CN1143267A - 一种合成锂离子电池中正极材料的方法 - Google Patents

一种合成锂离子电池中正极材料的方法 Download PDF

Info

Publication number
CN1143267A
CN1143267A CN96104965A CN96104965A CN1143267A CN 1143267 A CN1143267 A CN 1143267A CN 96104965 A CN96104965 A CN 96104965A CN 96104965 A CN96104965 A CN 96104965A CN 1143267 A CN1143267 A CN 1143267A
Authority
CN
China
Prior art keywords
positive electrode
ion battery
microwave
lithium ion
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96104965A
Other languages
English (en)
Other versions
CN1042377C (zh
Inventor
严宏伟
陈立泉
黄学杰
薛荣坚
黄宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Physics of CAS
Original Assignee
Institute of Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Physics of CAS filed Critical Institute of Physics of CAS
Priority to CN96104965A priority Critical patent/CN1042377C/zh
Publication of CN1143267A publication Critical patent/CN1143267A/zh
Priority to EP97920486A priority patent/EP0913876A4/en
Priority to DE0913876T priority patent/DE913876T1/de
Priority to PCT/CN1997/000039 priority patent/WO1997043794A1/zh
Priority to JP9540354A priority patent/JPH11511290A/ja
Application granted granted Critical
Publication of CN1042377C publication Critical patent/CN1042377C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1257Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing lithium, e.g. Li2MnO3, Li2[MxMn1-xO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1292Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn5O12]n-
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于高能电池技术领域,特别是合成锂离子电池用的正极材料的技术领域。本发明的目的为了节约能源和提高劳动生产率,和减少制备过程中锂盐的挥发,使配方得以准确控制,从而提供一种将锂和过渡金属Co、Ni、Mn、Cr的氢氧化物或氧化物或它们的盐按Li0.5-1M1-yMy′O2称料混合,放入保温容器内,置微波炉中用微波频率在0.3-300GHz下,加热600-900℃,保温1-60分钟合成。该方法简单,防止锂盐挥发,重复性好。

Description

一种合成锂离子电池中正极材料的方法
本发明属于高能电池制备技术领域,特别是合成锂离子电池中正极材料的技术领域。
用作锂离子电池正极材料的过渡金属氧化物如LiCoO2、LiNiO2、LiMn2O4,其常规合成方法是固相反应法,通常是以锂的氢氧化物或盐和含过渡金属的氢氧化物或盐为原料,在700-900℃高温下长时间煅烧、并重复数次而成,所获得的材料其电化学可逆容量在120-1400mAh/g之间,如参考文献:
1.K.Mizushima,P.C.Jones,P.J.Wiseman and
  J.B.Goodenough,Mat.Res.Bull.15,783(1980)。
2.M.G.S.R.Thomas,W.I.F.David,J.B.
  Goodenough and P.Groves,Mat.Res.Bull.20,
  1137(1985)。
3.M.M.Thackeray,W.I.F.David,P.G.Bruce and
J.B.Goodenough,Mat.Res.Bull.18,461(1983)所描述的:由于固相反应合成温度高、保温时间长,造成以下几个缺点:
(1)能源的巨大消耗,生产效率低;
(2)锂盐的大量挥发,通常在反应过程中需要添加过量的锂盐来以补充,而这又造成配方控制上的困难;
(3)获得的正极材料晶粒度较大,在制备锂离子电池正极膜之前,必须充分磨细;
(4)材料的均匀性差。
本发明的目的在于克服上述已有技术的缺点和不足,为了节约能源和提高劳动生产率。
本发明的目的,还在于减少制备过程中锂盐的挥发,使配方得以准确控制,生产重复性好;获得均匀微晶正极材料,允许大电流放电。从而提供一种将锂和过渡金属如Co、Ni、Mn、Cr的氢氧化物或氧化物或它们的盐类的混合物在微波炉中加热的合成方法。该方法使用频率在0.3-300GHz的微波进行合成,温度在600-900℃,保温时间1至60分钟。其正极材料循环性好,并可耐大电流充放电。
本发明的目的是这样实现的:本发明的合成热源是微波炉,使用微波频率在0.3-300GHz之间,把原料按组成配方均匀混合后,置于能被微波穿透的保温材料如莫来石泡沫保温砖或叶蜡石,耐高温玻璃等容器中,然后放入频率为2.45GHz或28GHz或60GHz单模微波炉或多模微波炉如家用微波炉中,使用微波频率在0.3-300GHz范围内,在600-900℃合成,保温时间1至60分钟,然后随炉冷却,制备出组成为LixM1-yMy′O2其中x=0.5-1y=0-1,M=Co、Ni、Mn,M′=Co、Ni、Mn、Cr等的锂离子电池用正极材料。
本发明使用微波频率在0.3-300GHz范围的电磁波,相应波长在1m-1mm之间,具有波长短、频率高、穿透能力强、量子特性明显等特性,作为一种新能源,可以对材料实现快速加热和快速烧结。微波加热完全不同于常规加热,它是依靠物体吸收微波能转换成热能自身升温至一定温度,热量产生于材料内部而不是来源于外部加热源,是一种体加热方式,材料吸收微波能转化为内部分子的动能和热能后,整体同时均匀加热。由于材料对微波能的吸收率与温度成正比,导致加热温度呈指数形式升高,从而产生极高的加热速率。
本发明的优点在于用微波加热合成锂离子电池正极材料,可以明显降低合成温度,缩短合成时间;由于在极短的时间内完成了合成,全过程锂量的挥发可以忽略;同时晶粒生长也得以有效控制。制备的正极材料的电化学容量高,其他性能优于或不亚于常规方法合成的正极材料,尤其是可以大电流充放电。
下面结合实施例和附图对本发明进行详细说明:
实施例1:正极材料LiCoO2的合成:锂盐采用化学纯氢氧化锂,钴盐用化学纯的三氧化二钴,将两种原料按重量比1∶3.47均匀混合、压片后置于莫来石泡沫保温砖容器中,放于微波频率为2.45GHz的单模微波炉中进行合成。合成温度为800℃,保温10分钟,然后随炉冷却,整个过程共用20分钟左右。合成的LiCoO2晶粒度为1-2微米,而常规合成的LiCoO2其粒度则为10-20微米。从XRD谱图中可以发现,微波合成的LiCoO2具有很高的纯度,观察不到其它杂相的存在。其电化学可逆容量为140mAh/g,循环性能良好。
实施例2:正极材料LiNiO2的合成:锂盐采用化学纯硝酸锂,镍盐采用分析纯氢氧化镍,将两种原料按重量比1∶0.75均匀混合,合成方法同上,合成温度为700℃,保温10分钟,然后随炉冷却。合成的LiNiO2晶粒度为1-2微米。其电化学可逆容量为150mAh/g,循环性能良好。
实施例3:正极材料Li0.9NiO2的合成:将同上原料按重量比1∶0.83均匀混合、压片后在同上条件下进行合成。合成温度为700℃,保温10分钟。其电化学可逆容量为120mAh/g,循环性能良好。
实施例4:正极材料LiNi0.91Co0.09O2的合成:锂盐采用化学纯氢氧化锂,镍盐采用化学纯三氧化二镍,钴盐用化学纯三氧化二钴,将三种原料按重量比1∶3.14∶0.31均匀混合、压片后置于莫来石泡沫保温砖容器中,放于微波频率为2.45GHz的单模微波炉中进行合成。合成温度为700℃,保温10分钟,然后随炉冷却。产物为单相,其电化学可逆容量为150mAh/g,循环性能良好。
实施例5:正极材料LiMn2O4的合成:用化学纯氢氧化锂和化学纯二氧化锰为原料,按重量比1∶7.26均匀混合、压片后置于莫来石泡沫保温砖容器中,放于28GHz单模家用微波炉中,用高加热档加热20分钟,然后随炉冷却。所得的LiMn2O4晶粒均匀,为1-2微米,相纯度高,其电化学可逆容量为130mAh/g,循环性能良好。
实施例6:正极材料LiCr0.4Mn1.6O4的合成:用化学纯氢氧化锂,化学纯三氧化二铬和化学纯二氧化锰为原料,按重量比1∶1.27∶5.81均匀混合、压片后置于莫来石泡沫保温砖容器中,放于60GHz单模家用微波炉中,用高加热档加热20分钟,然后随炉冷却。产物的电化学可逆容量为100mAh/g。

Claims (2)

1.一种合成锂离子电池中正极材料的方法,其特征在于:用锂和过渡金属Co、Ni、Mn、Cr的氢氧化物或氧化物或它们的盐按比例混合均匀,其原料混合比例按LixM1-yMy′O2称料,
其中x=0.5-1;
    y=0-1;
    M为Co、Ni、Mn;
    M′为Co、Ni、Mn、Cr;
将混合均匀的原料放入能被微波穿透的保温材料容器内,置于微波炉中,微波炉使用频率为2.45GHz-60GHz,加热温度在600-900℃范围内,保温1-60分钟,然后随炉温冷却后取出。
2.一种合成锂离子电池中正极材料的方法,其特征在于:所述的能被微波穿透的保温材料保温材料包括莫来石泡沫保温砖、叶蜡石、玻璃。
CN96104965A 1996-05-10 1996-05-10 一种合成锂离子电池中正极材料的方法 Expired - Fee Related CN1042377C (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN96104965A CN1042377C (zh) 1996-05-10 1996-05-10 一种合成锂离子电池中正极材料的方法
EP97920486A EP0913876A4 (en) 1996-05-10 1997-05-04 PROCESS FOR THE PREPARATION OF POSITIVE MATERIALS FOR LITHIUM SECONDARY BATTERIES USING MICROWAVE ENERGY
DE0913876T DE913876T1 (de) 1996-05-10 1997-05-04 Verfahren zur herstellung von positivmaterial für lithiumsekundärzelle mittels mikrowellenenergie
PCT/CN1997/000039 WO1997043794A1 (fr) 1996-05-10 1997-05-04 Procede de preparation de materiaux positifs pour piles secondaires au lithium au moyen d'energie micro-ondes
JP9540354A JPH11511290A (ja) 1996-05-10 1997-05-04 マイクロ波エネルギーを用いたリチウム二次電池用陽極材料の調製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN96104965A CN1042377C (zh) 1996-05-10 1996-05-10 一种合成锂离子电池中正极材料的方法

Publications (2)

Publication Number Publication Date
CN1143267A true CN1143267A (zh) 1997-02-19
CN1042377C CN1042377C (zh) 1999-03-03

Family

ID=5118649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96104965A Expired - Fee Related CN1042377C (zh) 1996-05-10 1996-05-10 一种合成锂离子电池中正极材料的方法

Country Status (5)

Country Link
EP (1) EP0913876A4 (zh)
JP (1) JPH11511290A (zh)
CN (1) CN1042377C (zh)
DE (1) DE913876T1 (zh)
WO (1) WO1997043794A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208643A (zh) * 2011-04-28 2011-10-05 河间市金鑫新能源有限公司 锂离子动力电池多元掺杂改性正极材料及其制备方法
CN103125036A (zh) * 2010-09-30 2013-05-29 日本碍子株式会社 锂离子电池用正极活性物质的制造方法
CN111655625A (zh) * 2017-11-17 2020-09-11 昂泰克系统公司 用于金属混合氧化物的固态合成方法以及这些材料的表面改性和这些材料在电池中,尤其是作为正极材料的用途
CN112382751A (zh) * 2020-11-12 2021-02-19 北京大学深圳研究生院 一种电池电极材料的制备方法及电池电极材料

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678452B2 (ja) * 2000-05-15 2011-04-27 株式会社豊田中央研究所 リチウム二次電池正極活物質用リチウムマンガン複合酸化物の製造方法
CN1324731C (zh) * 2003-07-15 2007-07-04 新乡无氧铜材总厂 一种锂离子电池用锂锰氧化物正极材料的制备工艺
US20110008233A1 (en) 2009-07-10 2011-01-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material
KR101748406B1 (ko) 2009-08-07 2017-06-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질의 제작 방법
JP5917027B2 (ja) 2010-06-30 2016-05-11 株式会社半導体エネルギー研究所 電極用材料の作製方法
JP2012048865A (ja) * 2010-08-24 2012-03-08 Asahi Glass Co Ltd リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
JP5741818B2 (ja) * 2011-03-18 2015-07-01 東京電力株式会社 リチウムイオン二次電池用活物質の製造方法およびその用途
CN104703920A (zh) * 2012-08-10 2015-06-10 Csir公司 尖晶石材料的制造
US9673454B2 (en) 2013-02-18 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Sodium-ion secondary battery
CA2953296A1 (en) * 2014-07-03 2016-01-07 Csir Production of a layered lithium-manganese-nickel-cobalt oxide material
CN106067548B (zh) * 2016-08-13 2018-10-23 杭州富阳伟文环保科技有限公司 一种SnO2/钨酸铁锂/碳复合纳米材料及其制备方法
EP3412633A1 (en) * 2017-06-08 2018-12-12 Basf Se Process for manufacturing an electrode active material
CN110504444B (zh) * 2019-08-19 2022-05-13 漳州明德工贸有限公司 一种钪钒合锂锰氧化物作为锂电池的正极材料及其制备方法
CN114843505B (zh) * 2022-06-17 2024-08-06 武汉工程大学 一种延缓镍钴锰酸锂正极材料烧结过程中匣钵腐蚀的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673863A (en) * 1979-11-20 1981-06-18 Tdk Corp Manufacture of positive electrode for nonaqueous- electrolyte battery
JPS60225358A (ja) * 1984-04-20 1985-11-09 Sanyo Electric Co Ltd 非水電解液電池
JPH05174872A (ja) * 1991-12-20 1993-07-13 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JPH05325968A (ja) * 1992-05-26 1993-12-10 Nippon Steel Corp 非水系リチウム二次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103125036A (zh) * 2010-09-30 2013-05-29 日本碍子株式会社 锂离子电池用正极活性物质的制造方法
CN102208643A (zh) * 2011-04-28 2011-10-05 河间市金鑫新能源有限公司 锂离子动力电池多元掺杂改性正极材料及其制备方法
CN111655625A (zh) * 2017-11-17 2020-09-11 昂泰克系统公司 用于金属混合氧化物的固态合成方法以及这些材料的表面改性和这些材料在电池中,尤其是作为正极材料的用途
CN112382751A (zh) * 2020-11-12 2021-02-19 北京大学深圳研究生院 一种电池电极材料的制备方法及电池电极材料

Also Published As

Publication number Publication date
CN1042377C (zh) 1999-03-03
DE913876T1 (de) 1999-08-19
EP0913876A1 (en) 1999-05-06
EP0913876A4 (en) 2000-01-12
WO1997043794A1 (fr) 1997-11-20
JPH11511290A (ja) 1999-09-28

Similar Documents

Publication Publication Date Title
CN1042377C (zh) 一种合成锂离子电池中正极材料的方法
Kim et al. Molten salt synthesis of LiNi0. 5Mn1. 5O4 spinel for 5 V class cathode material of Li-ion secondary battery
Okada et al. Cycle characterizations of LiMxMn2− xO4 (M= Co, Ni) materials for lithium secondary battery at wide voltage region
Kim et al. Synthesis and characterization of MnV2O6 as a high capacity anode material for a lithium secondary battery
CN102627332B (zh) 氧化物固溶体及其制备方法以及锂离子电池正极材料及其制备方法
Julien et al. Structural and electrochemical properties of LiNi0. 3Co0. 7O2 synthesized by different low-temperature techniques
CN102623691B (zh) 一种锂电池正极材料镍锰酸锂的制备方法
Julien et al. Layered LiNi0. 5Co0. 5O2 cathode materials grown by soft-chemistry via various solution methods
CN103296270B (zh) 一种锂离子电池正极材料镍钴锰酸锂(LiNixCoyMnzO2)及其制备方法
CN104091918A (zh) 锂离子电池正极材料及其制备方法
Zhang Characterization of high tap density Li [Ni1/3Co1/3Mn1/3] O2 cathode material synthesized via hydroxide co-precipitation
KR101443359B1 (ko) 니켈 함량이 높은 리튬-니켈-코발트-망간계 복합 산화물의 제조 방법, 이에 의하여 제조된 니켈 함량이 높은 리튬-니켈-코발트-망간계 복합 산화물, 및 이를 포함하는 리튬 이차 전지
CN109678219A (zh) 一种纳米层状镍钴锰酸锂的制备方法
CN111224089A (zh) 一种熔盐法制备的锂离子电池三元正极材料ncm811及其制备方法
Hong et al. Structural and electrochemical properties of the spinel Li (Mn2− xLix/4Co3x/4) O4
Yang et al. Urea combustion synthesis of LiNi0. 5Mn1. 5O4 as a cathode material for lithium ion batteries
Malik et al. Effect of Synthesis Method on the Electrochemical Performance of LiNi x MnCo 1-xy O 2 (NMC) Cathode for Li-Ion Batteries: A Review
US6361755B1 (en) Low temperature synthesis of Li4Mn5O12 cathodes for lithium batteries
CN102820463A (zh) 掺杂富锂锰基正极材料及其制备方法、锂离子电池
Sathiya et al. Rapid synthetic routes to prepare LiNi1/3Mn1/3Co1/3O2 as a high voltage, high-capacity Li-ion battery cathode material
CN103811745B (zh) 一种高比容量富锂型锂电池材料的制备方法
CN102050498A (zh) 掺杂硼元素的镍钴酸锂正极材料
Li et al. Synthesis and characterization of LiNi1− xCoxO2 for lithium batteries by a novel method
Julien et al. Layered LiNi 1− y Co y O 2 compounds synthesized by a glycine-assisted combustion method for lithium batteries
CN114678497B (zh) 一种掺杂改性钠离子电池正极材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 19990303

Termination date: 20110510