257
将构建的pIB139-1558-L1257质粒转入糖多孢红霉菌工业菌株WB原生质体中,构建WB/pIB-1558-L1257菌株,构建筛选方法参考实施例4。
实施例7
糖多孢红霉菌发酵产物HPLC检测:
接种糖多孢红霉菌于TSB培养基,在30℃振荡培养48h后,转接至R5液体培养基,30℃振荡培养144h,然后利用有机溶剂对发酵液进行萃取,使用水浴锅蒸干后,加入1mL甲醇溶解并使用0.22μm有机滤膜处理,后上机检测样品中的红霉素A含量。
实施例8
糖多孢红霉菌菌丝体生物量检测
以相同的接种量分别将ΔSACE_1558突变株与A226接种于30mL的液体TSB中,30℃摇床培养48h后,转接到R5培养基中30℃转速220rpm摇床培养144h,期间设置不同时间段取样,用无水乙醇清洗后烘干称量菌体干重,每次重复取样两次,并取得平均值,测量结束后根据实验数据绘制菌体生物量曲线。
实施例9
A226及其衍生菌株中相关基因的转录分析:
收集24h的ΔSACE_1558和出发菌株A226发酵液,8000rpm离心3min,去上清,加入1mL的Transzol,使用旋涡振荡仪破碎后,使用RNA提取试剂盒提取总RNA,再通过消化与反转获得cDNA,最后通过RT-qPCR仪进行上机检测。
实施例10
本实施的一种上述实施例的结果分析:
1、ΔSACE_1558突变株较出发菌株A226红霉素产量降低
SACE_1558与邻近基因在糖多孢红霉菌染色体上的位置参见图1。
SACE_1558缺失突变体ΔSACE_1558构建过程见图2A。ΔSACE_1558在含有30μg/mL硫链丝菌肽的R3M平板上筛选并通过PCR被成功鉴定证实(图2B)。
ΔSACE_1558在R5发酵培养基中发酵6d后,经HPLC检测红霉素产量,发现ΔSACE_1558的产量较出发菌株A226降低了60%(图3),HPLC结果表明SACE_1558与红霉素产量正相关。而ΔSACE_1558的生物量较A226差异不大(图4),暗示SACE_1558基因的缺失并未影响菌体的生长。
2、SACE_1558基因回复与过表达菌株的产量测定
为了进一步验证突变体ΔSACE_1558中红霉素产量的下降是由于ΔSACE_1558/pIB139-1558及空载菌株ΔSACE_1558/pIB139,过表达菌株A226/pIB139-1558及空载菌株A226/pIB139。将A226及ΔSACE_1558系列菌株进行摇瓶发酵,HPLC检测结果显示:ΔSACE_1558中红霉素A产量较A226下降37%,回复菌株ΔSACE_1558/pIB139-1558中红霉素A产量并未恢复(图5)。由此可得出SACE_1558可能不完整,并不是真正发挥作用的长度。
3、cDNA末端快速扩增技术确定转录起始位
通过cDNA末端快速扩增技术确定转录起始位点为G,转录起始位点距SACE_1558的起始密码子939bp(图6A、B)。于是从上游寻找了两个起始密码子确定了两条新的基因序列:SACE-1558-L900和SACE-1558-L1257(图7)。
4、长片段的SACE_1558基因回复与过表达菌株的产量测定
根据新确定的两条更长片段的SACE_1558基因构建了回补菌株ΔSACE_1558/pIB139-1558-L900、ΔSACE_1558/pIB139-1558-L1257和过表达菌株A226/pIB139-1558-L900、A226/pIB139-1558-L1257,将A226和ΔSACE_1558系列菌株进行摇瓶发酵。
HPLC检测结果显示:回补菌株中只有ΔSACE_1558/pIB139-1558-L1257中红霉素A的产量恢复到A226水平(参见图5)。
过表达菌株中也只有A226/pIB139-1558-L1257红霉素A产量较出发菌株A226有显著提高,提高51.34%(参见图5)。
5、RT-qPCR验证红霉素合成基因簇基因转录水平
RT-qPCR实验结果显示:与A226相比,只有ΔSACE_1558/pIB139-1558-L1257中ermE、eryAI、eryCI、eryK、eryBI、eryBIII、eryBIV和eryBVI的转录水平能回补成功(图8A-H)。这些结果表明只有更长片段的SACE_1558-L1257是真正发挥作用的基因。
6、高产菌株WB中过表达SACE_1558-L1257基因
为了探究SACE_1558-L1257基因在工业菌株WB中是否与红霉素A产量正相关,我们将之前构建的pIB139-1558-L1257质粒及新构建的pj23119-1558-L1257质粒通过原生质体转化法分别导入WB中,并成功筛选得到了WB/pIB139-1558-L1257和WB/pj23119-1558-L1257过表达菌株。对筛选得到的WB/pIB139-1558-L1257、WB/pj23119-1558-L1257和WB进行发酵实验,待发酵结束后,萃取发酵液中的红霉素,并通过HPLC进行红霉素A的检测。发酵结果显示,过表达菌株WB/pIB139-1558-L1257红霉素A产量较WB提高了37.5%,过表达菌株WB/pj23119-1558-L1257红霉素A产量较WB提高了约1倍(图9)。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
SEQUENCE LISTING
<110> 安徽大学
<120> 通过改造糖多孢红霉菌SACE_1558基因提高红霉素产量的方法及应用
<130> 2022
<160> 3
<170> PatentIn version 3.3
<210> 1
<211> 1257
<212> DNA
<213> 糖多孢属
<400> 1
atgaccgcga accccgaccg catcaacatg atcgacctct tcgccggttg tggtggattc 60
acgcaggggt tccgggagtt ccgcccacct ggtggcacga cgtccccctt ccggacggtg 120
ggagctgtcg agtgggacat cgccgcagcc tcgacctatg cagccaattt cgcggaagag 180
gctggtggca cggaccatat ttacgctggc cgggaggatg gtgatatcat ccactggaac 240
ccggggcaga tcaaggatga tgtcgatgtc atcctcggcg gtccgccgtg ccaggggttt 300
tctagcctgg gcaaagaaga ctccgacgac ccgcggaata cgctttggca gcaatacatg 360
cgggtggtca acgtcctgaa tccgaaggtc ttcgtcattg agaacgtcga ccgctttctc 420
acctcgcgcg cctaccagga tttctatacg agtctccaag gcgctaccaa gcgagggggc 480
gagctccggg attacgtgtt ggagccacca agaatcctca acgctgcgga ctacggtgtc 540
ccacaggcgc gtcgacgggc catcatcctc gccacccgtc gggatctgat cagtgaacac 600
ccggagcgcg tcggtgtgca gtaccctgag ccgacgcacg tcaggaacgc ggtccacact 660
cttgatcttc cgctcccgtc acgggaagcg gtgctcaagc cgtgggtttc agtgcgcgat 720
gttctcttcc agcgagatcg ggaggtggag gacacgagcc ttccgaaaga ccgcgagaac 780
ctgctgggta aagagcttcc cggagtattt ctaacccagc agctgcacat cggtcgacag 840
ccgacgcaac attcgttgga tcgatatgcg gccattccac cgggcggcaa ccgccacgac 900
ttgccggagt ggctttccac ggaaagctgg atgcggcacc gcagcggctc ggctgatgtt 960
atgggacggc tgcactggga ccggcccgcc gtgacgatcc gcaccgagtt ctacaagccg 1020
gagaagggtc ggtacctgca cccggaggca gaccgtccca tcacgcacat ggaggcggca 1080
ctcctgcagg acttccccat ggatttcaag tggtgcggca gcaagatcga gatcgcgcgt 1140
cagatcggca acgcagtccc ggtcgggctg gcgcgggcca tcgcggggca ggtctaccgc 1200
taccttctcg aggtgtccgg tcagcaagcc gagcggggac tccgggacac ggcctga 1257
<210> 2
<211> 327
<212> DNA
<213> 糖多孢属
<400> 2
atgcggcacc gcagcggctc ggctgatgtt atgggacggc tgcactggga ccggcccgcc 60
gtgacgatcc gcaccgagtt ctacaagccg gagaagggtc ggtacctgca cccggaggca 120
gaccgtccca tcacgcacat ggaggcggca ctcctgcagg acttccccat ggatttcaag 180
tggtgcggca gcaagatcga gatcgcgcgt cagatcggca acgcagtccc ggtcgggctg 240
gcgcgggcca tcgcggggca ggtctaccgc taccttctcg aggtgtccgg tcagcaagcc 300
gagcggggac tccgggacac ggcctga 327
<210> 3
<211> 900
<212> DNA
<213> 糖多孢属
<400> 3
atgcgggtgg tcaacgtcct gaatccgaag gtcttcgtca ttgagaacgt cgaccgcttt 60
ctcacctcgc gcgcctacca ggatttctat acgagtctcc aaggcgctac caagcgaggg 120
ggcgagctcc gggattacgt gttggagcca ccaagaatcc tcaacgctgc ggactacggt 180
gtcccacagg cgcgtcgacg ggccatcatc ctcgccaccc gtcgggatct gatcagtgaa 240
cacccggagc gcgtcggtgt gcagtaccct gagccgacgc acgtcaggaa cgcggtccac 300
actcttgatc ttccgctccc gtcacgggaa gcggtgctca agccgtgggt ttcagtgcgc 360
gatgttctct tccagcgaga tcgggaggtg gaggacacga gccttccgaa agaccgcgag 420
aacctgctgg gtaaagagct tcccggagta tttctaaccc agcagctgca catcggtcga 480
cagccgacgc aacattcgtt ggatcgatat gcggccattc caccgggcgg caaccgccac 540
gacttgccgg agtggctttc cacggaaagc tggatgcggc accgcagcgg ctcggctgat 600
gttatgggac ggctgcactg ggaccggccc gccgtgacga tccgcaccga gttctacaag 660
ccggagaagg gtcggtacct gcacccggag gcagaccgtc ccatcacgca catggaggcg 720
gcactcctgc aggacttccc catggatttc aagtggtgcg gcagcaagat cgagatcgcg 780
cgtcagatcg gcaacgcagt cccggtcggg ctggcgcggg ccatcgcggg gcaggtctac 840
cgctaccttc tcgaggtgtc cggtcagcaa gccgagcggg gactccggga cacggcctga 900

Claims (5)

1.一种通过改造糖多孢红霉菌SACE_1558基因提高红霉素产量的方法,其特征在于,通过基因工程方法使糖多孢红霉菌中SACE_1558-L1257基因过表达,继而获得红霉素高产工程菌株,利用所得的红霉素高产工程菌株发酵生产红霉素即可;其中,所述SACE_1558-L1257基因的核苷酸序列如SEQ ID NO.1所示,包括SEQ ID NO.2所示序列的SACE_1558基因及其上游的930位序列基因。
2.根据权利要求1所述的通过改造糖多孢红霉菌SACE_1558基因提高红霉素产量的方法,其特征在于,所述SACE_1558基因用于编码胞嘧啶孤儿甲基转移酶。
3.根据权利要求1所述的通过改造糖多孢红霉菌SACE_1558基因提高红霉素产量的方法,其特征在于,所述SACE_1558-L1257基因的产物与红霉素生物合成正相关。
4.一种如权利要求1~3任一所述的通过改造糖多孢红霉菌SACE_1558基因提高红霉素产量的方法的应用,其特征在于,在工业高产菌株中过表达SACE_1558-L1257基因,获得高产突变株,用于红霉素生产。
5.根据权利要求4所述的通过改造糖多孢红霉菌SACE_1558基因提高红霉素产量的方法,其特征在于,所述工业高产菌株具体选择工业菌株WB。
CN202210033346.6A 2022-01-12 2022-01-12 通过改造糖多孢红霉菌sace_1558基因提高红霉素产量的方法及应用 Active CN114457101B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210033346.6A CN114457101B (zh) 2022-01-12 2022-01-12 通过改造糖多孢红霉菌sace_1558基因提高红霉素产量的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210033346.6A CN114457101B (zh) 2022-01-12 2022-01-12 通过改造糖多孢红霉菌sace_1558基因提高红霉素产量的方法及应用

Publications (2)

Publication Number Publication Date
CN114457101A true CN114457101A (zh) 2022-05-10
CN114457101B CN114457101B (zh) 2024-01-12

Family

ID=81409917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210033346.6A Active CN114457101B (zh) 2022-01-12 2022-01-12 通过改造糖多孢红霉菌sace_1558基因提高红霉素产量的方法及应用

Country Status (1)

Country Link
CN (1) CN114457101B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563064A (en) * 1991-11-18 1996-10-08 Farmitalia Carlo Erba S.R.L. Process for preparing daunorubicin
CN101157929A (zh) * 2007-02-02 2008-04-09 中国科学院上海有机化学研究所 番红霉素的生物合成基因簇
CN101255413A (zh) * 2008-01-08 2008-09-03 安徽大学 一种产红霉素c的糖多孢红霉菌突变体的构建方法
CN110157756A (zh) * 2019-03-11 2019-08-23 安徽大学 一种通过改造糖多孢红霉菌sace_0303基因提高红霉素产量的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563064A (en) * 1991-11-18 1996-10-08 Farmitalia Carlo Erba S.R.L. Process for preparing daunorubicin
CN101157929A (zh) * 2007-02-02 2008-04-09 中国科学院上海有机化学研究所 番红霉素的生物合成基因簇
CN101255413A (zh) * 2008-01-08 2008-09-03 安徽大学 一种产红霉素c的糖多孢红霉菌突变体的构建方法
CN110157756A (zh) * 2019-03-11 2019-08-23 安徽大学 一种通过改造糖多孢红霉菌sace_0303基因提高红霉素产量的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAN, B. ET AL.: "Saccharopolyspora erythraea strain NRRL 23338 chromosome, complete genome GenBank: CP069353.1", 《GENBANK》, pages 1 - 2 *
HANG WU ET AL.: "Transcriptome-guided target identification of the TetR-like regulator SACE_5754 and engineered overproduction of erythromycin in Saccharopolyspora erythraea", 《JOURNAL OF BIOLOGICAL ENGINEERING》, vol. 13, pages 1 - 12 *
许晓娟: "糖多孢红霉菌糖基转移酶突变体的构建及其产物鉴定", 《中国知网硕士电子期刊》, no. 11, pages 1 - 58 *

Also Published As

Publication number Publication date
CN114457101B (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
CN110157756B (zh) 一种通过改造糖多孢红霉菌sace_0303基因提高红霉素产量的方法
CN107881190B (zh) 通过改造林可链霉菌slcg_2919基因提高林可霉素产量的方法
CN101649326B (zh) Φc31介导的基因重组和用于红霉素产生菌的遗传改造的方法
Bachellerie et al. Nucleotide modifications of eukaryotic rRNAs: the world of small nucleolar RNA guides revisited
CN110484481B (zh) 一种通过改造林可链霉菌slcg_3128基因提高林可霉素产量的方法
CN112111439A (zh) 高产多杀菌素的刺糖多孢菌及提高菌株多杀菌素产量的方法
CN109943545B (zh) 一种酰基转移酶结构域定向改造合成化合物的方法
CN116179571A (zh) 通过改造林可链霉菌slcg_2185基因提高林可霉素产量的方法及应用
CN109136253B (zh) 一种通过糖多孢红霉菌sace_5754基因途径提高红霉素产量的方法
CN114457101B (zh) 通过改造糖多孢红霉菌sace_1558基因提高红霉素产量的方法及应用
CN111139192B (zh) 一种通过改造糖多孢红霉菌sace_4682基因提高红霉素产量的方法
CN111197019B (zh) 一种通过糖多孢红霉菌sace_1906基因途径提高红霉素产量的方法
CN104427870A (zh) Uk-2生物合成基因和使用其提高uk-2生产率的方法
CN112410353B (zh) 一种fkbS基因、含其的基因工程菌及其制备方法和用途
CN105821053B (zh) 利用土霉素正调控基因构建重组菌和提高土霉素产量的方法
CN117568301B (zh) 一种通过糖多孢红霉菌sace_1646基因提高红霉素产量的方法
CN102260644B (zh) 一株淡黄色链霉菌突变菌株,构建方法及其用途
CN115433685B (zh) 一种通过改造糖多孢红霉菌sace_5812基因途径提高红霉素产量的方法
CN114150006B (zh) 一种可提高米尔贝霉素产量的基因簇、重组菌及其制备方法与应用
CN113980982B (zh) 增强安丝菌素体内靶标蛋白基因表达的高产安丝菌素方法
CN107881139A (zh) 增强聚酮合酶基因转录水平的高产安丝菌素菌株及其制备方法
CN116515879B (zh) 一种通过控制糖多孢红霉菌胞内nadh水平提高红霉素产量的诱导表达系统、菌株及应用
CN116445515B (zh) 一种参与利普斯他汀及其结构类似物合成的基因簇及其应用
CN109609521B (zh) 博落回普罗托品-6-羟基化酶基因优化序列及其应用
CN115927151A (zh) 通过改造糖多孢红霉菌sace_5312基因提高红霉素产量的方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant