CN1143852A - 电力变换器 - Google Patents

电力变换器 Download PDF

Info

Publication number
CN1143852A
CN1143852A CN96106120A CN96106120A CN1143852A CN 1143852 A CN1143852 A CN 1143852A CN 96106120 A CN96106120 A CN 96106120A CN 96106120 A CN96106120 A CN 96106120A CN 1143852 A CN1143852 A CN 1143852A
Authority
CN
China
Prior art keywords
voltage
current
level
neutral
chopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96106120A
Other languages
English (en)
Other versions
CN1065687C (zh
Inventor
宫崎圣
结城和明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN1143852A publication Critical patent/CN1143852A/zh
Application granted granted Critical
Publication of CN1065687C publication Critical patent/CN1065687C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/443Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/45Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)

Abstract

依据本发明,提供一种电力变换器,具有通过分离直流电压获得中性电位的两个串联电容器和把直流电压转换成交流电压的NPC逆变器,能由逆变器直接控制对中性电位波动的独立抑制。因为使用斩波器电路来补偿直流电压源的中性电位波动,所以可抑制直流及交流中性电位波动。因此,不必由逆变器或变换器对中性电位波动进行控制,可提高其电压利用率。相应地,可使用具有低电压容量的电力变换器,并可预期使电力变换器尺寸减小。

Description

电力变换器
本发明涉及使用NPC逆变器(中性点钳位逆变器)的电力变换器,尤其涉及可抑制三电平直流电压源中性电位波动的电力变换器。
图15中示出使用NPC(中性点钳位型)逆变器的通常的电力变换器主电路的一个例子。在图15中,由电容器4、5分压的变换器1把三相交流电源41所提供的交流电压转换成直流电压。这里,电容器4、5形成三电平直流电压源,并输出其具有正侧电位VP、中性电位VO和负侧电位VN的直流电压。由用于驱动交流电动机3的NPC逆变器2把具有该中性电位VO的直流电压转换成有规定频率的三相交流电压。众所周知,NPC逆变器2是把具有中性电位VO的直流电压转换成较少高次谐波的交流电压。
因此,在任一瞬时由NPC逆变器2从正侧电压(VP-VO)和负侧电压(VO-VN)加到交流电动机3的交流电不相等,且以NPC逆变器2输出频率的3倍频率波动。逆变器只能控制正-负的电压(VP-VN),于是,中性电位VO也在输出频率3倍的频率处波动。当中性电压VO波动时,NPC逆变器失去了抑制较高谐波的特征,于是,正在研究各种方法以抑制中性电位VO的波动。
例如,如下所述在1994年的日本电力工程师研究院国际会议中揭示了工业应用部门85的“三电平GTO逆变器的PWM系统”,这样一个控制系统用于抑制中性电位VO的波动。即,对三相中的电压加偏压而三相NPC逆变器的线电压保持不变,通过在短循环中把该偏压变换到正和负侧来平衡从正侧电压(VP-VO)和负侧电压(VO-VN)所提供的电力。
特别是,为了克服三电平直流电压源中性电位的波动,广泛使用对NPC逆变器的输出电压基准加偏压的方法。例如,如果直流电压源的正侧电压变得大于负侧电压,则对电压基准加上正的偏压。结果,正侧直流电消耗比负侧直流电消耗增加得多,因此可平衡正侧和负侧直流电压。参照图15将说明确定的结构。从正侧直流电压检测器20(以检测正侧电容器4的电压)和负侧直流电压检测器21(以检测负侧电容器5的电压)获得的正侧电压Vd1和负侧电压Vd2之间的差,该正-负差分电压输入到偏压调节器。通过根据此正-负差分电压与三相电压基准计算单元40计算到的三相电压基准VU*、VV*和VW*的和控制NPC逆变器2来抑制中性电位的波动。
然而,依据此通常的方法,因为偏压加到NPC逆变器2的输出电压中,当重载时(当加了过载电流时),可限制电压但有时不可补偿偏压。因此,产生了这样一个问题,即不能优先控制对中性电位波动的补偿,只是当可获得足够的输出电压时可进行有效地控制,如果由于负载的突然改变等时刻产生大的负载电流,则中性电位波动很大,由此产生了过载电压/过载电流。
此外,依据通过对三相电压基准加上偏压而不平衡正和负侧电压消耗来抑制中性电位波动的这样一个系统,由偏压将使实际给出的三相线电压变得小于直流连接电压。于是,电压利用率下降,需要具有大的电压容量的NPC逆变器。结果,整个电力变换器系统变得很大。
相应地,本发明的一个目的是提供一种使用NPC逆变器的电力变换器,它可抑制三电平直流电压源的中性电位的波动。
通过提供一电力变换器可实现本发明的这些和其它目的,该电力变换器包括:变换器;由连在变换器的输出之间的串联电容器构成的三电平直流电压源,以产生一正电位、一中性电位和一负电位;连到三电平直流电压源的三电平NPC逆变器;斩波器电路;以及用于控制斩波器电路的斩波器控制电路。斩波器电路包括连到三电平直流电压源的正电位点和负电位点之间的第一开关装置和第二开关装置的串联电路;与第一开关装置反并联的第一二极管;与第二开关装置反并联的第二二极管;以及电感器。第一开关装置的阳极连到三电平直流电压源的正侧电位点,第一开关装置的阴极连到第二开关装置的阳极,第二开关装置的阴极连到三电平直流电压源的负侧电位点,电感器连到三电平直流电压源的中性电位点与第一和第二开关装置连接点之间。斩波器控制电路包括用于检测电容器中的一个电容器上第一电压的第一电压检测器;用于检测电容器中另一个电容器的第二电压的第二电压检测器;连到接收第一电压和第二电压的电压控制器,用于比较第一电压和第二电压,以产生电压差,并用于产生电压控制输出信号,从而电压差变为零;连到接收电压控制输出信号的控制电路,用于根据电压控制输出信号驱动第一和第二开关装置,从而抑制三电平直流电源中性电位的波动。
依据本发明的一个方面提供了一种电力变换器包括:变换器;由连在变换器的输出之间的串联电容器构成的三电平直流电压源,以产生一正电位、一中性电位和一负电位;连到三电平直流电压源的三电平NPC逆变器;斩波器电路;以及用于控制斩波器电路的斩波器控制电路。斩波器电路包括连到三电平直流电压源的正电位点和负电位点之间的第一开关装置和第二开关装置的串联电路;与第一开关装置反并联的第一二极管;与第二开关装置反并联的第二二极管;以及电感器。第一开关装置的阳极连到三电平直流电压源的正侧电位点,第一开关装置的阴极连到第二开关装置的阳极,第二开关装置的阴极连到三电平直流电压源的负侧电位点,电感器连到三电平直流电压源的中性电位点与第一和第二开关装置连接点之间。斩波控制电路包括用于检测流过电感器的斩波器电流的第一电流检测器;用于检测在三电平直流电压源的中性电位点和三电平NPC逆变器的中性电位点之间流过逆变器中性电流的第二电流检测器;用于比较逆变器中性电流和斩波器电流的比较器,以在其间产生电流差;连到接收电流差的电流控制电路,用于产生电流控制输出信号,从而使电流差变为零;以及连到接收电流控制输出信号的控制电路,用于根据电流控制输出信号驱动第一和第二开关装置。
依据本发明的另一个方面,提供了一种电源变换器包括:变换器;由连在变换器的输出之间的串联电容器构成的三电平直流电压源,以产生一正电位、一中性电位和一负电位;连到三电平直流电压源的三电平NPC逆变器;斩波器电路;以及用于控制斩波器电路的斩波器控制电路。斩波器电路包括连到三电平直流电压源的正电位点和负电位点之间的第一开关装置和第二开关装置的串联电路;与第一开关装置反并联的第一二极管;与第二开关装置反并联的第二二极管;以及电感器。第一开关装置的阳极连到三电平直流电压源的正侧电位点,第一开关装置的阴极连到第二开关装置的阳极,第二开关装置的阴极连到三电平直流电压源的负侧电位点,电感器连到三电平直流电压源的中性电位点与第一和第二开关装置连接点之间。斩波器控制电路包括用于检测电容器中的一个电容器上第一电压的第一电压检测器;用于检测电容器中另一个电容器的第二电压的第二电压检测器;连到接收第一电压和第二电压的电压控制器,用于比较第一电压和第二电压,以产生电压差,并用于产生电压控制输出信号,从而电压差变为零;连到接收电压控制输出信号的控制电路,用于根据电压控制输出信号驱动第一和第二开关装置,从而抑制三电平直流电源中性电位的波动。
通过结合附图参考以下的详细说明,将容易获得对本发明及其众多优点的更全面的了解,同时能更好的理解,其中:
图1是依据本发明第一实施例的电力变换器的系统结构图;
图2是依据本发明第二实施例的电力变换器的系统结构图;
图3是依据本发明第三实施例的电力变换器的系统结构图;
图4是依据本发明第四实施例的电力变换器的系统结构图;
图4A是图4所示电力变换器中斩波器控制器的系统结构图;
图5A是图4所示电力变换器运行的模拟结果的波形图;
图5B是图4所示电力变换器运行的模拟结果的波形图;
图5C是图4所示电力变换器运行的模拟结果的波形图;
图5D是图4所示电力变换器运行的模拟结果的波形图;
图6是依据本发明第五实施例的电力变换器的系统结构图;
图7是依据本发明第六实施例的电力变换器的系统结构图;
图8是依据本发明第七实施例的电力变换器的系统结构图;
图9是依据本发明第八实施例的电力变换器的系统结构图;
图10是依据本发明第九实施例的电力变换器的系统结构图;
图11是依据本发明第十实施例的电力变换器的系统结构图;
图12是依据本发明第十一实施例的电力变换器的系统结构图;
图13是依据本发明第十二实施例的电力变换器的系统结构图;
图14是依据本发明第十三实施例的电力变换器的系统结构图;
图15是通常电力变换器的一个例子的系统结构图。
现在参考附图,其中相同的标号代表所有图中相似或相应的部分,以下将描述本发明的实施例。
图1是依据本发明第一实施例的电力变换器的系统结构图。
在图1中,三相交流电源41、变换器1、电容器4和5、NPC逆变器2,以及交流电动机3与图15中所示的相同。这里,电容器4和5形成用于NPC逆变器2的三电平直流电压源。
标号7和8是GTOs、IGBTs、三电平管等开关装置,它们串联在变换器1输出的直流电压的正侧和负侧之间。9、10是分别反并联到开关装置7、8的二极管。6是连在电容器4、5的串联点和开关装置7、8的串联点之间的电感器。开关装置7、电感器6和二极管10用作第一斩波器电路,而开关装置8、电感器6和二极管9用作第二斩波器电路。46是电压控制器,通过比较电容器4、5的电压Vp、Vn的绝对值而输出电压控制信号Vc,从而减小其间的差。48是输出限制器,以把电压控制信号Vc限定为特定的值。49是计算单元,以依据电压控制信号Vc(即通过输出限制器48的输出)输出斩波器控制信号CH1或CH2。50是调制信号发生器,以输出用于脉宽调制的三角波信号TRS。51、52是比较器,通过分别把斩波控制信号CN1、CN2与三角波信号比较来输出开关信号G1、G2。
在上述结构中,如果在电容器4和5的电压Vp和Vn之间产生偏差,则从电压控制器46输出电压控制信号Vc并通过输出限制器48输出到计算单元49。计算单元49依据电压控制信号Vc的极性输出斩波器控制信号CH1或CH2,并通过比较器51或52分别控制开关装置7或8的导通或关断。
例如,当电容器4的电压Vp高于电容器5的电压Vn,且电压控制信号Vc的极性为正(Vc>0),计算单元49输出用作斩波器控制信号CH1的电压控制信号Vc并使斩波控制信号CH2为零。结果,比较器51通过比较斩波器控制信号CH1和三角波信号TRS来输出开关信号G1并控制开关装置7的通/断。当斩波器控制信号CH2为零时,比较器52不输出开关信号G2。当开关装置7接通时,电容器4的电压加到电感器6且电流流过电感器6,当开关装置7断开时,放电电流从电感器6流过电容器5和二极管10,电容器4的电荷部分移动至电容器5。结果,电容器的电压Vp下降而电容器5的电压Vn增加,因此减少了电压Vp和Vn之间的偏差。
此外,当电容器4的电压Vp低于电容器5的电压Vn,且电压控制信号Vc的极性为负(Vc<0),计算单元49翻转控制信号Vc的极性,并把它作为斩波控制信号CH2输出,使斩波器控制信号CH1为零。结果,比较器52通过比较斩波器控制信号CH2和三角波信号TRS来输出开关信号G2并控制开关装置8的通/断。当斩波器控制信号CH1为零时,比较器51不输出开关信号G1。当开关装置8接通时,电容器5的电压加到电感器6且电流流过电感器6,当开关装置8断开时,放电电流从电感器6流过电容器4和二极管9,电容器5的电荷部分移动至电容器4。结果,电容器4的电压Vp增加而电容器5的电压Vn下降,因此减少了电压Vp和Vn之间的偏差。
相应地,当电容器4、5的电压VP、Vn之间产生偏差时,实行该控制,通过斩波器的作用,使能量直接从较高电压一侧移到较低电压一侧来快速抑制中性电位波动。
此外,输出限制器48控制电压控制信号Vc,使得脉宽调制的占空比不超过50%,当电压偏差变得极大时,流到电感器6的电流在调制期间返回到接近于零。
图2是依据本发明第二实施例的电力变换器的系统结构图。
该实施例处于这样的结构中,即分别对第一斩波器电路和第二斩波器电路提供了分离的电感器,从而可独立地操作两个斩波器电路。即,通过把开关装置7的串联电路和直流电压正侧VP和负VO点之间的电感器6A连在一起,以及把开关装置7和电感器6A的串联点之间的二极管10及直流电压源负侧VN连在一起,来构成第一斩波器电路。此外,通过把开关装置8的串联电路和直流电压源负侧VN和负点VO之间的电感器6B连在一起,并把开关装置8和电感器6B的串联点之间的二极管9和直流电压源正侧VP连在一起,来构成第二斩波器电路。其它的都与图1相同。
在上述结构中,如果电容器4、5的电压Vp、Vn之间产生偏差,则从电压控制器46输出电压控制信号Vc并通过输出限制器48输入计算单元49。计算单元49依据电压控制信号Vc的极性输出斩波器控制信号CH1或CH2,并分别通过比较器51或52控制开关装置7或8的开关动作,从而能量以与图1所示相同方式直接从电容器4、5的较高电压一侧向低电压一侧移动。相应地,由此斩波器的作用可快速抑制中性电位波动。
此外,由于在此实施例中可独立控制两个斩波器电路,当由于调制期间负载电流突然变化使电压偏差的极性相反时,可实行该控制,通过立即操作相反一侧的斩波器电路可抑制中性电位波动。例如,当电压Vp高于电压Vn,且操作第一斩波器电路时,如果改变电压Vp、Vn,从而由于在脉宽调制期间负载电流突然变化使电压Vp小于电压Vn,则可立即操作第二斩波器电路。于是,也可快速响应以控制该中性电位波动,从而在调制期间使电差偏差的极性反转。
图3是依据本发明第三实施例的电力变换器的系统结构图。
此实施处于这样一个结构中,从而一旦一个电容器的一部分能量转移到电感器,然后转移到另一个电容器。
即,提供了具有串联的开关装置7、61和二极管9、63(它们分别反并联)的第一支路,以及具有串联的开关装置8、62和二极管10、64(它们分别反并联)的第二支路。第一支路和第二支路串联,并连接到直流电压源的正和负侧VP、VN之间。第二二极管65、66分别连到两开关装置7、61和8、62与中性电位点VO的串联点之间。电感器6连到第一和第二支路与中性电位点VO之间。此结构与NPC逆变器的主要电路的单相结构相同,此结构用作第一和第二斩波器电路。此外,提供了输出开关信号G1A、G2A的关断延迟电路53、54,当开关信号G1、G2是通指令时,信号G1A、G2A立即变为通指令,当开关信号是断指令时经过固定时段后,它们变为断指令。其它的与图1所示的相同。
在上述结构中,如果电容器4、5的电压Cp和Vn之间产生偏差,则从电压控制器46输出电压控制信号Vc并通过输出限制器48输出计算单元49。计算单元49依据电压控制信号Vc的极性输出斩波器控制信号CH1或CH2,并分别通过比较器51或52控制开关装置7或8的开关动作,从而能量以与图1所示相同方式直接从电容器4、5的较高电压一侧向较低电压一侧转移。相应地,由此斩波器的作用可快速抑制中性电位波动。
例如,当电容器4的电压Vp高于电容器5的电压Vn,且电压控制信号Vc的极性为正(Vc>0)时,计算单元49输出用作斩波器控制信号CH1的电压控制信号Vc,并使斩波器控制信号CH2为零。结果,比较器51比较斩波器控制信号CH1和三角波信号TRS,并输出通/断开关信号G1。当斩波器控制信号CH2为零时,比较器52不输出开关信号G2。当关断延迟电路53在开关信号G1为通时立即输出变换信号G1A,当开关信号G1为通时,同时接通开关装置7、61。结果,电容器4的电压加到电感器6,且电流流过电感器6,电容器4的能量部分转移至电感器6。当开关信号断开时,经过固定时间,关断延迟电路53断开开关信号G1A,于是,立即断开开关装置7,而在固定时间后断开开关装置61。于是,在此固定时段时,电感器6的电流循环,并通过电感器6、二极管65和开关装置61的闭合回路存储,在此固定时间后,断开开关装置61。当开关装置61断开时,电感器6中的电流流过电容器5和二极管10,且电感器6的能量转移到电容器5。相应地,电容器4的电荷部分地转移到电容器5。结果,电容器4的电压Vp下降,电容器5的电压Vn增加,电压差减小。
此外,当电容器4的电压Vp低于电容器5的电压Vn,且电压控制信号Vc的极性为负(Vc<0)时,计算单元49翻转电压控制信号Vc的极性(用作斩波器控制信号CH2)并输出,并使斩波器控制信号CH1为零。结果,比较器52比较斩波器控制信号CH2和三角波信号TRS,并输出通/断开关信号G2。当斩波器控制信号CH1为零时,比较器51不输出信号G1。当关断延迟电路54在开关信号G2为通时立即输出开关信号G2A,当开关信号G2为通时,同时接通开关装置8、62。结果,电容器5的电压加到电感器6,且电流流过电感器6,电容器5的能量部分转移至电感器6。当开关信号断开时,经过固定时间,关断延迟电路54断开开关信号G2A,于是,立即断开开关装置8,而在固定时间后断开开关装置62。于是,在此固定时段时,电感器6的电流循环,并通过电感器6、二极管66和开关装置62的闭合回路存储,在此固定时间后,断开开关装置62。当开关装置62断开时,电感器6中的电流流过电容器4和二极管9,且电感器6的能量转移到电容器4。相应地,电容器5的电荷部分地转移到电容器4。结果,电容器4的电压Vp增加,电容器5的电压Vn下降,电压差减小。
此外,由二极管和电阻的并联电路以及与并联电路串联的缓冲电容器构成的缓冲器电路(未示出)连到各个开关装置7、8、61、62。当分别断开开关装置7、8时几乎恢复连到开关装置7、8的缓冲电容器的充电电压的时段处,足够设定关断延迟电路53、54的固定时段。
依据此实施例,当断开一个支路的一个开关装置,且电感器电流循环并存入闭合回路中时,在加到断开的一个开关装置的电压完全恢复后,有一种方式可断开一个支路的另一个开关装置。相应地,把加到每个开关装置的电压限定为正侧电压Vp或负侧电压Vn。于是,可在此实施例中使用具有直流电压(Vp-Vn)一半压的开关装置,从而此实施例非常适用于高的直流电压系。此外通过把脉宽调制的占空比设定大于50%,使在一个循环中转移的能量变大。
图4是依据本发明第四实施例的电力变换器的系统结构图。
在图4中,电容器4和5串联到二电平变换器1的输出一侧,并形成产生三电平电位的三电平直流电压源;正、负和中性电位。三电平NPC逆变器2作为负载连到变换器1的输出一侧。三电平NPC逆变器由一逆变器控制器15控制并驱动交流电动机3。两个开关装置7、8串联在三电平直流电压源的正电位总线和负电位总线之间,两个二极管9、10分别与开关装置7、8反并联。短路开关装置7、8的连接点和二极管9、10的连接点,再通过电感器6连到两个直流电容器4、5的中性点。此电路用作直流电容器4、5的升压/降压斩波器电路。当直流电容器4用作输入电容器而直流电容器5用作输出电容器时,通过开关装置7、电感器6和二极管10形成升压/降压斩波器电路。此外,当直流电容器5用作输入电容器,而直流电容器4用作输出电容器时,由开关装置8、电感器6和二极管9形成升压/降压斩波器电路。
现在,说明斩波器的工作原理。在图4中,假定流过电感器6的斩波器电流I.CHP沿箭头方向(指正方向)。当开关装置7接通而开关装置8断开时,电流流过电容器4、开关装置7和电感器6。在此期间,流过电感器6的斩波器电流I.CHP增加。即,电容器4的转量转移至电感器6,电容器4的电压减小。当开关装置7断开而开关装置8接通时,电流流过电容器5、二极管10和电感器6。在此期间,流过电感器6的斩波器电流I.CHP减小。即,电感器6的能量转移至电容器5,电容器5的电压增加。这是斩波器在斩波器电流I.CHP为正时的操作。当斩波器电流I.CHP为负时,也可认为是相似的,从而省略详细描述。主要电路的结构如上所述。
以下示出此结构中的斩波器控制器。提供了电流检测器13,以检测流过斩波器电感器6的斩波器电流I.CHP。此外,也提供了电流检测器14,以检测从直流电源的中性电位点到NPC逆变器2的中性点的逆变器中性电流I.INV。从检测到的逆变器中性电源I.INV减去检测到的斩波器电流I.CHP,把此偏差输入电流控制器12。提供了电流控制器12,以控制输入(电流I.CHP、I.INV的偏差)为零,它由比例积分补偿器等构成。电流控制器12的输出输入到斩波器控制器11,它可以三角波比较PWM方法改变它的斩波器占空比,并控制开关装置7、8连接处的平均电压。
图4A中示出斩波器控制器11的结构的一个例子。对斩波器控制器11的输入(电流控制器12的输出)输入到三角波比较器35,从其中输出三角波PWM波。三角波比较器35的输出输入门驱动器37并变成用于开关装置7的门信号。此外,三角波比较器35的输出也输入到逆变器36并在其中被逆变。逆变器36的输出输入到门驱动器38并变成用于开关装置8的门信号。因此,当开关装置7处于接通状态时,开关装置8处于断开状态,且当开关装置7处于断开状态时,开关装置8处于接通状态。于是,如果开关装置7、8中任一个处于接通状态,则另一个处于断开状态,从而在开关装置7、8的串联电路中决不会产生直流短路。
依据上述结构的第四实施例,获得以下所示的功能和效果。由于电流从中性点(直流电容器4、5的连接点)流入/出,引起中性电位波动(其中直流电容器4、5的电压互不相等)。在图4所示电路中,斩波器电流I.CHP流入中性点,而逆变器中性电流I.INV从其中流出。于是,如果如此控制电力变换器,通过从检测到的逆变器中性电流I.INV中减去检测到的斩波器电流I.CHP使电流偏差为零,则从中性点流到直流电容器4、5的电流变小。结果,可使中性电位波动变小,在斩波器电流I.CHP和逆变器中性电流I.INV分别沿图4中箭头的相反方向流动,可获得相同的功能和效果。
以下,将描述图4所示电力变换器运行的模拟结果。
首先,把此电力变换器设计成驱动用于5,000KW轧钢机的主轧机。
电容器4、5的电容为10mF,电感器6的电感是0.5mH,电容器4和5的电压V-C1和电压V-C2的电压基准V-C1*和V-C2*是3,000伏(起始值)。斩波器电路的转换频率是512Hz,逆变器中性电流I.INV是2,000×sin(2π·Finv·t)安,这里Finv是NPC逆变器2的频率。
图5A、5B、5C、5D中示出模拟结果。
图5A和5B分别示出逆变器频率Finv和50Hz时没有斩波器控制和有斩波器控制的情况。在图5A中,发现斩波器电流I.CHP为零,电压V-C1和V-C2波动。这表明三电平直流电压源的中性电位有波动。在图5B中,发现斩波器电流I.CHP随逆变器中性电流I.INV流动,电压V-C1和V-C2不波动。这表明很好地抑制了三电平直流电压源中性电位的波动。
图5C和5D分别示出逆变器频率Finv和150Hz时没有斩波器控制和有斩波器控制的示图。从这些图中,也可明了在图5D中所示具有斩波器控制的情况下,很好地抑制了三电平直流电压源的中性电位的波动。
此外,通过如上所述构成的电力变换器,可提高电力变换器中变换器或逆变器的电压利用率,也可实现电力变换器的尺寸减小或成本降低。
图6是依据本发明第五实施例电力变换器的系统结构图。在图6所示的结构中,主要电路部分与图4所示第四实施例相同,于是,这里只描述斩波器控制器。此斩波器控制器处于以下所述的结构中。
三电平PNC逆变器2的三相电压调制因子MU*、MV*、MW*是来自逆变器控制单元15(控制三电平NPC逆变器2)至逆变器中性电流计算单元16的输入。提供了电流检测器19,以检测从NPC逆变器2流到电动机3的三相电流IU、IV和IW。把检测到的三相电流IU、IV、和IW输入到逆变器中性电流计算单元16。计算逆变器中性电流I.INV*,诸如由逆变器中性电流计算单元16依据以下公式等计算。这是依据文献(日本电气工程师研究院D部国际会议第91期揭示的“抑制三电平逆变器中性电压交流波动的处理”)。
I.INV*=-|MU*|·IU-|MV*|·IV-|MW*|·IW…
                                              (1)
提供了电流检测器13,以检测流过斩波器电感器6的斩波器电流I.CHP。从计算得到的逆变器中性电流I.INV*中减去检测到的斩波器电流I.CHP,把此偏差输入电流控制器12。提供了电流控制器12以把输入控制为零,它由比例积分补偿器等类似装置构成。电流控制器12的输出输入到斩波器控制器11,它可由三角波比较PWM方法改变其斩波器占空比,并控制开关装置7、8的连接点处的平均电压。
依据上述结构中的第五实施例,获得以下描述的功能和效果。由于电流从中性点(直流电容器4、5的连接点)流入/出,引起中性电位波动(其中直流电容器4、5的电压互不相等)。在图6所示电路中,斩波器电流I.CHP流入中性点而逆变器中性电流I.INV从其中流出。相应地,如果如此控制电力变换器,从电压调制因子MU*、MV*、MW*和检测到的三相电流IU、IV、IW计算得到的逆变器中性电流I.INV*中减去检测到的斩波器电流I.CHP,把此电流差控制为零,从中性点流到直流电容器4、5的电流变小。结果,可使中性电位波动变小。
当如上所述构成电力变换器时,可提高电力变换器中变换器或逆变器的利用率,也可实现电力变换器的尺寸减小和成本降低。
图7是依据本发明第六实施例电力变换器的系统结构图。
在图7所示的结构中,主要电路部分与图4所示第四实施例相同,于是,这里只描述斩波器控制器。此斩波器控制器处于以下所述的结构中。
三电平PNC逆变器2的三相电压调制因子NU*、MV*、MW*是来自逆变器控制单元15(控制三电平NPC逆变器2)至逆变器中性电流计算单元17的输入。计算逆变器中性电流I.INV*,诸如由逆变器中性电流计算单元17依据以下公式等计算。这是依据文献(日本电气工程师研究院D部国际会议第91期揭示的“抑制三电平逆变器中性电压交流波动的处理”)。
I.INV*=-|MU*|·IU*-|MV*|·IV*-|MW*|·IW*…                                                 (1)
提供了电流检测器13,以检测流过斩波器电感器6的斩波器电流I.CHP。从计算得到的逆变器中性电流I.INV*中减去检测到的斩波器电流I.CHP,把此偏差输入电流控制器12。提供了电流控制器12以把输入控制为零,它由比例积分补偿器等类似装置构成。电流控制器12的输出输入到斩波器控制器11,它可由三角波比较PWM方法改变其斩波器占空比,并控制开关装置7、8的连接点处的平均电压。
依据上述结构中的第六实施例,获得以下描述的功能和效果。
由于电流从中性点(直流电容器4、5的连接点)流入/出,引起中性电位波动(其中直流电容器4、5的电压互不相等)。在图7所示电路中,斩波器电流I.CHP流入中性点而逆变器中性电流I.INV从其中流出。相应地,如果如此控制电力变换器,从电压调制因子MU*、MV*、MW*和检测到的三相电流IU、IV、IW计算得到的逆变器中性电流I.INV*中减去检测到的斩波器电流I.CHP,把此电流差控制为零,从中性点流到直流电容器4、5的电流变小。结果,可使中性电位波动变小。此外,当通过逆变器中性电流计算单元17中的计算获得逆变器中性电流I.INV*,并使斩波器电流I.CHP随计算的逆变器中性电流I.INV*流动,斩波器电流I.CHP的响应可比图6所示结构快,相应于检测电流检测器19中电流IU、IV、IW所需的延迟时间。结果,可使中性电位波动变得更小。
当如上所述构成电力变换器时,可提高电力变换器中变换器或逆变器的利用率,也可实现电力变换器的尺寸减小和成本降低。
图8是依据本发明第七实施例电力变换器的系统结构图。
在图8所示的结构中,主要电路部分与图4所示第四实施例相同,于是,这里只描述斩波器控制器。此斩波器控制器处于以下所述的结构中。
三电平PCN逆变器2的三相的电压调制因子MU*、MV*、MW*是来自逆变器控制单元15(控制三电平NPC逆变器2)至逆变器中性电流计算单元17的输入。由逆变器中性电流计算单元17如上所述计算逆变器中性电流I.INV*。提供了电流检测器13,以检测流过斩波器电感器6的斩波器电流I.CHP,也提供了电流检测器14,以检测逆变器中性电流I.INV。从计算得到的逆变器中性电流I.INV*中减去检测到的斩波器电流I.CHP,把偏差输入电流控制器18。也从检测到的逆变器中性电流I.INV中减去检测到的斩波器电流I.CHP,也把偏差输入电流控制器18。在电流控制器18中,依据以下公式进行计算。 V . CHP = KP · ( I . IN V * - I . CHP ) + KI · ∫ ( I . INV - I . CHP)dt…                                         (3)这里,KP是比例系数,KI是积分系数,V.CHP是电流控制器18的输出。电流控制器18的输出V.CHP输入斩波器控制器11,它可通过三角波比较PWM方法来改变其斩波器的占空比,并控制开关装置7、8连接点处的平均电压。
依据上述结构中的第七实施例,获得下述功能和效率。
由于电流从中性点(直流电容器4、5的连接点)流入/出,引起中性电位波动(其中两直流电容器的电压互不相等)。在图8所示电路中,斩波器电流I.CHP流入中性点,逆变器中性电流I.INV从其中流出。相应地,如果如此控制电力变换器,从逆变器中性电流I.INV中减去斩波器电流I.CHP,并把偏差控制为零,则从中性点流到直流电容器4、5的电流变小。结果,可使中性电位波动变小。这里,当斩波器电流I.CHP瞬时跟随计算得到的逆变器中性电位电流I.INV*,可获得没有延迟的小的补偿。此外,由于存在积分器,把检测到的逆变器中性电流I.INV和斩波器I.CHP之间的偏差固定地控制为零。于是,可满足瞬时而固定的补偿,可使中性电位波动变得更小。
当如上所述构成电力变换器时,可提高电力变换器中变换器或逆变器的电压利用率,也可获得电力变换器尺寸减小和成本降低。
图9是依据本发明第八实施例电力变换器的系统结构图。
图9所示的结构基于图6所示结构,于是,这里只描述图6和图9的差别。
提供了两个电压检测器20、21,以分别检测直流电容器4、5的电压Vd1、Vd2。把检测到的电容器4、5的电差Vd1、Vd2的电压差输入电压补偿器22。电压补偿器22的功能是使检测到的电压Vd1、Vd2的差为零。把电压补偿器22的输出加到电流控制器12的输出中,把此总和输入斩波器控制器11。
依据上述结构的第八实施例,获得下述功能和效果。即,获得与图6所示第五实施例相同的功能和效果。此外,如果电流检测器13或类似装置的直流漂移引起直流误差,则通过检测两电容器4、5的电压Vd1、Vd2,计算电压差并把它控制为零,可抑制中性电位的电流波动。
当如上所述构成电力变换器,可提高电力变换器中变换器和逆变器的电压利用率,也可实现电力变换器的尺寸减小或成本降低。
上述结构是基于图6所示第五实施例,当把上述实施例分别加到图4、7和8所示的第四、第六和第七实施例中,可获得相同的功能和效果。
图10是依据本发明第九实施例电力变换器的系统结构图。
在图10所示结构中,主电路部分与图4所示第四实施例中相同,于是,这里只描述斩波器控制器。斩波器之结构于以下所示。
提供了两个电压检测器20、21,以分别检测直流电容器4、5的电压Vd1、Vd2。把检测到的电容器4、5的电压Vd1、Vd2之差输入电压控制器23。提供了控制输入(检测到的Vd1、Vd2之差)为零的电压控制器23,它由比例补偿器、比例积分补偿器和类似装置构成。提供了电流控制器13,以检测流过电感器6的斩波器电流I.CHP。把检测到的斩波器电流I.CHP输入稳定补偿器24(由具有比例增益系数K的比例补偿器构成)。从电压控制器23的输出中减去稳定补偿器24的输出,把其差输入斩波器控制器11,它通过三角波比较PWM方法改变斩波器占空比,并控制开关装置7、8的连接点的平均电压。
依据上述结构中的第九实施例,可获得以下所述的功能和效果。即,通过检测直流电容器4、5的电压Vd1、Vd2,并控制斩波器使这两个电压Vd1、Vd2的差为零,可抑制中性电位波动。然而,即使只控制电压,仍担心在斩波器电感器6和直流电容器4、5之间的LC共振。于是,由检测到的斩波器电流I.CHP进行补偿可稳定中性电位。
当电力变换器按如上所述构成时,可提高电力变换器中变换器和逆变器的电压利用率,也可实现电力变换器的尺寸减小或成本降低。
图11是依据本发明第十实施例电力变换器的系统结构图。
在图11所示结构中,主要电路部分与图4所示第四实施例相同,于是,这里只描述斩波器控制器。斩波器控制器的结构如以下所示。
提供了两个电压检测器20、21,以分别检测直流电容器4、5的电压Vd1、Vd2。把检测到的电容器4、5的电压Vd1、Vd2之差输入电压控制器23。提供了电压控制器23,以控制输入为零,它由比例补偿器、比例积分补偿器和类似装置等组成。把检测到的电容器4、5的电压Vd1、Vd2之差也输入准微分器25,在其中对输入的电压差进行准微分计算。准微分器25的输出输入到稳定补偿器24。把稳定补偿器24的输出从电压控制器23的输出中减去,把其差值输入斩波器控制器11,它可由三角波比较PWM方法改变斩波器占空比,并控制开关装置7、8的连接点处的平均电压。
依据上述结构中的第十实施例,可获得以下所述的功能和效果。即,通过检测直流电容器4、5的电压Vd1、Vd2,并控制斩波器使这两个电压Vd1、Vd2的差为零,可抑制中性电位波动。然而,即使只控制电压,仍担心在斩波器电感器6和直流电容器4、5之间的LC共振。于是,由检测到的电容器4、5的电压Vd1、Vd2之间的准差分值进行补偿可稳定中性电位。
当电力变换器按如上所述构成时,可提高电力变换器中变换器和逆变器的电压利用率,也可实现电力变换器的尺寸减小或成本降低。
图12是依据本发明第十实施例电力变换器的系统结构图。
在图12所示结构中,主要电路部分与图4所示第四实施例相同,于是,这里只描述斩波器控制器。斩波器控制器的结构如以下所示。
提供了电流检测器13,以检测流过斩波器电感器6的斩波器电流I.CHP。此外,提供了电流检测器14,以检测三电平直流电压源的中性点流到NPC逆变器2的中性点的逆变器中性电流I.INV。从检测到的逆变器中性电流I.INV中减去检测到的斩波器电流I.CHP,并由积分器26对其差进行积分。把积分器26的输出输入到电压控制器23。检测到的斩波器电流I.CHP也输入稳定补偿器24。从电压控制器23的输出中减去稳定补偿器24的输出,把其差值输入斩波器控制器11。在斩波器控制器11中,由三角波比较PWM方法改变斩波器的占空比,并控制开关装置7、8连接点处的平均电压。
依据上述结构的第十一实施例,获得下述的功能和效果。即,通过控制使直流电容器4、5之间的电压差为零,可抑制中性电位波动。检测到的逆变器中性电流I.INV和检测到的斩波器电流I.CHP之差的积分值具有一定大小的电压。即,它正比于电容器4、5中的电压差。如果通过控制电容器4、5的电压使积分值为零,则可抑制中性电位的波动。然而即使只控制电压,也担心斩波器电感器6和直流电容器4、5之间的LC共振。于是,加上由检测到的斩波器电流I.CHP的补偿可稳定中性电位。
当电力变换器按如上所述构成时,可提高电力变换器中的变换器和逆变器的电压利用率,并可实现电力变换器的尺寸减小或成本降低。
图13是依据本发明第十二实施例电力变换器的系统结构图。图13所示的结构基于图8所示的结构,这里只描述图8和图13之间的区别。
在图8中,通过连在一两电平变换器1两个串联电容4、5的输出之间形成三电平直流电压源,而在图13中,由三电平NPC变换器27的三个输出形成三电平直流电压源。于是,三电平NPC变换器27的中性点连到电容器4、5的连接点。这是主要电路中的区别点。
作为斩波器控制器中的区别点在于,如下所述提供了一变换器中性电流计算单元29,它依据来自变换器控制器28(控制三电平NPC变换器27)的信息,计算从电容器4、5的连接点流到三电平NPC变换器27中性点的变换器中性电流I.CNV*。此外,提供了电流检测器34,以检测变换器中性电流I.CNV。
从变换器控制器28把三电平NPC变换器27三相的电压调制因子MUc*、MVc*和MWc*和三相电流基准IUc*、IVc*、IWc*输入变换器中性电流计算单元29。依据以下公式由变换器电流计算单元29计算变换器中性电流I.CNV*。I.CNV*=-|MUc*|·IUc*-|MVc*|·IVc*-|MWc*|·IWc*    …(4)
把图8所示结构与图13所示结构相比,考虑到流入/出电容器4、5连接点的电流为零,就足以抑制中性电位波动。在图8所示结构中,流入电容器4、5的电流是斩波器电流I.CHP,从其中流出的电流是逆变器中性电流I.INV。在图13所示的结构中,流入电容器4、5连接点的电流是斩波器电流I.CHP,而从其中流出逆变器中性电流I.INV和变换器中性电流I.CHP。于是,为了控制对中性电位波动的抑制,如果认为图8所示结构中的逆变器中性电流I.INV和图13所示结构中逆变器中性电流I.INV与变换器中性电流I.CNV相加的值相等,则可控制对中性电位波动的抑制。
的确,在图8所示的结构中,从逆变器中性电流计算单元17计得的逆变器中性电流I.INV*中减去斩波器电流I.CHP,把其差输入用于比例控制的电流控制器18。在图13所示结构中,从由逆变器中性电路计算单元17计算得到的逆变器中性电流I.INV*与变换器中性电流计算单元29计算得到的变换器中性电流I.CNV*的相加的值中减去斩波器电流I.CHP,把其差输入用于正比控制的电流控制器18。此外,在图8所示结构中,从电流检测器14检测到的逆变器中性电流I.INV中减去电流检测器14检测到的斩波器电流I.CHP,把其差值输入用于积分控制的电流控制器18。在图13所示结构中,从电流检测器14检测到的逆变器中性电流I.INV与电流检测器34检测到的斩波器中性电流I.CNV的相加值中减去电流检测器13检测到的斩波器电流I.CHP,把其差输入用于积分控制的电流控制器。
依据上述结构中的第十二实施例,可获得与图8所示第七实施例相同的功能和效果。虽然本实施例基于图8所示的结构,它也可分别应用到图4、6、7、9所示实施例中,有相同的功能和效果。
此外,可对电流控制作不同的组合,诸如把图4实施例所示检测到的值用于逆变器中性电流,或把图6或7实施例所示计得的值用于变换器中性电流。
图14是依据本发明第十三实施例的电力变换器的系统结构图。图14所示的结构基于图8所示的结构。这里将只描述图8和14之间的差别。
在图8中通过连接到一个两电平变换器1的两个串联的电容器4、5的输出之间形成三电平直流电压值,在图14中,分别由两电平变换器30、31而产生三电平直流电压源的正侧电压和负侧电压。于是,两电平变换器30的负侧电位点和两电平变换器31的正侧电位点的连接点连接到电容4、5的连接点。两级变换器30、31由可控硅桥路或二极管桥路等构成,但不限于这些电路。图8和14所示结构的区别如上所述。
如下所述,斩波器控制器的不同之处在于提供了变换器中性电流计算单元33,以根据来自变换器控制器32(控制两个两电平变换器30、31)的信息,计算从电容器4、5的连接点流到两级变换器30、31的连接点的变换器中性电流I.CNV*。此外,提供了电流检测器34,以检测变换器中性电流I.CNV。
从变换器控制器32把变换器30、31三相的电压调制因子MU1*、MV1*、MW1*和MU2*、MV2*、MW2*,以及变换器30、31的三相电流基准IU1*、IV1*、IW1*和IU2*、IV2*、IW2*输入变换器中性电流计算单元33。依据以下公式由变换器中性电流计算单元33计算变换器中性电流I.CNV*。IC1*=-1/2(MU1*·IU1*+MV1*·IV1*+MW1*·IW1*)IC2*=-1/2(MU2*·IU2*+MV2*·IV2*+MW2*·IW2*)I.CNV*=IC1*-IC2*                            (5)
这里,IC1和IC2是分别流过电容器4和5的电流,IC1*和IC2*是由变换器中性电流计算单元分别相应于ICI、IC2计算得到的电流。
把图8所示结构与图14所示结构相比,考虑到流入/出电容器4、5连接点的电流为零,就足以抑制中性电位波动。在图8所示结构中,流入电容器4、5的电流是斩波器电流I.CHP,从其中流出的电流是逆变器中性电流I.INV。
此外,在图14所示的结构中,流入电容器4、5连接点的电流是斩波器电流I.CHP,而从其中流出逆变器中性电流I.INV和变换器中性电流I.CHP。于是,为了控制对中性电位波动的抑制,如果认为图8所示结构中的逆变器中性电流I.INV和图14所示结构中逆变器中性电流I.INV与变换器中性电流I.CNV相加的值相等,则可控制对中性电位波动的抑制。
的确,在图8所示的结构中,从逆变器中性电流计算单元17计得的逆变器中性电流I.INV*中减去斩波器电流I.CHP,把其差输入用于比例控制的电流控制器18。在图14所示结构中,从由逆变器中性电路计算单元17计算得到的逆变器中性电流I.INV*与变换器中性电流计算单元33计算得到的变换器中性电流I.CNV*的相加的值中减去斩波器电流I.CHP,把其差输入用于正比控制的电流控制器18。
此外,在图8所示结构中,从电流检测器14检测到的逆变器中性电流I.INV中减去电流检测器14检测到的斩波器电流I.CHP,把其差值输入用于积分控制的电流控制器18。在图14所示结构中,从电流检测器14检测到的逆变器中性电流I.INV与电流检测器34检测到的斩波器中性电流I.CNV的相加值中减去电流检测器1 3检测到的斩波器电流I.CHP,把其差输入用于积分控制的电流控制器。
依据上述结构中的第十二实施例,可获得与图8所示第七实施例相同的功能和效果。
虽然本实施例基于图8所示的结构,它也可分别应用到图4、6、7、9所示实施例中,有相同的功能和效果。
此外,可对电流控制作不同的组合,诸如把图4实施例所示检测到的值用于逆变器中性电流,或把图6或7实施例所示计得的值用于变换器中性电流。
依据本发明,可提供一种电力变换器,具有通过分离直流电压获得中性电位的两个串联电容器和把直流电压转换成交流电压的NPC逆变器,它能独立于逆变器控制,直接控制对中性电位波动的抑制,并可显示更确定及高度可靠的NPC逆变器功能。
依据本发明,因为使用斩波器电路来补偿直流电压源的中性电位波动,所以可抑制直流中性电位波动及交流中性电位波动,因为直流电压源的电性电位波动是使用斩波器电路予以补偿的。
因此,不必由逆变器或变换器进行对中性电位波动的控制,可改善电力变换器中变换器或逆变器的电压利用率。相应地,可运用具有低电压容量的电力变换器,并可预期使电力变换器尺寸减小。
很明显,利用上述说明,可对本发明进行大量改变和变化。于是可理解在所附权利要求书的范围内,除这里特别描述的以外可实行本发明。

Claims (17)

1.一种电力变换器,其特征在于包括:
变换器;
三电平直流电压源,它由连在所述变换器的输出之间的串联电容器构成,以产生正电位、中性电位和负电位;
连到所述三电平直流电压源的三电平NPC逆变器;
斩波器电路;以及
用于控制所述斩波器电路的斩波器控制装置;
所述斩波器电路包括,
连在所述三电平直流电压源的正电位点和负电位点之间的第一开关装置和第二开关装置的串联电路,
与所述第一开关装置反并联的第一二极管,
与所述第二开关装置反并联的第二二极管,
以及电感器,
所述第一开关装置的阳极连到所述三电平直流电压源的所述正侧电位点,
所述第一开关装置的阴极连到所述第二开关装置的阳极,
所述第二开关装置的阴极连到所述三电平直流电压源的所述负侧电位点,
所述电感器连在所述三电平直流电压源的所述负电位点和所述第一和第二开关装置的连接点之间;
所述斩波器控制装置包括,
用于检测所述电容器中的一个之间的第一电压的第一电压检测装置,
用于检测所述电容器中另一个之间的第二电压的第二电压检测装置,
电压控制装置,连到接收所述第一电压和所述第二电压,用于比较所述第一电压与所述第二电压而产生电压差,并用于产生电压控制输出信号从而所述电压差变为零,以及
控制装置,连到接收所述电压控制输出信号,用于根据所述电压控制输出信号驱动所述第一和第二开关装置;
从而可抑制所述三电平直流电源的所述中性电位的波动。
2.一种电力变换器,其特征在于包括:
变换器;
三电平直流电压源,它由连在所述变换器的输出之间的串联电容器构成,以产生正电位、中性电位和负电位;
连到所述三电平直流电压源的三电平NPC逆变器;
斩波器电路;以及
用于控制所述斩波器电路的斩波器控制装置;
所述斩波器电路包括,
沿正向连在所述三电平直流电压源的正电位点和中性点之间的第一开关装置和第一电感器的串联电路,
沿反向连在所述第一开关装置和所述第一电感器的连接点和所述三电平直流电源负电位点之间的第一二极管,
沿正向连在所述三电平直流电压源的所述负电位点和所述中性点之间的第二开关装置和第二电感器的串联电路,
沿反向连在所述第二开关装置和所述第二电感器的连接点和所述三电平直流电源的所述正电位点之间的第二二极管,
所述斩波器控制装置包括,
用于检测所述电容器中的一个之间的第一电压的第一电压检测装置,
用于检测所述电容器中另一个之间的第二电压的第二电压检测装置,
电压控制装置,连到接收所述第一电压和所述第二电压,用于比较所述第一电压与所述第二电压而产生电压差,并用于产生电压控制输出信号从而使所述电压差变为零,以及
控制装置,连到接收所述电压控制输出信号,用于根据所述电压控制输出信号驱动所述第一和第二开关装置;
从而可抑制所述三电平直流电源的所述中性电位的波动。
3.如权利要求1或2所述的电力变换器,其特征在于:所述控制装置包括脉宽调制控制装置,用于由相应于所述电源控制输出信号的所述电压差的脉宽的所述电源控制输出信号的所述电压差的极性,来确定接通所述第一和第二开关装置中的一个。
4.一种电力变换器,其特征在于包括:
变换器;
三电平直流电压源,它由连在所述变换器的输出之间的串联电容器构成,以产生正电位、中性电位和负电位;
连到所述三电平直流电压源的三电平NPC逆变器;
斩波器电路;以及
用于控制所述斩波器电路的斩波器控制装置;
所述斩波器电路包括,
连在所述三电平直流电压源的正侧电位点和负侧电位点之间的第一支路和第二支路的串联电路,
所述第一和第二支路中的每一个都由第一开关装置和第二开关装置的串联电路构成,第一两极管与所述第一开关装置反向并联,第二两极管与所述第二开关装置反向并联,
连在所述三电平直流电压源的中性电位点和所述第一支路中的所述第一和第二开关装置的连接点之间的第三二极管,
连在所述三电平直流电压源的所述中性电位点和所述第二支路中的所述第一和第二开关装置的连接点之间的第四二极管,以及
连在所述三电平直流电压源的所述中性电位点和所述第一和第二支路的连接点之间的电感器,
所述第一支路的所述第一开关装置的阳极连到所述三电平直流电压源的所述正侧电位点,
所述第一支路的所述第二开关装置的阴极连到所述第二支路的所述第一开关装置的阳极,
所述第二支路的所述第二开关装置的阴极连到所述三电平直流电压源的所述负侧电位点;
所述斩波器控制装置包括,
用于检测所述电容器中的一个之间的第一电压的第一电压检测装置,
用于检测所述电容器中另一个之间的第二电压的第二电压检测装置,
电压控制装置,连到接收所述第一电压和所述第二电压,用于比较所述第一电压与所述第二电压产生的电压差,并用于产生电压控制输出信号从而使所述电压差变为零,以及
控制装置,连到接收所述电压控制输出信号,用于根据所述电压控制输出信号驱动所述第一和第二支路中的所述第一和第二开关装置,从而根据所述电压控制输出信号接通所述第一和第二支路中的一个支路,且电流从所述电容器中的一个流过所述电感器,然后断开所述三电平直流电压源一侧的所述开关装置,且流过所述电感器的所述电流循环并通过所述第三和第四二极管中的一个存储,然后断开另一侧的所述开关装置,且存入所述电感器的所述电流通过所述电容器中的另一个以及另一个支路放电;
从而可抑制所述三电平直流电源的所述中性电位的波动。
5.如权利要求4所述的电力变换器,其特征在于:所述控制装置包括脉宽调制控制装置,所述第一和第二支路中的一个导通的第一开关信号,它是由相应于所述电压控制输出信号的所述电压差之脉冲宽度的所述电压控制信号的所述电压差的极性决定的,并在所述第一开关信号产生接通指令的同时产生用于产生接通指令的第二开关信号,在所述第一开关信号产生断开指令后经预定的时间产生断开指令;以及
所述第一开关信号加到所述三电平直流电压源一侧的所述第一和第二开关装置中的一个,所述第二开关信号加到所述第一和第二开关装置中的另一个。
6.一种电力变换器,其特征在于包括:
变换器;
三电平直流电压源,它由连在所述变换器的输出之间的串联电容器构成,以产生正电位、中性电位和负电位;
连到所述三电平直流电压源的三电平NPC逆变器;
斩波器电路;以及
用于控制所述斩波器电路的斩波器控制装置;
所述斩波器电路包括,
连在所述三电平直流电压源的正电位点和中性电位点之间的第一开关装置和第二开关装置的串联电路,
与所述第一开关装置反并联的第一二极管,
与所述第二开关装置反并联的第二二极管,
以及电感器,
所述第一开关装置的阳极连到所述三电平直流电压源的所述正侧电位点,
所述第一开关装置的阴极连到所述第二开关装置的阳极,
所述第二开关装置的阴极连到所述三电平直流电压源的所述负侧电位点,
所述电感器连在所述三电平直流电压源的中性电位点和所述第一和第二开关装置的连接点之间;
所述斩波器控制装置包括,
用于检测流过所述电感器的斩波器电流的第一电流检测装置,
第二电流检测装置,用于检测在所述三电平直流电压源的所述中性电位点和所述三电平NPC逆变器的中性电位点之间流动的逆变器中性电流,
比较器装置,用于比较所述逆变器中性电流与所述斩波器电流,以在其间产生电流差,
电流控制装置,连到接收所述电流差,用于产生电流控制输出信号,从而使所述电流差变为零,以及
控制装置,连到接收所述电流控制输出信号,用于根据所述电流控制输出信号驱动所述第一和第二开关装置。
7.一种电力变换器,其特征在于包括:
变换器;
三电平直流电压源,它由连在所述变换器的输出之间的串联电容器构成,以产生正电位、中性电位和负电位;
连到所述三电平直流电压源的三电平NPC逆变器;
斩波器电路;以及
用于控制所述斩波器电路的斩波器控制装置;
所述斩波器电路包括,
连在所述三电平直流电压源的正电位点和中性电位点之间的第一开关装置和第二开关装置的串联电路,
与所述第一开关装置反并联的第一二极管,
与所述第二开关装置反并联的第二二极管,
以及电感器,
所述第一开关装置的阳极连到所述三电平直流电压源的所述正侧电位点,
所述第一开关装置的阴极连到所述第二开关装置的阳极,
所述第二开关装置的阴极连到所述三电平直流电压源的所述负侧电位点,
所述电感器连在所述三电平直流电压源的中性电位点和所述第一和第二开关装置的连接点之间;
所述斩波器控制装置包括,
用于检测流过所述电感器的斩波器电流的第一电流检测装置,
逆变器中性电流计算装置,用于计算在所述三电平直流电压源的所述中性电位点和所述NPC逆变器的中性电位点之间流过的逆变器中性电流,
比较器装置,用于比较所述计算得到的逆变器中性电流与所述斩波器电流,以在其间产生电流差,
电流控制装置,连到接收所述电流差,用于产生电流控制输出信号,从而所述电流差变为零,以及
控制装置,连到接收所述电流控制输出信号,用于根据所述电流控制输出信号驱动所述第一和第二开关装置。
8.如权利要求7所述的电力变换器,其特征在于:
所述斩波器控制装置还包括第二电流检测装置,用于检测在所述三电平NPC逆变器和所述三电平NPC逆变器的负载之间流动的三相电流;以及
所述逆变器中性电流计算装置接收来自所述第二电流检测装置的所述三相电流和来自所述逆变器控制电路(用于控制所述三电平NPC逆变器)用于控制所述三电平NPC逆变器的信息,并根据所述三相电流和所述信息计算所述逆变器中性电流。
9.如权利要求7所述的电力变换器,其特征在于:
所述逆变器中性电流计算装置接收来自逆变器控制电路(用于控制所述三电平NPC逆变器)用于控制所述三电平NPC逆变器的信息,并根据所述信息计算所述逆变器中性电流。
10.一种电力变换器,其特征在于包括:
变换器;
三电平直流电压源,它由连在所述变换器的输出之间的串联电容器构成,以产生正电位、中性电位和负电位;
连到所述三电平直流电压源的三电平NPC逆变器;
斩波器电路;以及
用于控制所述斩波器电路的斩波器控制装置;
所述斩波器电路包括,
连在所述三电平直流电压源的正电位点和负电位点之间的第一开关装置和第二开关装置的串联电路,
与所述第一开关装置反并联的第一二极管,
与所述第二开关装置反并联的第二二极管,
以及电感器,
所述第一开关装置的阳极连到所述三电平直流电压源的所述正侧电位点,
所述第一开关装置的阴极连到所述第二开关装置的阳极,
所述第二开关装置的阴极连到所述三电平直流电压源的所述负侧电位点,
所述电感器连在所述三电平直流电压源的中性电位点和所述第一和第二开关装置的连接点之间;
所述斩波器控制装置包括,
用于检测流过所述电感器的斩波器电流的第一电流检测装置,
第二电流检测装置,用于检测在所述三电平直流电压源的所述中性电位点和所述三电平NPC逆变器的中性电位点之间流动的逆变器中性电流,
逆变器中性电流计算装置,用于计算在所述三电平直流电压源的所述中性电位点和所述NPC逆变器的中性电位点之间流动的逆变器中性电流,
第一比较器装置,用于比较所述计算得到的逆变器中性电流与所述斩波器电流,以在其间产生第一电流差,
第二比较器装置,用于比较所述检测到的逆变器中性电流与所述斩波器电流,以在其间产生第二电流差,
电流控制装置,连到接收所述第一和第二电流差,用于产生电流控制输出信号,从而使所述电流差变为零,以及
控制装置,连到接收所述电流控制输出信号,用于根据所述电流控制输出信号驱动所述第一和第二开关装置,
所述电流控制装置包括连到接收所述第一电流差的用于比例控制的比例补偿器,连到接收所述第二电流差的用于积分控制的积分补偿器,以及用于把所述比例补偿器的输出与所述积分补偿器的输出相加的加法器,以产生所述电流控制输出信号,从而使所述第一和第二电流差变为零。
11.如权利要求6-10任一所述的电力变换器,其特征在于:
所述斩波器控制装置还包括,
用于检测所述电容器中的一个之间的第一电压的第一电压检测装置,
用于检测所述电容器中另一个之间的第二电压的第二电压检测装置,
电压比较器装置,用于比较所述第一电压与所述第二电压,以产生电压差,
电压补偿装置,连到接收所述电压差,用于产生电压控制输出信号,从而使所述电压差变为零,以及
加法器装置,用于相加来自所述电流控制装置的所述电流控制输出信号与来自所述电压补偿装置的所述电压控制输出信号;以及
所述控制装置接收所述加法器装置的输出信号而不是所述电流控制输出信号,并根据所述加法器装置的所述输出信号驱动所述第一和第二开关装置。
12.一种电力变换器,其特征在于包括:
变换器;
三电平直流电压源,它由连在所述变换器的输出之间的串联电容器构成,以产生正电位、中性电位和负电位;
连到所述三电平直流电压源的三电平NPC逆变器;
斩波器电路;以及
用于控制所述斩波器电路的斩波器控制装置;
所述斩波器电路包括,
连在所述三电平直流电压源的正电位点和负电位点之间的第一开关装置和第二开关装置的串联电路,
与所述第一开关装置反并联的第一二极管,
与所述第二开关装置反并联的第二二极管,
以及电感器,
所述第一开关装置的阳极连到所述三电平直流电压源的所述正侧电位点,
所述第一开关装置的阴极连到所述第二开关装置的阳极,
所述第二开关装置的阴极连到所述三电平直流电压源的所述负侧电位点,
所述电感器连在所述三电平直流电压源的中性电位点和所述第一和第二开关装置的连接点之间;
所述斩波器控制装置包括,
用于检测所述电容器中的一个之间的第一电压的第一电压检测装置,
用于检测所述电容器中另一个之间的第二电压的第二电压检测装置,
电压比较器装置,用于比较所述第一电压与所述第二电压,以产生电压差,
电压控制装置,连到接收所述电压差,用于产生电压控制输出信号,从而使所述电压差变为零,以及
控制装置,连到接收所述电压控制输出信号,用于根据所述电压控制输出信号驱动所述第一和第二开关装置。
13.如权利要求12所述的电力变换器,其特征在于:
所述斩波器控制装置还包括,
用于检测流过所述电感器的斩波器电流的第一电流检测装置,
稳定补偿器,连到接收所述斩波器电流,用于比例控制,以及
减法器装置,用于从所述电压控制装置的所述电压控制输出信号中减去所述稳定补偿器的输出信号;以及
所述控制装置接收所述减法器装置的输出信号而不是所述电压控制输出信号,并根据所述减法器装置的所述输出信号驱动所述第一和第二开关装置。
14.如权利要求12所述的电力变换器,其特征在于:
所述斩波器控制装置还包括,
假微分器,连到接收所述电压差,用于对所述电压差进行假微分,
稳定补偿器,连到接收假微分器的输出信号,用于比例控制,以及
减法器装置,用于从所述电压控制装置的所述电压控制输出信号中减去所述稳定补偿器的输出信号;以及
所述控制装置接收所述减法器装置的输出信号而不是所述电压控制输出信号,并根据所述减法器装置的所述输出信号驱动所述第一和第二开关装置。
15.一种电力变换器,其特征在于包括:
变换器;
三电平直流电压源,它由连在所述变换器的输出之间的串联电容器构成,以产生正电位、中性电位和负电位;
连到所述三电平直流电压源的三电平NPC逆变器;
斩波器电路;以及
用于控制所述斩波器电路的斩波器控制装置;
所述斩波器电路包括,
连在所述三电平直流电压源的正电位点和中性电位点之间的第一开关装置和第二开关装置的串联电路,
与所述第一开关装置反并联的第一二极管,
与所述第二开关装置反并联的第二二极管,
以及电感器,
所述第一开关装置的阳极连到所述三电平直流电压源的所述正侧电位点,
所述第一开关装置的阴极连到所述第二开关装置的阳极,
所述第二开关装置的阴极连到所述三电平直流电压源的所述负侧电位点,
所述电感器连在所述三电平直流电压源的中性电位点和所述第一和第二开关装置的连接点之间;
所述斩波器控制装置包括,
用于检测流过所述电感器的斩波器电流的第一电流检测装置,
第二电流检测装置,用于检测在所述三电平直流电压源的所述中性电位点和所述三电平NPC逆变器的中性电位点之间流动的逆变器中性电流,
比较器装置,用于比较所述逆变器中性电流与所述斩波器电流,以在其间产生电流差,
积分装置,连到接收所述电流差,用于对所述电流差进行积分,
电压控制装置,连到接收所述积分装置的输出信号,用于产生电压控制输出信号,从而使所述积分装置的所述输出信号变为零,
稳定补偿器,连到接收由所述第一电流检测装置检测到的所述斩波器电流,用于比例控制,以及
减法器装置,用于从所述电压控制装置的所述电压控制输出信号中减去所述稳定补偿器的输出信号,以及
控制装置,连到接收所述减法器装置的输出信号,用于根据所述减法器装置的所述输出信号驱动所述第一和第二开关装置。
16.如权利要求6-10任一所述的电力变换器,其特征在于:
所述变换器包括三电平NPC变换器;
所述三电平直流电压源的所述中性电位点连到所述三电平NPC变换器的中性电位点;
所述斩波器控制装置包括,
至少一个变换器中性电流检测装置,用于检测在所述三电平直流电压源的所述中性电位点和所述三电平NPC变换器的所述中性电位点之间流动的变换器中性电流,以及至少一个变换器中性电流计算装置,用于计算在所述三电平直流电压源的所述中性电位点和所述三电平NPC变换器的所述中性电位点之间流动的变换器中性电流,以及
至少一个第一加法器装置,用于相加所述检测到的逆变器中性电流和所述检测到的变换器中性电流,以及至少一个第二加法器装置,用于相加所述计算得到的逆变器中性电流和所述计算得到的变换器中性电流;以及
在所述斩波器控制装置中,使用至少一个所述第一和第二加法器装置的输出,而不是在以下控制步骤中使用至少一个所述检测到的逆变器中性电流和至少一个计算得到的逆变器中性电流。
17.如权利要求6-10任一所述的电力变换器,其特征在于:
所述变换器包括串联的两电平NPC变换器;
所述三电平直流电压源的所述中性电位点连至所述串联连接的两电平NPC变换器的连接点;
所述斩波器控制装置包括,至少一个变换器中性电流检测装置,用于检测在所述三电平直流电压源的所述中性电位点和所述三电平NPC变换器的所述中性电位点之间流动的变换器中性电流,以及至少一个变换器中性电流计算装置,用于计算在所述三电平直流电压源的所述中性电位点和所述三电平NPC变换器的所述中性电位点之间流动的变换器中性电流,以及
至少一个第一加法器装置,用于相加所述检测到的逆变器中性电流和所述检测到的变换器中性电流,以及至少一个第二加法器装置,用于相加所述计算得到的逆变器中性电流和所述计算得到的变换器中性电流;以及
在所述斩波器控制装置中,使用至少一个所述第一和第二加法器装置的输出,而不是在以下控制步骤中使用至少一个所述检测到的逆变器中性电流和至少一个计算得到的逆变器中性电流。
CN96106120A 1995-06-13 1996-06-13 电力变换器 Expired - Fee Related CN1065687C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP145755/95 1995-06-13
JP14575595 1995-06-13
JP145755/1995 1995-06-13
JP055032/1996 1996-03-12
JP055032/96 1996-03-12
JP05503296A JP3249380B2 (ja) 1995-06-13 1996-03-12 電力変換装置

Publications (2)

Publication Number Publication Date
CN1143852A true CN1143852A (zh) 1997-02-26
CN1065687C CN1065687C (zh) 2001-05-09

Family

ID=26395868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96106120A Expired - Fee Related CN1065687C (zh) 1995-06-13 1996-06-13 电力变换器

Country Status (7)

Country Link
US (1) US5621628A (zh)
JP (1) JP3249380B2 (zh)
KR (1) KR100221811B1 (zh)
CN (1) CN1065687C (zh)
AU (1) AU678946B2 (zh)
CA (1) CA2178857C (zh)
FI (1) FI117460B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075105A (zh) * 2009-11-17 2011-05-25 富士电机控股株式会社 电力变换设备
CN101753044B (zh) * 2010-01-26 2012-06-27 北方工业大学 一种基于零序电压注入的三电平中点电位平衡控制方法
CN102969890A (zh) * 2011-05-26 2013-03-13 倍福自动化有限公司 二象限截波器
CN104253554A (zh) * 2013-06-26 2014-12-31 艾默生网络能源有限公司 一种逆变器和逆变器拓扑
CN107204714A (zh) * 2017-05-26 2017-09-26 中南大学 三电平间接矩阵变换器及控制方法

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5790396A (en) * 1995-12-19 1998-08-04 Kabushiki Kaisha Toshiba Neutral point clamped (NPC) inverter control system
US5808880A (en) * 1996-08-30 1998-09-15 Otis Elevator Company Power factor controller for active converter
US5910892A (en) * 1997-10-23 1999-06-08 General Electric Company High power motor drive converter system and modulation control
US6288915B1 (en) * 1997-12-23 2001-09-11 Asea Brown Boveri Ag Converter circuit arrangement having a DC intermediate circuit
JP3434746B2 (ja) * 1999-09-01 2003-08-11 芝府エンジニアリング株式会社 電力変換装置の制御装置
BR9907351A (pt) * 1999-12-22 2001-08-07 Ericsson Telecomunicacoees S A Método e circuito de controle para retificador do tipo elevador trifásico de três nìveis
JP3407198B2 (ja) * 2000-02-25 2003-05-19 株式会社日立製作所 3レベルインバータ装置
US6337804B1 (en) * 2000-09-26 2002-01-08 General Electric Company Multilevel PWM voltage source inverter control at low output frequencies
CN100334801C (zh) * 2000-12-07 2007-08-29 株式会社安川电机 中性点钳位式脉宽调制逆变器装置
US6534949B2 (en) * 2001-03-29 2003-03-18 General Electric Company Motor drive converter and method with neutral point drift compensation
US6510062B2 (en) 2001-06-25 2003-01-21 Switch Power, Inc. Method and circuit to bias output-side width modulation control in an isolating voltage converter system
EP1315277B1 (de) * 2001-11-23 2005-02-09 ABB Schweiz AG Verfahren zur Symmetrierung eines Dreipunkt-Gleichspannungszwischenkreises und Vorrichtung zur Durchführung des Verfahrens
US7050311B2 (en) * 2003-11-25 2006-05-23 Electric Power Research Institute, Inc. Multilevel converter based intelligent universal transformer
US20070230226A1 (en) * 2003-11-25 2007-10-04 Jih-Sheng Lai Multilevel intelligent universal auto-transformer
US20070223258A1 (en) * 2003-11-25 2007-09-27 Jih-Sheng Lai Multilevel converters for intelligent high-voltage transformers
US6954366B2 (en) * 2003-11-25 2005-10-11 Electric Power Research Institute Multifunction hybrid intelligent universal transformer
JP4475401B2 (ja) * 2004-08-09 2010-06-09 三菱電機株式会社 電気車制御装置
US7352083B2 (en) * 2005-09-16 2008-04-01 American Power Conversion Corporation Apparatus for and method of UPS operation
US7324360B2 (en) * 2005-10-17 2008-01-29 General Electric Company Power converter methods and apparatus for variable speed high power machines
JP4783174B2 (ja) * 2006-02-16 2011-09-28 三菱電機株式会社 電力変換装置
JP4067021B2 (ja) * 2006-07-24 2008-03-26 ダイキン工業株式会社 インバータ装置
CN100444509C (zh) * 2006-08-09 2008-12-17 北京思源清能电气电子有限公司 一种三电平变流器闭锁时消除器件过电压的控制方法
US7920393B2 (en) * 2007-06-01 2011-04-05 Drs Power & Control Technologies, Inc. Four pole neutral-point clamped three phase converter with low common mode voltage output
US7920394B2 (en) * 2008-05-13 2011-04-05 Hamilton Sundstrand Corporation Method to create PWM switching with near zero common mode noise
JP5593660B2 (ja) * 2009-09-25 2014-09-24 富士電機株式会社 5レベルインバータ
US8144490B2 (en) * 2009-11-10 2012-03-27 General Electric Company Operation of a three level converter
JP2011142783A (ja) * 2010-01-08 2011-07-21 Toshiba Corp 電力変換装置
WO2012087869A2 (en) 2010-12-22 2012-06-28 Converteam Technology Ltd. Mechanical arrangement of a multilevel power converter circuit
BR112013015894A2 (pt) 2010-12-22 2019-09-10 Ge Energy Power Conversion Technology Limited método para compensar as tensões em um grupo de capacitores de um dispositivo eletrônico e circuito de compensação
US9369035B2 (en) 2011-02-10 2016-06-14 General Electric Company Power converter and method of operation
JP5800130B2 (ja) * 2011-06-20 2015-10-28 富士電機株式会社 直流電源システム
JP5257533B2 (ja) * 2011-09-26 2013-08-07 ダイキン工業株式会社 電力変換装置
FR2982721B1 (fr) * 2011-11-15 2013-11-29 St Microelectronics Tours Sas Variateur de puissance
JP5699912B2 (ja) * 2011-11-21 2015-04-15 トヨタ自動車株式会社 電気自動車用のインバータ
JP5822732B2 (ja) * 2012-01-11 2015-11-24 東芝三菱電機産業システム株式会社 3レベル電力変換装置
CN103312184B (zh) * 2012-03-09 2015-09-16 台达电子工业股份有限公司 一种功率电路、变流器结构及其风力发电系统
US9214874B2 (en) * 2012-07-31 2015-12-15 Yashomani Y. Kolhatkar Intelligent level transition systems and methods for transformerless uninterruptible power supply
US20150092467A1 (en) * 2013-09-30 2015-04-02 Infineon Technologies Ag Driver Circuit for a Pair of Semiconductor Switches in a Leg of a Three-Level Inverter Half-Bridge
CN106170916A (zh) * 2014-02-07 2016-11-30 Abb 瑞士股份有限公司 具有平衡降压/升压变换器的不间断电源
CN105226975B (zh) 2014-06-06 2017-12-15 台达电子企业管理(上海)有限公司 Tnpc逆变器装置及其桥臂短路检测方法
FR3034924A1 (fr) 2015-04-07 2016-10-14 St Microelectronics Tours Sas Convertisseur alternatif-continu a limitation du courant d'appel
FR3034926A1 (fr) * 2015-04-07 2016-10-14 St Microelectronics Tours Sas Convertisseur de puissance a limitation du courant d'appel
US9759750B2 (en) 2015-08-03 2017-09-12 Alex C. H. MeVay Low loss current sensor and power converter using the same
WO2017064788A1 (ja) * 2015-10-15 2017-04-20 三菱電機株式会社 マルチレベル電力変換装置
JP6277246B1 (ja) * 2016-10-03 2018-02-07 本田技研工業株式会社 変換装置、機器及び制御方法
KR102066162B1 (ko) * 2018-05-23 2020-01-14 현대엘리베이터주식회사 Dc 링크 전압 불평형 보상 장치
DE102018120236A1 (de) * 2018-08-20 2020-02-20 Thyssenkrupp Ag Ladevorrichtung mit steuerbarer Zwischenkreismittelpunktsspannung sowie Antriebssystem mit einer derartigen Ladevorrichtung
CN111404414B (zh) * 2020-03-10 2022-08-02 天津工业大学 一种改进的npc三电平逆变器
DE102020122458B3 (de) 2020-08-27 2022-02-03 Keba Industrial Automation Germany Gmbh Vorrichtung und Verfahren für den Betrieb eines Drei- oder Mehrpunktumrichters

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU516304B2 (en) * 1979-06-25 1981-05-28 Canadian General Electric Co. Ltd. Inverter control system
GB2105933B (en) * 1981-09-08 1984-11-14 Switched Reluctance Drives Ltd Power conversion circuit
AU646957B2 (en) * 1991-07-01 1994-03-10 Superconductivity, Inc. Shunt connected superconducting energy stabilizing system
US5319533A (en) * 1992-01-17 1994-06-07 Miller Electric Mfg. Co. Power selection and protection circuit responsive to an input voltage for providing series or parallel connected inverters
US5367448A (en) * 1992-08-07 1994-11-22 Carroll Lawrence B Three phase AC to DC power converter
US5414613A (en) * 1993-08-20 1995-05-09 Rem Technologies, Incorporated Soft switching active snubber for semiconductor circuit operated in discontinuous conduction mode
JP2888104B2 (ja) * 1993-09-01 1999-05-10 株式会社日立製作所 電力変換装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075105A (zh) * 2009-11-17 2011-05-25 富士电机控股株式会社 电力变换设备
CN101753044B (zh) * 2010-01-26 2012-06-27 北方工业大学 一种基于零序电压注入的三电平中点电位平衡控制方法
CN102969890A (zh) * 2011-05-26 2013-03-13 倍福自动化有限公司 二象限截波器
CN102969890B (zh) * 2011-05-26 2016-04-06 倍福自动化有限公司 二象限截波器
CN104253554A (zh) * 2013-06-26 2014-12-31 艾默生网络能源有限公司 一种逆变器和逆变器拓扑
CN107204714A (zh) * 2017-05-26 2017-09-26 中南大学 三电平间接矩阵变换器及控制方法

Also Published As

Publication number Publication date
AU5587296A (en) 1997-01-02
JPH0965658A (ja) 1997-03-07
KR100221811B1 (ko) 1999-09-15
FI962463A (fi) 1996-12-14
JP3249380B2 (ja) 2002-01-21
US5621628A (en) 1997-04-15
CA2178857A1 (en) 1996-12-14
FI962463A0 (fi) 1996-06-13
CA2178857C (en) 1999-11-09
KR970004250A (ko) 1997-01-29
FI117460B (fi) 2006-10-13
AU678946B2 (en) 1997-06-12
CN1065687C (zh) 2001-05-09

Similar Documents

Publication Publication Date Title
CN1065687C (zh) 电力变换器
US10007288B2 (en) Direct current link circuit
US9673732B2 (en) Power converter circuit
US10396662B2 (en) Direct current link circuit
US8564261B2 (en) Power converting apparatus, grid interconnection apparatus and grid interconnection system
US9484746B2 (en) Power converter circuit with AC output
US9948200B2 (en) Charge and discharge circuit, control method for charge and discharge circuit, control device for charge and discharge circuit, and direct power converter
WO2012001828A1 (ja) Dc/dc電力変換装置
JP5254357B2 (ja) 電力変換装置
JP5400961B2 (ja) 電力変換装置
CN1808874A (zh) 三相电力变换装置
JP6395956B2 (ja) ゲート駆動回路およびそのゲート駆動回路を備えた電力変換装置
US9197126B2 (en) Power converting apparatus
KR102387744B1 (ko) Ac-ac 컨버터 회로
JP5400956B2 (ja) 電力変換装置
Zheng et al. Topology generation and analysis of the no dead time AC/DC converter
JP2010226786A (ja) 電力変換装置
CN116094325A (zh) 直流变换装置、并网逆变器及其直流变换装置的控制方法
Mini et al. High power factor VSI fed induction motor drive
JP2005137166A (ja) 電力変換装置
JP2011229199A (ja) 電力変換装置

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
FG4A Grant of patent
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1040080

Country of ref document: HK