CN114213117B - 一种压电陶瓷的干压成型烧结方法 - Google Patents

一种压电陶瓷的干压成型烧结方法 Download PDF

Info

Publication number
CN114213117B
CN114213117B CN202111655606.5A CN202111655606A CN114213117B CN 114213117 B CN114213117 B CN 114213117B CN 202111655606 A CN202111655606 A CN 202111655606A CN 114213117 B CN114213117 B CN 114213117B
Authority
CN
China
Prior art keywords
sintering
molten salt
drying
dry
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111655606.5A
Other languages
English (en)
Other versions
CN114213117A (zh
Inventor
张晓云
方豪杰
贺亦文
刘建平
曾超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Jialixin Ceramic Technology Co ltd
Original Assignee
Hunan Jialixin Ceramic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Jialixin Ceramic Technology Co ltd filed Critical Hunan Jialixin Ceramic Technology Co ltd
Priority to CN202111655606.5A priority Critical patent/CN114213117B/zh
Publication of CN114213117A publication Critical patent/CN114213117A/zh
Application granted granted Critical
Publication of CN114213117B publication Critical patent/CN114213117B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本发明涉及电子陶瓷材料领域,具体为一种压电陶瓷的干压成型烧结方法,将(Ba0.85Ca0.15)(Zr0.1Ti0.9‑aAa)O3、(K0.5Na0.5)(Nb0.5Ta0.5)O3、CuAlO2、LiBiO2、MnO球磨烘干后,电场下预烧,再次球磨并烘干,与聚乙烯醇、石蜡混合均匀造粒干压成型,还原气体氛围下,升温至550‑650℃保温排胶,再升温至1100‑1150℃保温烧结2‑4h,再降温至800‑850℃保温退火1‑2h,炉冷至室温即可,利用本发明方法所制备的压电陶瓷烧结温度低,而且具有较高的致密度和良好的压电性能,具有广阔的应用前景。

Description

一种压电陶瓷的干压成型烧结方法
技术领域
本发明涉及电子陶瓷材料领域,具体涉及一种压电陶瓷的干压成型烧结方法。
背景技术
压电陶瓷是一种具备了压电、介电以及弹性三种性能的各向异性材料。作为当今使用率最高的功能性材料之一,压电陶瓷的应用范围日益广泛,这是因为其具有化学稳定性高、制备工艺方便、成本低以及压电性能较好等诸多优点。压电陶瓷在日常生活中发挥着重要的作用,不仅广泛应用在日常生活中,在军用器件中也起到了必不可少的作用。
干压成型烧结法以其成本低,技术简单等优点成为目前运用最成熟、最广泛的一种传统的粉体合成方法,也是目前压电陶瓷主要的合成方法,但此方法也存在一些致命的缺点,如原料难以混合均匀,晶粒粗而分散,烧结温度高等,还需要对其进行一定的改进。
发明内容
发明目的:针对现有技术的缺陷或改进需求,本发明提供了一种压电陶瓷的干压成型烧结方法。
本发明所采用的技术方案如下:
一种压电陶瓷的干压成型烧结方法,具体如下:
将(Ba0.85Ca0.15)(Zr0.1Ti0.9-aAa)O3、(K0.5Na0.5)(Nb0.5Ta0.5)O3、CuAlO2、LiBiO2、MnO混合球磨10-15h,得到混合粉体,将其烘干后,置于预烧电场下750-800℃预烧2-4h,恢复室温后再次球磨10-15h并烘干,与聚乙烯醇、石蜡混合均匀造粒于50-60MPa下干压成型,得到陶瓷坯体,还原气体氛围下,将陶瓷坯体一次升温至550-650℃保温排胶2-4h,再二次升温至1100-1150℃保温烧结2-4h,烧结时,对陶瓷坯体施加烧结电场,再降温至800-850℃保温退火1-2h,烧结电场强度随着温度降低随之降低,最后炉冷至室温即可获得所述压电陶瓷,所述压电陶瓷由以下化学式表示:
x(Ba0.85Ca0.15)(Zr0.1Ti0.9-aAa)O3-(1-x)(K0.5Na0.5)(Nb0.5Ta0.5)O3-αCuAlO2-βLiBiO2-γMnO
其中,a表示原子百分比,A为Nb、Mn或Sn中的任意一种,x表示(Ba0.85Ca0.15)(Zr0.1Ti0.9-aAa)O3
占x(Ba0.85Ca0.15)(Zr0.1Ti0.9-aAa)O3-(1-x)(K0.5Na0.5)(Nb0.5Ta0.5)O3的摩尔百分比,
α、β、γ分别表示CuAlO2、LiBiO2、MnO占x(Ba0.85Ca0.15)(Zr0.1Ti0.9-aAa)O3-(1-x)(K0.5Na0.5)(Nb0.5Ta0.5)O3的质量百分比,x为0.6-0.9,a为0.02-0.1,α为0.1-0.5%,β为0.1-0.5%,γ为0.01-0.02%。
进一步地,A为Sn。
进一步地,x为0.8。
进一步地,a为0.05。
进一步地,α为0.1%,β为0.2%,γ为0.01%。
进一步地,(Ba0.85Ca0.15)(Zr0.1Ti0.9-aAa)O3的制备方法如下:
将BaCO3、CaCO3、TiO2、ZrO2、A氧化物加入熔盐水溶液中,混合均匀得到悬浮液,继续搅拌1-3h后80-90℃烘干,球磨10-15h后升温至650-700℃预烧2-4h,恢复室温后去离子水清洗除去熔盐后烘干即可。
进一步地,(K0.5Na0.5)(Nb0.5Ta0.5)O3的制备方法如下:
将K2CO3、Na2CO3、Nb2O5、Ta2O5加入熔盐水溶液中,混合均匀得到悬浮液,继续搅拌1-3h后80-90℃烘干,球磨10-15h后升温至650-700℃预烧2-4h,恢复室温后去离子水清洗除去熔盐后烘干即可。
CuAlO2和LiBiO2可以直接购买,也可以参考(Ba0.85Ca0.15)(Zr0.1Ti0.9-aSna)O3、(K0.5Na0.5)(Nb0.5Ta0.5)O3的制备方法自行制备,制备时将原料替换为CuO、Al2O3或Li2O、Bi2O3即可。
还原气体可以是纯氢气、或氢气与空气、氢气与氮气、氢气与氦气,综合考虑,优选为氢气与氮气,氢气的比例也大于等于50%。
进一步地,所述熔盐水溶液为NaCl、KCl按质量比1:1组成的熔盐水溶液。
进一步地,一次升温速度为1-2℃/min,二次升温速度为4-6℃/min,降温速度为10-15℃/min。
进一步地,预烧电场强度为200-400V/cm,烧结电场强度为600-800V/cm,保温退火时烧结电场强度降低至400-500V/cm。
本发明的有益效果:
本发明提供了一种压电陶瓷的干压成型烧结方法,分别对BCZT和KNN压电陶瓷进行预掺杂后再复合,形成了单一钙钛矿结构的固溶体,并在晶界处发生偏析,具有明显弛豫现象,CuAlO2和LiBiO2的加入能明显降低烧结温度,提升致密度,通过实施例1、对比例1-2对比可知,CuAlO2和LiBiO2的加入能提升致密度,减少孔隙并细化晶粒,电场下烧结也可以降低烧结温度,烧结时施加电场会产生晶体缺陷发生雪崩效应,加速了质量传递和电导率的作用,产生的高浓度缺陷增强了原子扩散动力学,促进晶核生长、提升压电陶瓷的致密度,发明人进一步在预烧和退火时,同样施加电场,发现可以进一步提升压电陶瓷的压电性能,还原气体氛围下烧结,能诱导R/T相界中出现更高含量的R相,并诱导了更小尺寸的电畴出现,提高了压电性能,利用本发明方法所制备的压电陶瓷烧结温度低,而且具有较高的致密度和良好的压电性能,密度≥5.63g/cm3,压电常数≥615pC/N,平面机电耦合系数≥0.63,介电损耗≤0.015%,性能优于绝大多数的压电陶瓷,具有广阔的应用前景。
附图说明
图1为本发明实施例1所制备压电陶瓷的SEM图;
图2为本发明对比例1所制备压电陶瓷的SEM图;
图3为本发明对比例2所制备压电陶瓷的SEM图;
由图1、图2、图3对比可知,本发明方法所制备的压电陶瓷致密度更高,孔隙更少,晶粒细度高。
具体实施方式
实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1:
一种压电陶瓷的干压成型烧结方法:
压电陶瓷由以下化学式表示:
0.8(Ba0.85Ca0.15)(Zr0.1Ti0.85Sn0.05)O3-0.2(K0.5Na0.5)(Nb0.5Ta0.5)O3-0.1%CuAlO2-0.2%LiBiO2-0.01%MnO
以化学式中的计量比将(Ba0.85Ca0.15)(Zr0.1Ti0.9-aAa)O3、(K0.5Na0.5)(Nb0.5Ta0.5)O3、CuAlO2、LiBiO2、MnO混合球磨15h,得到混合粉体,将其烘干后,置于400V/cm预烧电场下800℃预烧4h,恢复室温后再次球磨15h并烘干,与聚乙烯醇、石蜡混合均匀造粒于60MPa下干压成型,得到陶瓷坯体,氢气与氮气按体积比1:1组成的还原气体氛围下,以2℃/min的速度将陶瓷坯体一次升温至600℃保温排胶2h,再以5℃/min的速度二次升温至1150℃保温烧结2h,烧结时,对陶瓷坯体施加800V/cm的烧结电场,再以10℃/min的速度降温至850℃保温退火2h,烧结电场强度随着温度降低随之降低,保温退火时烧结电场强度为400V/cm,最后炉冷至室温即可获得所述压电陶瓷。
其中,(Ba0.85Ca0.15)(Zr0.1Ti0.9-aSna)O3的制备方法如下:
以化学式中的计量比将BaCO3、CaCO3、TiO2、ZrO2、SnO2加入熔盐水溶液中,熔盐水溶液为NaCl、KCl按质量比1:1组成熔盐的水溶液,混合均匀得到悬浮液,继续搅拌3h后90℃烘干,球磨15h后升温至700℃预烧2h,恢复室温后去离子水清洗除去熔盐后烘干即可。
(K0.5Na0.5)(Nb0.5Ta0.5)O3的制备方法如下:
以化学式中的计量比将K2CO3、Na2CO3、Nb2O5、Ta2O5加入熔盐水溶液中,熔盐水溶液为NaCl、KCl按质量比1:1组成熔盐的水溶液,混合均匀得到悬浮液,继续搅拌3h后90℃烘干,球磨15h后升温至700℃预烧2h,恢复室温后去离子水清洗除去熔盐后烘干即可。
实施例2:
一种压电陶瓷的干压成型烧结方法:
压电陶瓷由以下化学式表示:
0.8(Ba0.85Ca0.15)(Zr0.1Ti0.85Sn0.05)O3-0.2(K0.5Na0.5)(Nb0.5Ta0.5)O3-0.1%CuAlO2-0.2%LiBiO2-0.01%MnO
以化学式中的计量比将(Ba0.85Ca0.15)(Zr0.1Ti0.9-aAa)O3、(K0.5Na0.5)(Nb0.5Ta0.5)O3、CuAlO2、LiBiO2、MnO混合球磨10h,得到混合粉体,将其烘干后,置于200V/cm预烧电场下750℃预烧2h,恢复室温后再次球磨10h并烘干,与聚乙烯醇、石蜡混合均匀造粒于50MPa下干压成型,得到陶瓷坯体,氢气与氮气按体积比1:1组成的还原气体氛围下,以1℃/min的速度将陶瓷坯体一次升温至550℃保温排胶2h,再以4℃/min的速度二次升温至1100℃保温烧结2h,烧结时,对陶瓷坯体施加600V/cm的烧结电场,再以10℃/min的速度降温至800℃保温退火1h,烧结电场强度随着温度降低随之降低,保温退火时烧结电场强度为400V/cm,最后炉冷至室温即可获得所述压电陶瓷,
其中,(Ba0.85Ca0.15)(Zr0.1Ti0.9-aSna)O3的制备方法如下:
以化学式中的计量比将BaCO3、CaCO3、TiO2、ZrO2、SnO2加入熔盐水溶液中,熔盐水溶液为NaCl、KCl按质量比1:1组成熔盐的水溶液,混合均匀得到悬浮液,继续搅拌1h后85℃烘干,球磨10h后升温至700℃预烧2h,恢复室温后去离子水清洗除去熔盐后烘干即可。
(K0.5Na0.5)(Nb0.5Ta0.5)O3的制备方法如下:
以化学式中的计量比将K2CO3、Na2CO3、Nb2O5、Ta2O5加入熔盐水溶液中,熔盐水溶液为NaCl、KCl按质量比1:1组成熔盐的水溶液,混合均匀得到悬浮液,继续搅拌1h后85℃烘干,球磨10h后升温至700℃预烧2h,恢复室温后去离子水清洗除去熔盐后烘干即可。
实施例3:
一种压电陶瓷的干压成型烧结方法:
压电陶瓷由以下化学式表示:
0.8(Ba0.85Ca0.15)(Zr0.1Ti0.85Sn0.05)O3-0.2(K0.5Na0.5)(Nb0.5Ta0.5)O3-0.1%CuAlO2-0.2%LiBiO2-0.01%MnO
以化学式中的计量比将(Ba0.85Ca0.15)(Zr0.1Ti0.9-aAa)O3、(K0.5Na0.5)(Nb0.5Ta0.5)O3、CuAlO2、LiBiO2、MnO混合球磨15h,得到混合粉体,将其烘干后,置于300V/cm预烧电场下750℃预烧2h,恢复室温后再次球磨15h并烘干,与聚乙烯醇、石蜡混合均匀造粒于50MPa下干压成型,得到陶瓷坯体,氢气与氮气按体积比1:1组成的还原气体氛围下,以1℃/min的速度将陶瓷坯体一次升温至600℃保温排胶2h,再以6℃/min的速度二次升温至1150℃保温烧结2h,烧结时,对陶瓷坯体施加800V/cm的烧结电场,再以10℃/min的速度降温至800℃保温退火2h,烧结电场强度随着温度降低随之降低,保温退火时烧结电场强度为400V/cm,最后炉冷至室温即可获得所述压电陶瓷,
其中,(Ba0.85Ca0.15)(Zr0.1Ti0.9-aSna)O3的制备方法如下:
以化学式中的计量比将BaCO3、CaCO3、TiO2、ZrO2、SnO2加入熔盐水溶液中,熔盐水溶液为NaCl、KCl按质量比1:1组成熔盐的水溶液,混合均匀得到悬浮液,继续搅拌1h后80℃烘干,球磨10h后升温至650℃预烧2h,恢复室温后去离子水清洗除去熔盐后烘干即可。
(K0.5Na0.5)(Nb0.5Ta0.5)O3的制备方法如下:
以化学式中的计量比将K2CO3、Na2CO3、Nb2O5、Ta2O5加入熔盐水溶液中,熔盐水溶液为NaCl、KCl按质量比1:1组成熔盐的水溶液,混合均匀得到悬浮液,继续搅拌1h后80℃烘干,球磨10h后升温至650℃预烧2h,恢复室温后去离子水清洗除去熔盐后烘干即可。
实施例4:
一种压电陶瓷的干压成型烧结方法:
压电陶瓷由以下化学式表示:
0.8(Ba0.85Ca0.15)(Zr0.1Ti0.85Sn0.05)O3-0.2(K0.5Na0.5)(Nb0.5Ta0.5)O3-0.1%CuAlO2-0.2%LiBiO2-0.01%MnO
以化学式中的计量比将(Ba0.85Ca0.15)(Zr0.1Ti0.9-aAa)O3、(K0.5Na0.5)(Nb0.5Ta0.5)O3、CuAlO2、LiBiO2、MnO混合球磨10h,得到混合粉体,将其烘干后,置于300V/cm预烧电场下800℃预烧2h,恢复室温后再次球磨10h并烘干,与聚乙烯醇、石蜡混合均匀造粒于50MPa下干压成型,得到陶瓷坯体,氢气与氮气按体积比1:1组成的还原气体氛围下,以2℃/min的速度将陶瓷坯体一次升温至650℃保温排胶4h,再以5℃/min的速度二次升温至1150℃保温烧结2h,烧结时,对陶瓷坯体施加600V/cm的烧结电场,再以10℃/min的速度降温至800℃保温退火2h,烧结电场强度随着温度降低随之降低,保温退火时烧结电场强度为400V/cm,最后炉冷至室温即可获得所述压电陶瓷,
其中,(Ba0.85Ca0.15)(Zr0.1Ti0.9-aSna)O3的制备方法如下:
以化学式中的计量比将BaCO3、CaCO3、TiO2、ZrO2、SnO2加入熔盐水溶液中,熔盐水溶液为NaCl、KCl按质量比1:1组成熔盐的水溶液,混合均匀得到悬浮液,继续搅拌2h后90℃烘干,球磨10h后升温至650℃预烧2h,恢复室温后去离子水清洗除去熔盐后烘干即可。
(K0.5Na0.5)(Nb0.5Ta0.5)O3的制备方法如下:
以化学式中的计量比将K2CO3、Na2CO3、Nb2O5、Ta2O5加入熔盐水溶液中,熔盐水溶液为NaCl、KCl按质量比1:1组成熔盐的水溶液,混合均匀得到悬浮液,继续搅拌2h后90℃烘干,球磨10h后升温至650℃预烧2h,恢复室温后去离子水清洗除去熔盐后烘干即可。
实施例5:
一种压电陶瓷的干压成型烧结方法:
压电陶瓷由以下化学式表示:
0.8(Ba0.85Ca0.15)(Zr0.1Ti0.85Sn0.05)O3-0.2(K0.5Na0.5)(Nb0.5Ta0.5)O3-0.1%CuAlO2-0.2%LiBiO2-0.01%MnO
以化学式中的计量比将(Ba0.85Ca0.15)(Zr0.1Ti0.9-aAa)O3、(K0.5Na0.5)(Nb0.5Ta0.5)O3、CuAlO2、LiBiO2、MnO混合球磨15h,得到混合粉体,将其烘干后,置于400V/cm预烧电场下800℃预烧4h,恢复室温后再次球磨15h并烘干,与聚乙烯醇、石蜡混合均匀造粒于60MPa下干压成型,得到陶瓷坯体,氢气与氮气按体积比1:1组成的还原气体氛围下,以2℃/min的速度将陶瓷坯体一次升温至650℃保温排胶4h,再以6℃/min的速度二次升温至1150℃保温烧结4h,烧结时,对陶瓷坯体施加800V/cm的烧结电场,再以15℃/min的速度降温至850℃保温退火2h,烧结电场强度随着温度降低随之降低,保温退火时烧结电场强度为500V/cm,最后炉冷至室温即可获得所述压电陶瓷,
其中,(Ba0.85Ca0.15)(Zr0.1Ti0.9-aSna)O3的制备方法如下:
以化学式中的计量比将BaCO3、CaCO3、TiO2、ZrO2、SnO2加入熔盐水溶液中,熔盐水溶液为NaCl、KCl按质量比1:1组成熔盐的水溶液,混合均匀得到悬浮液,继续搅拌3h后90℃烘干,球磨15h后升温至700℃预烧4h,恢复室温后去离子水清洗除去熔盐后烘干即可。
(K0.5Na0.5)(Nb0.5Ta0.5)O3的制备方法如下:
以化学式中的计量比将K2CO3、Na2CO3、Nb2O5、Ta2O5加入熔盐水溶液中,熔盐水溶液为NaCl、KCl按质量比1:1组成熔盐的水溶液,混合均匀得到悬浮液,继续搅拌3h后90℃烘干,球磨15h后升温至700℃预烧4h,恢复室温后去离子水清洗除去熔盐后烘干即可。
对比例1
对比例1与实施例1基本相同,区别在于,不加入CuAlO2
对比例2
对比例2与实施例1基本相同,区别在于,不加入LiBiO2
对比例3
对比例3与实施例1基本相同,区别在于,不加入MnO。
对比例4
对比例4与实施例1基本相同,区别在于,预烧时不施加电场。
对比例5
对比例5与实施例1基本相同,区别在于,烧结时不施加预烧电场。
对比例6
对比例6与实施例1基本相同,区别在于,退火时不施加电场。
对比例7
对比例7与实施例1基本相同,区别在于,用氮气代替氢气与氮气按体积比1:1组成的还原气体氛围。
性能测试:
分别将本发明实施例1-5及对比例1-7制备的压电陶瓷打磨抛光,清洗干净烘干后用毛笔均匀地将银浆刷在压电陶瓷的两面,再放入马弗炉中加热至600℃,保温10min,炉冷至室温,再将已被银的压电陶瓷材料放置于硅油中,接通4kV/cm的直流电场,极化时间30min,极化结束放置24h后,进行性能测试。
压电常数是表征压电材料性能特有的一种参数,它反映压电体将机械能转换为电能(正压电效应)或将电能转换为机械能(逆压电效应)的转换能力。压电常数越大,表明材料将机械能与电能互相转换的能力越强,耦合效果越好,用ZJ-3型准静态d33测量仪测量样品的压电常数;
用阻抗分析仪测试室温下样品的谐振、反谐振频率,以及1kHz时的等效电阻、等效电容等参数,计算样品的平面机电耦合系数Kp、介电损耗tanδ。
对本发明实施例1-5及对比例1-7制备的压电陶瓷进行性能测试,测试结果如下表1所示:
表1
Figure BDA0003448214310000101
Figure BDA0003448214310000111
由上表1可知,利用本发明方法所制备的压电陶瓷烧结温度低,而且具有较高的致密度和良好的压电性能,密度≥5.63g/cm3,压电常数≥615pC/N,平面机电耦合系数≥0.63,介电损耗≤0.015%,性能优于绝大多数的压电陶瓷,具有广阔的应用前景。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种压电陶瓷的干压成型烧结方法,其特征在于,具体如下:
将(Ba0.85Ca0.15)(Zr0.1Ti0.9-aAa)O3、(K0.5Na0.5)(Nb0.5Ta0.5)O3、CuAlO2、LiBiO2、MnO混合球磨10-15h,得到混合粉体,将其烘干后,置于预烧电场下750-800℃预烧2-4h,恢复室温后再次球磨10-15h并烘干,与聚乙烯醇、石蜡混合均匀造粒于50-60MPa下干压成型,得到陶瓷坯体,还原气体氛围下,将陶瓷坯体一次升温至550-650℃保温排胶2-4h,再二次升温至1100-1150℃保温烧结2-4h,烧结时,对陶瓷坯体施加烧结电场,再降温至800-850℃保温退火1-2h,烧结电场强度随着温度降低随之降低,最后炉冷至室温即可获得所述压电陶瓷,所述压电陶瓷由以下化学式表示:
x(Ba0.85Ca0.15)(Zr0.1Ti0.9-aAa)O3-(1-x)(K0.5Na0.5)(Nb0.5Ta0.5)O3-αCuAlO2-βLiBiO2-γMnO
其中,a表示原子百分比,A为Nb、Mn或Sn中的任意一种,x表示(Ba0.85Ca0.15)(Zr0.1Ti0.9- aAa)O3
占x(Ba0.85Ca0.15)(Zr0.1Ti0.9-aAa)O3-(1-x)(K0.5Na0.5)(Nb0.5Ta0.5)O3的摩尔百分比,
α、β、γ分别表示CuAlO2、LiBiO2、MnO占x(Ba0.85Ca0.15)(Zr0.1Ti0.9-aAa)O3-(1-x)(K0.5Na0.5)(Nb0.5Ta0.5)O3的质量百分比,x为0.6-0.9,a为0.02-0.1,α为0.1-0.5%,β为0.1-0.5%,γ为0.01-0.02%。
2.如权利要求1所述的压电陶瓷的干压成型烧结方法,其特征在于,A为Sn。
3.如权利要求1所述的压电陶瓷的干压成型烧结方法,其特征在于,x为0.8。
4.如权利要求1所述的压电陶瓷的干压成型烧结方法,其特征在于,a为0.05。
5.如权利要求1所述的压电陶瓷的干压成型烧结方法,其特征在于,α为0.1%,β为0.2%,γ为0.01%。
6.如权利要求1所述的压电陶瓷的干压成型烧结方法,其特征在于,所述(Ba0.85Ca0.15)(Zr0.1Ti0.9-aAa)O3的制备方法如下:
将BaCO3、CaCO3、TiO2、ZrO2、A氧化物加入熔盐水溶液中,混合均匀得到悬浮液,继续搅拌1-3h后80-90℃烘干,球磨10-15h后升温至650-700℃预烧2-4h,恢复室温后去离子水清洗除去熔盐后烘干即可。
7.如权利要求1所述的压电陶瓷的干压成型烧结方法,其特征在于,所述(K0.5Na0.5)(Nb0.5Ta0.5)O3的制备方法如下:
将K2CO3、Na2CO3、Nb2O5、Ta2O5加入熔盐水溶液中,混合均匀得到悬浮液,继续搅拌1-3h后80-90℃烘干,球磨10-15h后升温至650-700℃预烧2-4h,恢复室温后去离子水清洗除去熔盐后烘干即可。
8.如权利要求6或7所述的压电陶瓷的干压成型烧结方法,其特征在于,所述熔盐水溶液为NaCl、KCl按质量比1:1组成的熔盐水溶液。
9.如权利要求1所述的压电陶瓷的干压成型烧结方法,其特征在于,一次升温速度为1-2℃/min,二次升温速度为4-6℃/min,降温速度为10-15℃/min。
10.如权利要求1所述的压电陶瓷的干压成型烧结方法,其特征在于,预烧电场强度为200-400V/cm,烧结电场强度为600-800V/cm。
CN202111655606.5A 2021-12-31 2021-12-31 一种压电陶瓷的干压成型烧结方法 Active CN114213117B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111655606.5A CN114213117B (zh) 2021-12-31 2021-12-31 一种压电陶瓷的干压成型烧结方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111655606.5A CN114213117B (zh) 2021-12-31 2021-12-31 一种压电陶瓷的干压成型烧结方法

Publications (2)

Publication Number Publication Date
CN114213117A CN114213117A (zh) 2022-03-22
CN114213117B true CN114213117B (zh) 2022-10-18

Family

ID=80707137

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111655606.5A Active CN114213117B (zh) 2021-12-31 2021-12-31 一种压电陶瓷的干压成型烧结方法

Country Status (1)

Country Link
CN (1) CN114213117B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101885607A (zh) * 2010-07-08 2010-11-17 桂林理工大学 锆钛酸钡-铌酸钾钠基压电陶瓷及其制备方法
CN102531638A (zh) * 2012-01-05 2012-07-04 江苏大学 一种添加物及其降低压电陶瓷烧结温度的用途
KR20130083218A (ko) * 2012-01-12 2013-07-22 한국교통대학교산학협력단 비납계 압전 세라믹스 및 그 제조 방법
CN105418132A (zh) * 2016-01-07 2016-03-23 上海电机学院 一种采用铝或铝合金对氮化铝陶瓷进行直接钎焊的方法
CN109956743A (zh) * 2019-04-28 2019-07-02 昆明理工大学 一种CuAlO2多晶陶瓷的制备方法
CN113563073A (zh) * 2021-07-13 2021-10-29 广东捷成科创电子股份有限公司 一种高稳定的无铅压电陶瓷及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101885607A (zh) * 2010-07-08 2010-11-17 桂林理工大学 锆钛酸钡-铌酸钾钠基压电陶瓷及其制备方法
CN102531638A (zh) * 2012-01-05 2012-07-04 江苏大学 一种添加物及其降低压电陶瓷烧结温度的用途
KR20130083218A (ko) * 2012-01-12 2013-07-22 한국교통대학교산학협력단 비납계 압전 세라믹스 및 그 제조 방법
CN105418132A (zh) * 2016-01-07 2016-03-23 上海电机学院 一种采用铝或铝合金对氮化铝陶瓷进行直接钎焊的方法
CN109956743A (zh) * 2019-04-28 2019-07-02 昆明理工大学 一种CuAlO2多晶陶瓷的制备方法
CN113563073A (zh) * 2021-07-13 2021-10-29 广东捷成科创电子股份有限公司 一种高稳定的无铅压电陶瓷及其制备方法

Also Published As

Publication number Publication date
CN114213117A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
CN111233470B (zh) 一种具有优异充放电性能的反铁电陶瓷材料及其制备方法
CN110511018B (zh) 一种高储能密度陶瓷电容器电介质及其制备方法
CN110342925B (zh) 一种反铁电陶瓷材料及其制备方法
CN111978082B (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN102167585B (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN113548892B (zh) 具有宽温区高压电性能的铌酸钾钠基透明陶瓷材料及其制备方法
CN113213929A (zh) 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法
CN111747740A (zh) 钐离子掺杂锆钛酸铅基高性能压电陶瓷及其制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN114455944B (zh) 一种铋层状结构压电陶瓷材料及其制备方法
CN113582667A (zh) 一种可低温共烧的高储能反铁电陶瓷材料及其制备方法和应用
CN107814569A (zh) 一种无铅反铁电体陶瓷及其制备方法
CN113800904A (zh) 一种高能量低损耗的BNT-SBT-xSMN陶瓷材料及其制备方法
CN114213117B (zh) 一种压电陶瓷的干压成型烧结方法
CN114031395B (zh) BNT-BKT-BT-AlN复合压电材料及其制备和应用
CN112062559B (zh) 一种反铁电陶瓷材料及其低温烧结方法
CN115286386A (zh) 一种非化学计量Nb5+的铌钽锆铁酸钾钠铋陶瓷及其制备方法
CN109516800B (zh) 一种高储能性能介质陶瓷、制备方法及其应用
CN108794004B (zh) 一种镧钕掺杂镍酸盐陶瓷及其制备方法和应用
CN107311656B (zh) 具有巨负电卡效应的反铁电陶瓷材料、其制备方法与用途
CN111087242A (zh) 一种高极化的铁电陶瓷及其制备方法
CN116813344B (zh) 一种铌酸钠基复合储能陶瓷材料
CN114262225B (zh) 一种高纯纳米电子陶瓷及其制备方法
CN116082034B (zh) 一种高储能特性的钛酸铋钠基高熵陶瓷材料及其制备方法和应用
CN108610040A (zh) 一种降低钛锡酸钡体系在还原气氛下介电损耗的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant