CN114369245A - 一类含四磺化烷烃侧链结构聚芳醚砜聚合物及其制备方法和应用 - Google Patents

一类含四磺化烷烃侧链结构聚芳醚砜聚合物及其制备方法和应用 Download PDF

Info

Publication number
CN114369245A
CN114369245A CN202210030826.7A CN202210030826A CN114369245A CN 114369245 A CN114369245 A CN 114369245A CN 202210030826 A CN202210030826 A CN 202210030826A CN 114369245 A CN114369245 A CN 114369245A
Authority
CN
China
Prior art keywords
side chain
polymer
chain structure
tetrasulfonated
alkane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210030826.7A
Other languages
English (en)
Other versions
CN114369245B (zh
Inventor
汪称意
蔡世举
钱佳锋
陶正旺
许柏松
赵晓燕
李坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN202210030826.7A priority Critical patent/CN114369245B/zh
Publication of CN114369245A publication Critical patent/CN114369245A/zh
Application granted granted Critical
Publication of CN114369245B publication Critical patent/CN114369245B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

本发明公开了一类含四磺化烷烃侧链结构聚芳醚砜聚合物及其制备方法和应用,属于聚合物质子交换膜材料及其制备领域。本发明将含二氨基苯结构的活性二氟砜单体与4,4’‑二氟二苯砜和联苯二酚共缩聚制得含二氨基结构聚芳醚砜聚合物,然后通过亲核取代反应,由含二氨基结构聚芳醚砜聚合物和2‑溴乙基磺酸钠反应得到含四磺化烷烃侧链结构聚芳醚砜聚合物,多侧链结构的引入可以有效促进膜材料中离子的聚集,并降低磺酸离子对聚合物主链结构的影响。该类聚芳醚砜质子交换膜具有良好的成膜性,所制聚合物薄膜具有良好的尺寸稳定性、耐氧化性和高的离子传导率,在钒氧化还原液流电池应用中具有重要的潜在应用价值。

Description

一类含四磺化烷烃侧链结构聚芳醚砜聚合物及其制备方法和 应用
技术领域
本发明属于聚合物质子交换膜及其制备领域,更具体地,涉及一类含四磺化烷烃侧链结构聚芳醚砜聚合物及其制备方法和应用。
背景技术
聚合物膜钒液流电池是一类重要的新能源电池,具有使用寿命长、响应速度快、能量密度高、安全环保等特点,可应用于可再生能源的储能设备、固定电站、供电站电网调峰等领域。聚合物膜钒液流电池主要由电解液、离子交换膜和电极三个部分组成。离子交换膜是钒电池系统的一个关键组成部分,其性能的优劣直接影响到钒电池最终的电池性能好坏。目前,在钒电池中应用最广泛的是Nafion系列膜,因为它具有高的质子传导率和优异的化学稳定性,但同时也存在着严重的缺点:一是成本高;二是钒离子渗透性高,进而导致电池自放电严重。所以设计开发具有较低成本和良好综合性能的钒液流电池用新型质子交换膜材料具有重要的学术研究和实际应用价值。聚芳醚砜类聚合物是一类具有良好化学稳定性、热性能和机械性能芳香族离子膜材料,在钒液流电池中具有重要的潜在应用价值,受到广泛关注。但目前聚芳醚砜类质子交换膜材料在离子传导率、尺寸稳定性及钒离子渗透性等方面距离钒流电池的理想要求仍具有较大的差距。
研究发现,通过在磺化质子交换膜材料的结构中引入侧链柔性磺酸结构,可以较明显的改善膜材料的离子传导率和尺寸稳定性,降低钒离子渗透率。含柔性侧链离子结构磺化质子交换膜材料的设计制备通常需要多步反应完成,尤其是结构单元含有多个柔性侧链磺酸结构的质子交换膜材料更是存在较大的挑战。
发明内容
本发明的目的是针对以上不足,提供一类含四磺化烷烃侧链结构聚芳醚砜聚合物及其制备方法和应用,通过利用自制含氨基结构的活性双氟砜单体3,3′-二(3″-氨基苯基)-4,4′-二氟二苯砜为起始原料,合成了一系列侧基含苯氨基结构的聚芳醚砜聚合物,并通过氨基聚合物离子化反应,成功制备得到了一系列结构单元含有四个磺化烷基柔性侧链结构聚芳醚砜质子交换膜,局部高密集柔性磺酸结构的引入有效改善了膜材料的离子传导率、尺寸稳定性、耐钒离子渗透性及相应的钒流电池性能,较明显提高了膜材料的综合性能。
为实现上述目的,本发明是通过以下技术方案实现的:
一类含四磺化烷基侧链结构聚芳醚砜聚合物,具有式1结构:其中磺化结构单元的含量x=0.16~0.28,并且含有四磺化烷烃柔性侧链结构,非磺化结构单元的含量1-x=0.84~0.72,n=50~75;
Figure BDA0003466385270000021
本发明还提供了一种上述含四磺化烷烃侧链结构聚芳醚砜聚合物的制备方法,包括以下步骤:
(1)氮气保护下,将3,3′-二(3″-氨基苯基)-4,4′-二氟二苯砜、4,4′-二氟二苯砜和4,4′-二羟基联苯混合,加入有机溶剂和脱水剂,在碱性催化剂作用下在130~150℃反应1~3h后,共沸脱水蒸出脱水剂,进一步升温至160~170℃反应4~10h后结束反应,将反应物倒入醇类中沉降,即可得到纤维状的含二氨基结构聚芳醚砜聚合物;
(2)氮气保护下,将含二氨基结构聚芳醚砜聚合物和有机溶剂混合,在50~70℃下搅拌溶解,随后加入碱性催化剂继续搅拌反应1~3h,再加入磺酸盐在120~140℃下反应36~55h,结束反应后倒入醇类溶剂中沉降,过滤干燥,即可得到式1所示的含四磺烷烃侧链结构聚芳醚砜聚合物。
优选的,上述制备方法中三种反应单体3,3′-二(3″-氨基苯基)-4,4′-二氟二苯砜、4,4′-二氟二苯砜和4,4′-二羟基联苯的摩尔比为x:(1-x):1。
优选的,所述步骤(1)中,有机溶剂为N-甲基吡咯烷酮,用量为三种反应单体总质量的2~4倍。
优选的,所述步骤(1)中,所述的脱水剂为甲苯,用量为N-甲基吡咯烷酮体积的0.2~0.4倍。
优选的,所述步骤(1)中,所述的碱性催化剂为碳酸钾和碳酸钠中的一种,用量为4,4′-二羟基联苯摩尔量的1~3倍。
优选的,所述步骤(1)中,所述的醇类试剂为乙醇,用量为N-甲基吡咯烷酮体积的20~30倍。
优选的,上述制备方法中制得的含二氨基结构聚芳醚砜聚合物的结构式如式2所示:
Figure BDA0003466385270000031
所述式2中,含二氨基结构单元的含量x=0.16~0.28,非含二氨基结构单元的含量1-x=0.84~0.72,n=50~75。
优选的,所述步骤(2)中,所述的有机溶剂为N-甲基吡咯烷酮,其用量为含二氨基结构聚芳醚砜聚合物质量的20~50倍。
优选的,所述步骤(2)中,所述碱性催化剂为N,N′-二异丙基乙胺,用量为含二氨基结构聚芳醚砜聚合物中氨基摩尔量的5~10倍。
优选的,所述步骤(2)中,所述磺酸盐为2-溴乙基磺酸钠,用量为含二氨基结构聚芳醚砜聚合物中氨基摩尔量的5~10倍。
优选的,所述步骤(2)中,所述的醇类溶剂为乙醇或异丙醇中的一种,用量为N-甲基吡咯烷酮体积的10~20倍。
本发明还提供了一种上述含四磺化烷烃侧链结构聚芳醚砜聚合物的应用,是将该聚合物应用于质子交换膜的制备,该质子交换膜可应用于钒液流电池中。
与现有技术相比,本发明的有益效果为:
(1)本发明设计合成一类含四磺化烷基侧链结构聚芳醚砜聚合物,在聚合物结构单元中同时引入了四个磺化烷基磺化侧链,多侧链结构的引入可以有效促进膜材料中离子的聚集,并降低磺酸离子对聚合物主链结构的影响。
(2)本发明提供的含四磺化烷基侧链结构聚芳醚砜聚合物可溶于二甲基亚砜,通过流延成膜法来制备质子交换膜,所制备的质子交换膜有良好的质子传导率、尺寸稳定性和化学稳定性,可作为液流电池中的质子交换膜材料。
(3)本发明提供了一类含四磺化烷基侧链结构聚芳醚砜聚合物的制备方法,该类聚合物的离子交换容量可以根据含二氨基结构活性二氟砜单体的含量来调控;制备得到的含四磺化烷基侧链结构聚芳醚砜质子交换膜为对称结构,有利于质子交换膜内离子传输通道的形成,进而提高质子传导率,柔性磺烷基侧链的密集分布增强了骨架疏水片段的分子间的相互作用,用利于改善膜的吸水溶胀。
附图说明
图1为本发明实施例1所述的聚芳醚砜聚合物的合成路线图;
图2为本发明实施例1所述的聚芳醚砜聚合物及中间产物的核磁谱图;
图3为本发明实施例1、2和3所述的聚芳醚砜聚合物制备而成的质子交换膜在钒电池中的电池效率图性能;
图4为实施例1、2和3所述的聚芳醚砜聚合物制备而成的质子交换膜质子传导率曲线;
图5为实施例1、2和3所述的聚芳醚砜聚合物制备而成的质子交换膜的吸水率溶胀率曲线。
具体实施方式
下面将结合附图和具体实施例更详细地描述本发明的优选实施方式。
在实施例中所述药品和试剂来源如下:
4,4’-二氟二苯砜:长城试剂,98%;
4,4’-二羟基联苯:安耐吉化学,98%;
3,3′-二(3″-氨基苯基)-4,4′-二氟二苯砜根据专利(CN202011561939.7)来制备,98%;
甲苯:国药集团化学试剂有限公司,≥99.5%;
N-甲基吡咯烷酮:aladdin,≥99.5%;
碳酸钾:上海凌峰化学试剂有限公司,≥99.0%;
N,N′-二异丙基乙胺:阿拉丁试剂,99%;
2-溴乙基磺酸钠:阿拉丁试剂,98%。
实施例1
一类含四磺化烷基侧链结构聚芳醚砜聚合物,其制备方法包括以下步骤:
(1)含有二氨基结构聚芳醚砜聚合物的合成
在装有回流冷凝管、氮气出入口和电动搅拌器的100mL三口烧瓶中依次加入1.2221g(2.8mmol)3,3′-二(3″-氨基苯基)-4,4′-二氟二苯砜、1.8306g(7.2mmol)4,4′-二氟二苯砜、1.8621g(10.0mmol)4,4′-二羟基联苯、1.38g(10.0mmol)无水碳酸钾、12mL N-甲基吡咯烷酮和3mL甲苯,在140℃下加热预反应2h后通氮气除去甲苯和水,温度升至160℃持续反应7h,将反应液倒入300mL乙醇中沉淀得到含有二氨基结构聚芳醚砜聚合物(2NH2-PAES-28),产率95%,1H NMR(DMSO-d6)如附图2a所示;
(2)含四磺化烷基侧链结构聚芳醚砜聚合物的合成
在装有回流冷凝管、氮气出入口和电动搅拌器的100mL三口烧瓶中加入1.00g(氨基摩尔量为1.24mmol)含有二氨基结构聚芳醚砜(PAES-2NH2-28)和30mL N-甲基吡咯烷酮在65℃下搅拌溶解完全,随后加入1.2826g(9.92mmol)N,N′-二异丙基乙胺继续搅拌反应3h,最后加入2.0938g(9.92mmol)2-溴乙基磺酸钠,升温至130℃继续反应48h,将反应液在400mL乙醇中沉淀,得到含四磺烷基侧链结构聚芳醚砜聚合物(PAES-4S-28),产率96%,1HNMR(DMSO-d6)如附图2b所示。
上述制备方法的合成路线如图1所示。
实施例2
一类含四磺化烷基侧链结构聚芳醚砜聚合物,其制备方法包括以下步骤:
在装有回流冷凝管、氮气出入口和电动搅拌器的100mL三口烧瓶中依次加入1.0476g(2.4mmol)3,3′-二(3″-氨基苯基)-4,4′-二氟二苯砜、1.9323g(7.6mmol)4,4′-二氟二苯砜、1.8621g(10.0mmol)4,4′-二羟基联苯、1.38g(10.0mmol)无水碳酸钾、12mL N-甲基吡咯烷酮和3mL甲苯,在140℃下加热预反应1h后通氮气除去甲苯和水,温度升至160℃持续反应8h,将反应液倒入300mL乙醇中沉淀得到含有二氨基结构聚芳醚砜(2NH2-PAES-24),产率97%;
(2)含四磺化烷基侧链结构聚芳醚砜聚合物的合成
在装有回流冷凝管、氮气出入口和电动搅拌器的100mL三口烧瓶中加入1.00g(氨基摩尔量为1.08mmol)含有二氨基结构聚芳醚砜(PAES-2NH2-24)和30mL N-甲基吡咯烷酮在65℃下搅拌溶解完全,随后加入1.1174g(8.64mmol)N,N′-二异丙基乙胺继续搅拌反应3h,最后加入1.8241g(8.64mmol)2-溴乙基磺酸钠,升温至130℃继续反应50h,将反应液在400mL乙醇中沉淀,得到四磺烷基侧链结构聚芳醚砜聚合物(PAES-4S-24),产率94%。
实施例3
一类含四磺化烷基侧链结构聚芳醚砜聚合物,其制备方法包括以下步骤:
(1)含有二氨基结构聚芳醚砜的合成
在装有回流冷凝管、氮气出入口和电动搅拌器的100mL三口烧瓶中依次加入0.8730g(2.0mmol)3,3′-二(3″-氨基苯基)-4,4′-二氟二苯砜、2.0340g(8.0mmol)4,4′-二氟二苯砜、1.8621g(10.0mmol)4,4′-二羟基联苯、1.38g(10.0mmol)无水碳酸钾、12mL N-甲基吡咯烷酮和3mL甲苯,在140℃下加热预反应3h后通氮气除去甲苯和水,温度升至160℃持续反应6h,将反应液倒入300mL乙醇中沉淀得到含有二氨基结构聚芳醚砜(2NH2-PAES-20),产率95%;
(2)含四磺化烷基侧链结构聚芳醚砜聚合物的合成
在装有回流冷凝管、氮气出入口和电动搅拌器的100mL三口烧瓶中加入1.00g(氨基摩尔量为0.92mmol)含有二氨基结构聚芳醚砜(PAES-2NH2-20)和30mL NMP在65℃下搅拌溶解完全,随后加入0.9467g(7.32mmol)N,N′-二异丙基乙胺继续搅拌3h,最后加入1.5455g(7.32mmol)2-溴乙基磺酸钠,升温至130℃继续反应50h,将反应液在400mL乙醇中沉淀,得到四磺烷基侧链结构聚芳醚砜聚合物(PAES-4S-20),产率96%。
实施例1、2和3所得含四磺化烷基侧链结构聚芳醚砜聚合物制备而成的质子交换膜在钒电池中的效率性能如图3所示。在图3(a)中可以观察到,在测试电流密度40~200mA/cm2下,PAES-4S-xx和Nafion 115膜的库伦效率(CE)排序为:PAES-4S-20(95.8%~98.3%)>PAES-4S-24(95.5%~98.2%)>PAES-4S-28(94.2%~96.2%)>Nafion 115(90.7%~95.1%)。更高的电流密度意味着更短的充放电时间和更少的钒离子渗透,因此CE随着电流密度增大而增加。图3(b)给出了电池的电压效率(VE),从40到200mA/cm2,VE不断较小,这是由于欧姆极化和过电位导致的,并且PAES-4S-28(VE:91.4%~64.0%)>PAES-4S-24(VE:90.7%~62.1%)>Nafion 115(VE:89.9%~62.2%)>PAES-4S-20(VE:88.1%~57.0%)。可以看到PAES-4S-28和PAES-4S-24的VE高于Nafion 115。能量效率(EE)作为CE和VE的乘积,代表VRFB电池的综合性能,也是用于评估VRFB充放电过程中能量损失的重要基本参数。可以在图3(c)中看到,在测试电流密度下PAES-4S-24(86.6%~61.0%)和PAES-4S-28(86.1%~61.6%)的EE都高于Nafion 115(81.5%~59.1%),并且在40mA/cm2下,PAES-4S-24表现出最高EE为86.8%。
图4和图5分别为实施例制备的PAES-4S-xx膜的质子传导率和吸水率及溶胀率曲线,可以看到,都随着磺化比例的增加而增加,具体数值如表1所示。此外,在表1中给出了钒离子渗透率值,也是随着磺化比例的增加而增加。膜在60mA/cm2测得的电池效率(CE、VE和EE)值也列于表1中。
上述实施例所述的含四磺化烷基侧链结构聚芳醚砜聚合物制备而成的质子交换膜与现有的Nafion膜的基本性能数值对比见表1。
表1本发明实施例所述的聚芳醚砜聚合物制备而成的质子交换膜与现有技术Nafion 115膜的性能对比
Figure BDA0003466385270000081
表1中,σ为质子交换膜的质子传导率,WU%为吸水率,SR%为溶胀率,VO2+permeability为钒离子渗透率,CE、VE和EE为膜在60mA/cm2测得的电池效率。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和技术原理的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的,这些修改和变更也应视为本发明的保护范围。

Claims (10)

1.一类含四磺化烷烃侧链结构聚芳醚砜聚合物,其特征在于,所述的含四磺化烷烃侧链结构聚芳醚砜聚合物的结构式为:
Figure FDA0003466385260000011
所述式1中,磺化结构单元的含量x=0.16~0.28,并且含有四磺烷烃柔性侧链结构,非磺化结构单元的含量1-x=0.84~0.72,n=50~75。
2.一种权利要求1所述的含四磺化烷烃侧链结构聚芳醚砜聚合物的制备方法,其特征在于,所述方法包括以下步骤:
(1)氮气保护下,将3,3′-二(3″-氨基苯基)-4,4′-二氟二苯砜、4,4′-二氟二苯砜和4,4′-二羟基联苯混合,加入有机溶剂和脱水剂,在碱性催化剂作用下在130~150℃反应1~3h后,共沸脱水蒸出脱水剂,进一步升温至160~170℃反应4~10h后结束反应,即可得到含二氨基结构聚芳醚砜聚合物;
(2)氮气保护下,将含二氨基结构聚芳醚砜聚合物和有机溶剂混合,在50~70℃下搅拌溶解,随后加入碱性催化剂继续搅拌反应1~3h,再加入磺酸盐在120~140℃下反应36~55h,即可得到式1所示的含四磺烷烃侧链结构聚芳醚砜聚合物。
3.根据权利要求2所述的含四磺化烷烃侧链结构聚芳醚砜聚合物的制备方法,其特征在于,所述制备方法中三种反应单体3,3′-二(3″-氨基苯基)-4,4′-二氟二苯砜、4,4′-二氟二苯砜和4,4′-二羟基联苯的摩尔比为x:(1-x):1。
4.根据权利要求2所述的含四磺化烷烃侧链结构聚芳醚砜聚合物的制备方法,其特征在于,所述步骤(1)中,有机溶剂为N-甲基吡咯烷酮,用量为三种反应单体总质量的2~4倍;所述的脱水剂为甲苯,用量为N-甲基吡咯烷酮体积的0.2~0.4倍。
5.根据权利要求2所述的含四磺化烷烃侧链结构聚芳醚砜聚合物的制备方法,其特征在于,所述步骤(1)中,所述的碱性催化剂为碳酸钾和碳酸钠中的一种,用量为4,4′-二羟基联苯摩尔量的1~3倍。
6.根据权利要求2所述的含四磺化烷烃侧链结构聚芳醚砜聚合物的制备方法,其特征在于,所述制备方法中制得的含二氨基结构聚芳醚砜聚合物的结构式为:
Figure FDA0003466385260000021
所述式2中,含二氨基结构单元的含量x=0.16~0.28,非含二氨基结构单元的含量1-x=0.84~0.72,n=50~75。
7.根据权利要求2所述的含四磺化烷烃侧链结构聚芳醚砜聚合物的制备方法,其特征在于,所述步骤(2)中有机溶剂为N-甲基吡咯烷酮,其用量为含二氨基结构聚芳醚砜聚合物质量的20~50倍。
8.根据权利要求2所述的含四磺化烷烃侧链结构聚芳醚砜聚合物的制备方法,其特征在于,所述步骤(2)中,所述碱性催化剂为N,N′-二异丙基乙胺,用量为含二氨基结构聚芳醚砜聚合物中氨基摩尔量的5~10倍;所述磺酸盐为2-溴乙基磺酸钠,用量为含二氨基结构聚芳醚砜聚合物中氨基摩尔量的5~10倍。
9.一种权利要求1所述的含四磺化烷烃侧链结构聚芳醚砜聚合物的应用,其特征在于该聚合物应用于质子交换膜的制备。
10.根据权利要求9所述的含四磺化烷烃侧链结构聚芳醚砜聚合物的应用,其特征在于所述质子交换膜应用于钒液流电池中。
CN202210030826.7A 2022-01-12 2022-01-12 一类含四磺化烷烃侧链结构聚芳醚砜聚合物及其制备方法和应用 Active CN114369245B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210030826.7A CN114369245B (zh) 2022-01-12 2022-01-12 一类含四磺化烷烃侧链结构聚芳醚砜聚合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210030826.7A CN114369245B (zh) 2022-01-12 2022-01-12 一类含四磺化烷烃侧链结构聚芳醚砜聚合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114369245A true CN114369245A (zh) 2022-04-19
CN114369245B CN114369245B (zh) 2024-01-23

Family

ID=81144257

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210030826.7A Active CN114369245B (zh) 2022-01-12 2022-01-12 一类含四磺化烷烃侧链结构聚芳醚砜聚合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114369245B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106084208A (zh) * 2016-06-21 2016-11-09 常州大学 一类侧链含柔性磺酸离子簇结构聚芳醚腈质子交换膜及其制备方法
CN107722275A (zh) * 2017-09-20 2018-02-23 长春工业大学 新型侧链磺化聚芳醚酮砜质子交换膜及其制备方法
KR20190014950A (ko) * 2017-08-04 2019-02-13 성균관대학교산학협력단 바나듐 레독스 흐름 전지용 양이온 교환 멤브레인 및 이의 제조방법
CN112679396A (zh) * 2020-12-25 2021-04-20 常州大学 一种含二氨基苯结构的活性二氟二苯砜单体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106084208A (zh) * 2016-06-21 2016-11-09 常州大学 一类侧链含柔性磺酸离子簇结构聚芳醚腈质子交换膜及其制备方法
KR20190014950A (ko) * 2017-08-04 2019-02-13 성균관대학교산학협력단 바나듐 레독스 흐름 전지용 양이온 교환 멤브레인 및 이의 제조방법
CN107722275A (zh) * 2017-09-20 2018-02-23 长春工业大学 新型侧链磺化聚芳醚酮砜质子交换膜及其制备方法
CN112679396A (zh) * 2020-12-25 2021-04-20 常州大学 一种含二氨基苯结构的活性二氟二苯砜单体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PENGHUA QIAN ET AL.,: "An enhanced stability and efficiency of SPEEK-based composite membrane influenced by amphoteric side-chain polymer for vanadium redox flow battery", JOURNAL OF MEMBRANE SCIENCE, vol. 643, pages 120011 *

Also Published As

Publication number Publication date
CN114369245B (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
KR100657740B1 (ko) 브랜치된 술폰화 멀티 블록 공중합체 및 이를 이용한전해질막
US9975995B2 (en) Ion conducting polymer comprising partially branched block copolymer and use thereof
Chen et al. Low vanadium ion permeabilities of sulfonated poly (phthalazinone ether ketone) s provide high efficiency and stability for vanadium redox flow batteries
CN105131289B (zh) 一种新型磺化聚苯并咪唑共聚物、交联膜、制备方法及其应用
KR101161483B1 (ko) 고분자 전해질막
CN105255188B (zh) 磺化聚芳醚酮砜/氧化石墨烯复合材料、制备方法及质子交换膜
CN106543439B (zh) 燃料电池用交联型含氨基磺化聚芴醚砜腈质子交换膜材料、制备方法及其应用
KR20110063178A (ko) 술폰산기를 갖는 폴리(아릴렌에테르) 공중합체, 이의 제조방법 및 이를 이용한 연료전지용 고분자 전해질 막
CN105789667B (zh) 一类侧链含多磺酸结构聚芳醚砜酮质子交换膜材料及其制备方法
CN102683731A (zh) 用于燃料电池的电解质膜以及包括该电解质膜的膜-电极组合件及燃料电池
CN113278151B (zh) 一类含密集型烷基硫柔性侧链结构聚芳醚砜聚合物及其制备方法和应用
CN117247543A (zh) 一类电解水制氢用交联型季铵功能化聚芳醚砜阴离子交换膜材料及其制备方法
CN114369245A (zh) 一类含四磺化烷烃侧链结构聚芳醚砜聚合物及其制备方法和应用
KR101372071B1 (ko) 폴리설폰계 고분자, 이를 포함하는 전해질막, 및 상기 고분자의 제조방법
CN111393695B (zh) 一种自交联磺化聚酰亚胺膜的制备方法
CN109988327A (zh) 一种非氟离子交换膜及其制备方法和应用
CN110054770B (zh) 一类含柔性侧链结构季磷型聚芳醚腈阴离子交换膜材料及其制备方法
CN113161557A (zh) 一种磺化聚芳醚酮作为粘结剂在质子交换膜燃料电池的膜电极中的应用、膜电极及制备方法
KR100794466B1 (ko) 브랜치된 술폰화 멀티 블록 공중합체 및 이를 이용한전해질막
CN113501959A (zh) 一类钒流电池用聚芳醚砜聚合物及其制备方法
KR102629899B1 (ko) 화합물, 이로부터 유래되는 단위를 포함하는 중합체, 이를 포함하는 고분자 분리막, 이를 포함하는 막 전극 집합체, 연료전지 및 레독스 플로우 전지
CN112979926A (zh) 一种聚电解质材料、其制备方法和酸性聚电解质膜
KR20170069029A (ko) 레독스 흐름 전지용 음이온 교환막 및 이의 제조방법
KR101190913B1 (ko) 브랜치된 술폰화 멀티 블록 공중합체의 제조방법
KR102055965B1 (ko) 화합물, 이를 포함하는 고분자 전해질막 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant