CN114142156A - 一种导热锂离子隔膜及其制备方法 - Google Patents

一种导热锂离子隔膜及其制备方法 Download PDF

Info

Publication number
CN114142156A
CN114142156A CN202111454376.6A CN202111454376A CN114142156A CN 114142156 A CN114142156 A CN 114142156A CN 202111454376 A CN202111454376 A CN 202111454376A CN 114142156 A CN114142156 A CN 114142156A
Authority
CN
China
Prior art keywords
lithium ion
aluminum nitride
particles
heat
base film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111454376.6A
Other languages
English (en)
Inventor
庄志
唐亚奇
齐岭
王伟强
王康
刘倩倩
程跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Enjie New Material Technology Co ltd
Original Assignee
Shanghai Energy New Materials Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Energy New Materials Technology Co Ltd filed Critical Shanghai Energy New Materials Technology Co Ltd
Priority to CN202111454376.6A priority Critical patent/CN114142156A/zh
Publication of CN114142156A publication Critical patent/CN114142156A/zh
Priority to PCT/CN2022/100730 priority patent/WO2023098044A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)

Abstract

本发明公开了一种导热锂离子隔膜及制备方法,导热性隔膜包括湿法基膜和涂层两部分,本发明提供的涂层包括陶瓷颗粒和氮化铝无机颗粒,通过有机粘结剂混合粘结。相对于单一的氧化铝或者勃姆石陶瓷涂层,在此基础上引入氮化铝颗粒极大的改善了锂离子隔膜的热传导性能,通过控制氮化铝的量可以提高导热性能以及隔膜综合性能,最终制备的导热隔膜导热性能以及电池安全性能等其它电化学性能得到有效提升。

Description

一种导热锂离子隔膜及其制备方法
技术领域
本申请属于隔膜领域,具体涉及到一种采用导热颗粒混合陶瓷涂层的电池隔膜制备方法。
背景技术
随着新能源车的快速发展,锂离子电池的广泛应用正在加速,为了能够完全替代传统燃油汽车,锂离子电池需要解决续航里程和充电时长的问题,而锂离子电池能量密度、容量和功率密度的提升,带动快充技术亦成为锂离子电池市场的重要发展方向。锂离子电池快速充放电的过程中,将在内部产生大量的热且难以均匀、有效地散去,从而引起衰减加速以及其他安全问题,阻碍新能源车发展步伐,使得内部散热问题正成为一个凸出的安全隐患。
从材料角度去思考解决方案,锂离子电池主要包括正极、负极、隔膜、电解液四大材料,其中导热性最差的即为隔膜元件。传统的耐热隔膜材料大多采用氧化铝涂层,可以很好改善隔膜的热稳定性和润湿性,基本可以满足现有锂离子电池需求。但传统隔膜在适应快充环境,快速导热、散热等方面幷不能得到预期的优异改进,且水分普遍较高,出现顾此失彼的问题。传统隔膜导热性能比较差这一问题一直被忽视,关于导热隔膜的研究也比较少。此外,也出现在涂层中加入氮化铝的研究,这种基于氮化铝本身的高导热性而采取与其它陶瓷材料混涂的工艺,仅在提高耐热隔膜收缩率性能上具有凸出效果。因此,对导热隔膜进行研究,幷且开发一种高导热锂离子隔膜实属必要。
发明内容
本发明着重解决锂电池内部过量热量不能有效快速散去导致电池安全以及性能衰减等问题,开发了一种新型锂离子隔膜,并开创性的引入一种氮化铝涂层材料。
是以,本发明之一目的系提供一种导热锂离子隔膜,其包括:一基膜及一导热涂层,设置于所述基膜之一表面上,其中,所述导热涂层包括无机颗粒、陶瓷颗粒、氮化铝颗粒、机粘结剂或其组合;其中,所述无机颗粒包含陶瓷颗粒、氮化铝颗粒,所述陶瓷颗粒及所述氮化铝颗粒均匀分布于所述基膜上,其中,以所述基膜之一表面为水平基准,所述氮化铝颗粒较相邻之所述陶瓷颗粒高1~3μm,所述氮化铝颗粒以单位面积重量1.5~3g/m2设置于所述基膜上。
如上所述导热锂离子隔膜,其中,所述陶瓷颗粒平均粒径介于0.6-1.5μm,所述氮化铝平均粒径介于4-6μm。
如上所述导热锂离子隔膜,其中,所述陶瓷颗粒与氮化铝重量比例介于5:1~1:1.2之间。
如上所述导热锂离子隔膜,其中,所述氮化铝颗粒比表面积小于所述陶瓷颗粒比表面积。
如上所述导热锂离子隔膜,其中,所述陶瓷颗粒比表面积为3-9m2/g,所述氮化铝颗粒比表面积为2-5m2/g。
如上所述导热锂离子隔膜,其中,所述导热涂层进一步包括有机溶剂,所述有机溶剂占所述无机颗粒的干重比例介于3%-5%。
如上所述导热锂离子隔膜,其中,所述陶瓷颗粒导热系数在25-35W/m·K,所述氮化铝颗粒导热系数在250-320W/m·K。
如上所述导热锂离子隔膜,其中,所述基膜厚度选用范围5-12μm,孔隙率在45%-55%。
如上所述导热锂离子隔膜,其中,所述基膜包含PE材质基膜,所述PE材质基膜系由高分子量PE颗粒所组成,所述高分子量PE颗粒之分子量介于110-310万。
如上所述导热锂离子隔膜,其中,所述氮化铝颗粒Ca含量≤100ppm,Si含量≤10ppm,Fe含量≤10ppm。
如上所述导热锂离子隔膜,其中,所述陶瓷颗粒包括氧化铝、勃姆石或其组合。
本发明之另一目的系提供一种导热锂离子隔膜的制备方法,包括步骤:1)提供一基膜;2)混合陶瓷颗粒和氮化铝以获得一混合浆料;及3)将所述混合浆料涂布于所述基膜之至少一个面上以获得该导热锂离子膈膜,其中,所述混合浆料以线棒或凹版辊方式以一涂布速度进行涂布,所述涂布速度介于50m/min-80m/min,
如上所述导热锂离子隔膜的制备方法,其中,该方法进一步包括步骤4)干燥所述锂离子膈膜,干燥温度介在70℃-100℃。
本发明之又一目的系提供一种锂离子电池隔膜,其包括如上所述方法制备之导热锂离子隔膜。
本发明所提供之锂离子电池膈膜具备以下优异的特性:
1、本发明所提供之导热锂离子隔膜暴露了更多的氮化铝,基于氮化铝本身优异的导热系数,大幅度的缩短隔膜的传热通路,有利于电池内部过多的热量通过导热隔膜的作用,使得热量由正负极片传导到极耳的路径更加顺畅。
2、本发明所提供之导热锂离子膈膜采用高分子量PE颗粒制备之基膜,其具备较佳的物化性能,提升了电池能量密度,并藉由隔膜孔隙率的控制达到了良好的吸液性能以及更低的内阻,有利于电池电化学性能的提升。
3、本发明所提供之导热锂离子隔膜,所采用的涂层材料具有含微量Ca、Si、Fe等元素,其含量范围内,所制备之隔膜得以防止电池内部产生微短路。
4、本发明所提供之导热锂离子隔膜之制备方法,采用大颗粒混小颗粒之技术思想,收获了浆料制备中颗粒较易分散的效果,使得后续浆料涂布中颗粒在基膜上分布得更加均匀,解决了习知技术中采用小颗粒混合后分散难度高、易团聚,以及采用大颗粒起不到耐热效果等技术缺陷;另一方面,选用更大粒径的氮化铝充分发挥了氮化铝的导热性能,使隔膜在电池内部展现更佳的热传导性能。
附图说明
图1为本发明提供的导热锂离子隔膜制备以及构成简图。
图2为本发明提供的导热锂离子隔膜SEM图。
图3为本发明提供之导热锂离子隔膜制备方法其具体流程图。
具体实施方式
随着锂离子电池的快速发展,安全问题一直排在首位,隔膜在电池中的功能主要作用就是防止正负极短路,允许锂离子在隔膜中来回穿梭。在保障电池的安全性能中起着重要作用,然而内部热效应导致温度无法很快通过隔膜往外扩散,大大增加了电池的安全风险。
对于传统隔膜导热性差的缺陷,本发明提出一种新的导热涂层,主要是在传统氧化铝或者勃姆石涂层中增加导热性能更好的氮化铝颗粒,实现优势互补,另外,较好的导热性能也提高到了导热锂离子隔膜的耐热性能,使得电池安全性能大大增加。
本发明提供的导热锂离子隔膜,具有较好的导热性、耐热性、较低的水分以及内阻。为了进一步说明所提供导热锂离子隔膜性能和制备方法,下面结合特定的具体实施例和附图对本发明优势作详细阐述。
一种导热锂离子隔膜,其包括一基膜1及一导热涂层,设置于所述基膜1之一表面上,其中,所述导热涂层包括无机颗粒、机粘结剂4或其组合;其中,所述无机颗粒包含陶瓷颗粒2、氮化铝颗粒3,所述陶瓷颗粒及所述氮化铝颗粒均匀分布于所述基膜上,其中,以所述基膜之一表面为水平基准,所述氮化铝颗粒较相邻之所述陶瓷颗粒高1~3μm,所述氮化铝颗粒以单位面积重量1.5~3g/m2设置于所述基膜上。
请参阅图1,其系本发明提供之导热锂离子隔膜其构成简图;具体来说,由图1可以看到,以所述基模1之任一表面为水平基准,氮化铝颗粒3比陶瓷颗粒2涂层高1-3μm,基于氮化铝本身优异的导热性能,所述氮化铝颗粒3于所述基膜1单位面积重量为1.5-3g/m2之间,由此得到的导热锂离子隔膜暴露更多的氮化铝,缩短隔膜的传热通路,有利于内部过多的热量通过导热隔膜的作用,使得热量在正负极极片传导到极耳更加顺畅,氮化铝颗粒3可以为任意形貌,能够列举的有椭球形、棒状、块状、球形、片状,优选氮化铝颗粒2为椭球形貌;所述陶瓷颗粒2涂层涂层厚度可以为2-5μm,优选3μm;考量无机颗粒尺寸大小,若涂层厚度太薄,将降低涂层一致性,在实际工艺上并不好控制,若涂层过厚,将增加隔膜的厚度及重量,对电池性能不利;请参阅图2,其系扫描式电子显微镜(Scanning ElectronMicroscopy,SEM)放大图,呈现本发明一示例中导热涂层之表面构造,可以清楚看到,陶瓷颗粒和氮化铝的形貌及分布,尺寸大小不一之无机颗粒均匀的分布于基膜上,若只是单纯将氮化铝颗粒与陶瓷颗粒混合,幷不能得到改善导热性的效果;其中,所述陶瓷颗粒平均粒径介于0.6-1.5μm,所述氮化铝平均粒径介于4-6μm。
具体来说,所述导热涂层由涂布浆料经过涂布机涂布获得,其中所述涂布浆料固体含量为28%-38%,包含水、无机颗粒、有机溶剂,水与无机颗粒的比例在1.5:1~2.5:1之间;在一些实例中,所述无机颗粒包括陶瓷颗粒、氮化铝颗粒,所述无机颗粒系陶瓷颗粒及氮化铝颗粒按照一定比例混合而成,其中,陶瓷颗粒与氮化铝的比例在5:1~1:1.2之间,有机溶剂占无机颗粒的干重比例介于3%-5%;优选地,所述陶瓷颗粒包括氧化铝、勃姆石或其组合。
在一些实例中,所述氮化铝颗粒中Ca含量≤100ppm,Si含量≤10ppm,Fe含量≤10ppm;氮化铝颗粒中,金属异物含量小,可防止造成电池内部微短路发生,并提升电池内部电化学性能以及安全性能。
在一些较佳实例中,所述陶瓷颗粒之导热系数在25-35W/m·K,氮化铝颗粒导热系数在250-320W/m·K;传统氧化铝涂层材料不能满足锂离子隔膜高导热的要求,氮化铝的引入使得隔膜导热性能大大增加;传统涂布膜导热系数在10-30W/m·K之间,本发明提供的导热锂离子隔膜其导热系数在100-210W/m·K之间。导热系数的提高,可以加快电池内部热量通过隔膜向极片往外扩散速度,使电池安全性能大大提高。
在一些实例中,所述陶瓷颗粒平均粒径D50在0.6-1.5μm,所述氮化铝颗粒平均粒径D50在4-6μm,其中所述氮化铝颗粒比表面积小于所述陶瓷颗粒比表面积;更具体地,陶瓷颗粒比表面积在3-9m2/g,氮化铝比表面积在2-5m2/g;较低比表面积氮化铝可以降低颗粒表面能(Surface energy),减少团聚,有利于后续在涂布浆料中发挥更好的分散性能。
在另一些实例中,所述基膜系采用高分子量PE颗粒,分子量在110-310万;所述基膜厚度选用范围5-12μm,优选厚度为9μm,孔隙率在45%-55%,优选孔隙率50%。高孔隙率减少了隔膜透气性,从而降低了隔膜内阻,並有利于提高电池电化学性能。
在上述实施例中,所述有机溶剂包含粘结剂、润湿剂;所述粘结剂选自水溶剂型或乳液型中的一种或者多种组合,粘结剂主要系丙烯酸树脂类或丙烯酸共聚体,系选自丙烯酸树脂类、PMMA、PVDF、聚乙烯醇中的一种或多种组合,其结构中包含羧基、羟基等改性基团;通过改性基团可以按照需求增加性能,扩充了导热锂离子隔膜的应用性;更具体地,所述粘结剂与润湿剂比例介于100:1~50:1之间。
本发明之另一实施方式系一种导热锂离子隔膜之制备方法,主要分为湿法基膜提供—涂布浆料制备—浆料涂布三个步骤,更具体地,请参阅图3,其系说明本实施方式制备方法之具体流程图,该方法包括步骤:
1)提供一基膜;
2)混合陶瓷颗粒和氮化铝以获得一混合浆料;及
3)将所述混合浆料涂布于所述基膜之至少一个面上以获得该导热锂离子膈膜,其中,所述混合浆料以线棒或凹版辊方式以一涂布速度进行涂布,所述涂布速度介于50m/min-80m/min。
在一些较佳实例中,该方法进一步包括步骤:
4)干燥所述锂离子膈膜,干燥温度介在70℃-100℃;具体而言,所述混合浆料在涂布后获得所述锂离子隔膜,其转移至至少包括两节烘箱中进行干燥,烘箱温度控制在70℃-100℃,优选温度为85℃。
测试方法
厚度
样品厚度通过MahrMillimar测厚仪来测量,测试条件:A)测量表面平整;B)测量表面直径:φ12mm;C)测量面载荷:0.75N。
氮化铝颗粒与陶瓷涂层高度差
通过场发射电子扫描显微镜SEM拍导热锂离子隔膜的截面形貌,测试
出出高度。
氮化铝颗粒在基膜单位面积重量
根据实际添加比例来推算,例如实际配方中氮化铝:陶瓷颗粒为X,
那么实际可以测出导热膜的单位面积重量为Y1,对应基膜为单位面积重量为Y2,则氮化铝颗粒在基膜单位面积重量为(Y1-Y2)·(X/1+X),设备采用梅特勒托莱多XS205电子天平来测量,精度0.1mg。
氮化铝颗粒杂质含量测定
利用电感耦合等离子体发射光谱仪ICP-OES-5110VDV,样品测试前在温度23℃±2℃和湿度50%±10%下调节时间不少于4h,测试条件:RF功率:1300W,等离子气流量:10L/min,辅助气流量:0.3L/min,雾化器流量:0.7L/min,观测高度:15mm。
D50
采用欧美克粒度仪LS-POP(9)测量,将少量待测样品放入仪器水槽内,按照选定测试条件得到仪器检测数据。测试条件:选定待测材料折射率:1.8,分散介质折射率:1.33,遮光比:6-9,测样次数:3次。
比表面积
比表面积测定仪,按照GB/T 19587-2004气体吸附BET法测定固态物质比表面积。
导热系数
通过导热仪测量,将一定厚度的样品置于上下两个平板间,对样品施加一定的热流量和压力,使用热流传感器测量通过样品的热流、测试样品的厚度、热板/冷板间的温度梯度,然后得出不同厚度下对应的热阻数据作直线拟合得出样品的导热系数。
水分
采用卡尔费休水分测定仪,测样条件:称取样品质量为0.1g-0.15g,
测定温度180℃,测试时间为5分钟。
热收缩
将待测样品裁剪成80mm x 80mm大小,标记MD和TD方向,以150℃烘烤1小时,取出后采用光学投影仪测量MD/TD方向收缩后长度,具体收缩率计算式如下:
横向收缩率MD:
Figure BDA0003387320040000081
纵向收缩率TD:
Figure BDA0003387320040000082
须说明的是,上述计算式中,M0,T0—初始长度,单位mm;M,T—最终长度,单位为mm。
内阻
截取与电阻测试模具相匹配的隔膜5块,将隔膜放入浓度1mol/L的六氟磷酸锂(LiPF6),碳酸乙烯酯(EC)中,保持密封浸泡。将浸泡后的隔膜依次放入1层隔膜,测试交流阻抗电阻,再放入层测试其交流阻抗,直至放入5层,分别测试出5个交流电阻。以隔膜层数为横坐标,隔膜电阻为纵坐标,求出曲线的斜率和线性拟合度,当线性拟合度大于0.99时,该斜率为隔膜阻抗。设备采用Solatron analytical 1400CellTestSystem自主设计测试装置。
以下透过数个示例性实施例进一步说明本发明导热锂离子隔膜制备方法其技术方案及其技术功效。
实施例1
提供基膜:于本实施例中,所提供的PE基膜系按照常规湿法工艺制备,采用该工艺所得的基膜具有高孔隙率、孔径均匀、机械强度高、安全性好以及可以制备厚度超薄产品;于本实施例中,基膜厚度优选为9μm、孔隙率50%,该厚度基膜制备工艺成熟,隔膜一致性佳,孔隙率可以任意调控,并具备突出的机械性能及安全性能。
涂布浆料的制备:水和羧甲基纤维素(Carboxymethyl Cellulose,CMC)以比例在100:1~100:5范围内混合,并以机械搅拌水和CMC获得透明澄清CMC溶液。接着,将陶瓷颗粒和氮化铝颗粒以重量比为6:1混合,分批加入CMC溶液中,然后匀速搅拌,搅拌时间至少在30分钟,以使颗粒在CMC溶液中充分混匀;随后将该半成品浆料通过研磨,使浆料中颗粒充分分散后,再加入定量的有机溶剂,包括粘结剂和润湿剂;有机溶剂与无机颗粒干重比2.5%。最后,以一定的速度搅拌使有机溶剂与半成品浆料均匀混合形成成品涂布浆料。
浆料涂布:通过线棒方式或者凹版辊使浆料涂布于前述基膜上,本实施例中,陶瓷涂层厚度3μm,涂布浆料至少涂布在基膜的一个面上,涂布速度在80m/min,涂布烘箱温度在85℃;前述涂布烘箱具有2节,每节温度可以按照实际情况进行调控。
表1
Figure BDA0003387320040000091
Figure BDA0003387320040000101
请参阅表2,实施例1所制备之导热锂离子隔膜经前述测试方法后,测得其导热系数为170W/m·K、热收缩系数分别为6%(MD)、6%(TD),水分为721ppm,内阻为1.37Ω*cm2
表2
Figure BDA0003387320040000102
实施例2
制备方法步骤同实施例1,请参阅表1,惟以下制备条件有所不同:
有机溶剂与无机颗粒干重比5.5%。
陶瓷颗粒与氮化铝重量比1:1.5。
氮化铝颗粒D50为4μm、单位面积重量为3g/m2
陶瓷颗粒D50为0.6μm、比表面积为10m2/g。
实施例2所制备之导热锂离子隔膜,其导热系数为175W/m·K、热收缩系数分别为6%(MD)、5%(TD),水分为679ppm,内阻为1.38Ω*cm2
实施例3
制备方法步骤同实施例2,请参阅表1,惟以下制备条件有所不同:
氮化铝颗粒D50为6μm、单位面积重量为2g/m2
陶瓷颗粒D50为1.5μm、比表面积为3m2/g。
实施例3所制备之导热锂离子隔膜,其导热系数为183W/m·K、热收缩系数分别为6%(MD)、5%(TD),水分为664ppm,内阻为1.36Ω*cm2
实施例4
制备方法步骤同实施例1,请参阅表1,惟以下制备条件有所不同:
有机溶剂与无机颗粒干重比2.5%。
陶瓷颗粒与氮化铝重量比5:1。
氮化铝颗粒含Ca ppm≤100、Si ppm≤10、Fe ppm≤10;D50为5μm;比表面积为5m2/g、单位面积重量为1.7g/m2
陶瓷颗粒D50为0.8μm、比表面积为9m2/g。
实施例4所制备之导热锂离子隔膜,其导热系数为191W/m·K、热收缩系数分别为6%(MD)、4%(TD),水分为658ppm,内阻为1.33Ω*cm2
实施例5
制备方法步骤同实施例1,请参阅表1,惟以下制备条件有所不同:
有机溶剂与无机颗粒干重比5.5%。
陶瓷颗粒与氮化铝重量比2:1。
氮化铝颗粒含Ca ppm≤100、Si ppm≤10、Fe ppm≤10;D50为5μm;比表面积为4m2/g、单位面积重量为2g/m2
陶瓷颗粒D50为1μm、比表面积为4m2/g。
实施例5所制备之导热锂离子隔膜,其导热系数为194W/m·K、热收缩系数分别为5%(MD)、5%(TD),水分为645ppm,内阻为1.35Ω*cm2
实施例6
制备方法步骤同实施例1,请参阅表1,惟以下制备条件有所不同:
有机溶剂与无机颗粒干重比3.0%。
陶瓷颗粒与氮化铝重量比3:1。
氮化铝颗粒含Ca ppm≤100、Si ppm≤10、Fe ppm≤10;D50为5μm;比表面积为4m2/g、单位面积重量为1.9g/m2
陶瓷颗粒D50为0.8μm、比表面积为8m2/g。
实施例6所制备之导热锂离子隔膜,其导热系数为200W/m·K、热收缩系数分别为5%(MD)、4%(TD),水分为633ppm,内阻为1.36Ω*cm2
实施例7
制备方法步骤同实施例1,请参阅表1,惟以下制备条件有所不同:
有机溶剂与无机颗粒干重比3.5%。
陶瓷颗粒与氮化铝重量比2:1。
氮化铝颗粒含Ca ppm≤100、Si ppm≤10、Fe ppm≤10;D50为5μm;比表面积为4m2/g、单位面积重量为2g/m2
陶瓷颗粒D50为0.8μm、比表面积为5m2/g。
实施例7所制备之导热锂离子隔膜,其导热系数为204W/m·K、热收缩系数分别为5%(MD)、3%(TD),水分为620ppm,内阻为1.32Ω*cm2
实施例8
制备方法步骤同实施例1,请参阅表1,惟以下制备条件有所不同:
有机溶剂与无机颗粒干重比4.0%。
陶瓷颗粒与氮化铝重量比1:1。
氮化铝颗粒含Ca ppm≤100、Si ppm≤10、Fe ppm≤10;D50为5μm;比表面积为3m2/g、单位面积重量为2.5g/m2
陶瓷颗粒D50为1.3μm、比表面积为7m2/g。
实施例8所制备之导热锂离子隔膜,其导热系数为210W/m·K、热收缩系数分别为4%(MD)、3%(TD),水分为600ppm,内阻为1.28Ω*cm2
实施例9
制备方法步骤同实施例1,请参阅表1,惟以下制备条件有所不同:
有机溶剂与无机颗粒干重比3.5%。
陶瓷颗粒与氮化铝重量比1:1.2。
氮化铝颗粒含Ca ppm≤100、Si ppm≤10、Fe ppm≤10;D50为5μm;比表面积为4m2/g、单位面积重量为1.9g/m2
陶瓷颗粒D50为0.8μm、比表面积为5m2/g。
实施例9所制备之导热锂离子隔膜,其导热系数为204W/m·K、热收缩系数分别为5%(MD)、4%(TD),水分为618ppm,内阻为1.21Ω*cm2
对比例1
制备方法步骤同实施例1,请参阅表1,惟以下制备条件有所不同:
涂层厚度为5μm。
有机溶剂与无机颗粒干重比4.0%。
陶瓷颗粒与氮化铝重量比1:1.5。
氮化铝颗粒D50为8μm;比表面积为6m2/g、单位面积重量为3g/m2
陶瓷颗粒D50为2μm、比表面积为10m2/g。
对比例1所制备之导热锂离子隔膜,其导热系数为162W/m·K、热收缩系数分别为7%(MD)、5%(TD),水分为740ppm,内阻为1.30Ω*cm2
对比例2
制备方法步骤同实施例1,请参阅表1,惟以下制备条件有所不同:
有机溶剂与无机颗粒干重比4.0%。
陶瓷颗粒与氮化铝重量比1:1.5。
氮化铝颗粒D50为8μm;比表面积为6m2/g、单位面积重量为3.2g/m2
陶瓷颗粒D50为8μm、比表面积为6m2/g。
对比例2所制备之导热锂离子隔膜,其导热系数为166W/m·K、热收缩系数分别为7%(MD)、6%(TD),水分为640ppm,内阻为1.20Ω*cm2
对比例3
制备方法步骤同实施例1,请参阅表1,惟以下制备条件有所不同:
有机溶剂与无机颗粒干重比4.0%。
陶瓷颗粒与氮化铝重量比1:2。
氮化铝颗粒D50为8μm;比表面积为6m2/g、单位面积重量为4g/m2
陶瓷颗粒D50为2μm、比表面积为10m2/g。
对比例3所制备之导热锂离子隔膜,其导热系数为140W/m·K、热收缩系数分别为5%(MD)、5%(TD),水分为740ppm,内阻为1.41Ω*cm2
对比例4
制备方法步骤同实施例1,请参阅表1,惟以下制备条件有所不同:
有机溶剂与无机颗粒干重比4.0%。
陶瓷颗粒与氮化铝重量比1:2。
氮化铝颗粒D50为5μm;比表面积为4m2/g、单位面积重量为4g/m2
陶瓷颗粒D50为0.8μm、比表面积为10m2/g。
对比例4所制备之导热锂离子隔膜,其导热系数为160W/m·K、热收缩系数分别为6%(MD)、6%(TD),水分为612ppm,内阻为1.29Ω*cm2
请一并参阅表1及表2,由前述实施例与对比例可知,导热锂离子隔膜所含水份主要和氮化铝颗粒含量有关系,氮化铝不易吸水,含量占比越多,会导致水分降低;此外,随着氮化铝的增加热收缩有着减小的趋势,氮化铝增加热收缩并没有减小,反而增大;这是由于氮化铝颗粒较大,当到达一定量,在基膜上的堆积密度反而变小,结果造成热收缩增加;氮化铝高度在1-3μm之间所带来导热性能的提升,同时热收缩相比也更小;最后,导热锂离子隔膜内阻和氮化铝占比成反比关系,主要系由于氮化铝可以提高涂层孔隙率,使得锂离子更容易通过。
另一方面,氮化铝单位面积重量亦影响了导热锂离子隔膜所展现的导热性能,例如实施例1与对比例2-3所示,实施例1之氮化铝单为面积重量为1.5g/m2,其导热系数仅170W/m·K,其导热性并无法满足高导热的需求;在于对比例2-3当中,氮化铝单位面积重量分别为3.2、4g/m2均高于3g/m2,其导热系数亦仅分别达到166、140W/m·K。
本发明所提供之锂离子电池膈膜具备以下优异的特性:
1、本发明所提供之导热锂离子隔膜,采用了大颗粒混小颗粒之技术思想,在浆料制备中无机颗粒较易分散,得使后续浆料涂布时,无机颗粒在基膜上分布更加均匀,解决了习知技术中采用小颗粒混合后分散难度高、易团聚,以及采用大颗粒起不到耐热效果等技术缺陷。
2、本发明所提供之导热锂离子隔膜,选用大粒径的氮化铝,更充分地发挥其导热性能,使隔膜在电池内部展现更佳的热传导性能;氮化铝颗粒较陶瓷颗粒尺寸为大,使得基膜表面得暴露更多的氮化铝,基于其本身优异的导热系数,大幅度的增加隔膜的传热通量,利于电池内部的热量更顺畅地由正负极片传导至极耳。
3、本发明所提供之导热锂离子膈膜采用高分子量PE颗粒制备之基膜,其具备较佳的物化性能,提升了电池能量密度,并藉由控制隔膜孔隙率来达到了良好吸液性能及更低的内阻,将有利于提升电池之电化学性能。
4、本发明所提供之导热锂离子隔膜,涂层材料中含有微量Ca、Si、Fe等元素,并其含量范围内所制备之隔膜得以防止电池内部产生微短路。
以上实施例内容仅为对本发明提出的导热锂离子隔膜性能和制备方法的示例性说明,并没有对本发明有任何制约之处,对于该领域的任何技术研究人员,在不脱离本发明的思想和思维框架下,对于本发明作出适当的简单修改或方案调整,都应当属本申请发明权利保护范围。

Claims (13)

1.一种导热锂离子隔膜,其包括:
一基膜;及
一导热涂层,设置于所述基膜之一表面上,其中,所述导热涂层包括无机颗粒、机粘结剂或其组合;其中,所述无机颗粒包含陶瓷颗粒、氮化铝颗粒或其组合,所述陶瓷颗粒及所述氮化铝颗粒均匀分布于所述基膜上,其中,以所述基膜之一表面为水平基准,所述氮化铝颗粒较相邻之所述陶瓷颗粒高1~3μm,所述氮化铝颗粒以单位面积重量1.5~3g/m2设置于所述基膜上。
2.根据权利要求1所述导热锂离子隔膜,其特征在于,所述氮化铝颗粒比表面积小于所述陶瓷颗粒比表面积;其中,所述陶瓷颗粒比表面积为3-9m2/g,所述氮化铝颗粒比表面积为2-5m2/g。
3.根据权利要求1所述导热锂离子隔膜,其特征在于,所述陶瓷颗粒D50平均粒径介于0.6-1.5μm,所述氮化铝D50平均粒径介于4-6μm。
4.根据权利要求1所述导热锂离子隔膜,其特征在于,所述陶瓷颗粒与氮化铝重量比例介于5:1~1:1.2之间。
5.根据权利要求1所述导热锂离子隔膜,其特征在于,所述导热涂层进一步包括有机溶剂,所述有机溶剂占所述无机颗粒的干重比例介于3%-5%。
6.根据权利要求1所述导热锂离子隔膜,其特征在于,所述陶瓷颗粒导热系数在25-35W/m·K,所述氮化铝颗粒导热系数在250-320W/m·K。
7.根据权利要求1所述导热锂离子膈膜,其特征在于,所述基膜厚度选用范围5-12μm,孔隙率在45%-55%。
8.根据权利要求1所述导热锂离子膈膜,其特征在于,所述基膜包含PE材质基膜,其系由高分子量PE颗粒所组成,所述高分子量PE颗粒之分子量介于110-310万。
9.根据权利要求1-8任一项所述导热锂离子隔膜,其特征在于,所述氮化铝颗粒Ca含量≤100ppm,Si含量≤10ppm,Fe含量≤10ppm。
10.根据权利要求8所述导热锂离子隔膜,其特征在于,所述陶瓷颗粒包括氧化铝、勃姆石或其组合。
11.一种导热锂离子隔膜的制备方法,包括步骤:
1)提供一基膜;
2)混合陶瓷颗粒和氮化铝以获得一混合浆料;及
3)将所述混合浆料涂布于所述基膜之至少一个面上以获得该导热锂离子膈膜,其中,所述混合浆料以线棒或凹版辊方式以一涂布速度进行涂布,所述涂布速度介于50m/min-80m/min。
12.如权利要求11所述之方法,其中,该方法进一步包括步骤4)干燥所述锂离子膈膜,干燥温度介在70℃-100℃。
13.一种锂离子电池隔膜,包括由权利要求11或12任一项所述方法制备之锂离子电池隔膜。
CN202111454376.6A 2021-12-01 2021-12-01 一种导热锂离子隔膜及其制备方法 Pending CN114142156A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111454376.6A CN114142156A (zh) 2021-12-01 2021-12-01 一种导热锂离子隔膜及其制备方法
PCT/CN2022/100730 WO2023098044A1 (zh) 2021-12-01 2022-06-23 一种导热锂离子隔膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111454376.6A CN114142156A (zh) 2021-12-01 2021-12-01 一种导热锂离子隔膜及其制备方法

Publications (1)

Publication Number Publication Date
CN114142156A true CN114142156A (zh) 2022-03-04

Family

ID=80386715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111454376.6A Pending CN114142156A (zh) 2021-12-01 2021-12-01 一种导热锂离子隔膜及其制备方法

Country Status (2)

Country Link
CN (1) CN114142156A (zh)
WO (1) WO2023098044A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114709565A (zh) * 2022-06-07 2022-07-05 中材锂膜(宁乡)有限公司 有机/无机复合层多孔隔膜、其制备方法及电化学装置
WO2023098044A1 (zh) * 2021-12-01 2023-06-08 上海恩捷新材料科技有限公司 一种导热锂离子隔膜及其制备方法
WO2024031652A1 (zh) * 2022-08-12 2024-02-15 宁德时代新能源科技股份有限公司 隔离膜、其制备方法及使用其的二次电池、电池模块、电池包和用电装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437302A (zh) * 2011-11-25 2012-05-02 东莞市比比克电子科技有限公司 一种锂离子电池隔膜及高温热稳定型锂离子电池
KR20150046553A (ko) * 2013-10-22 2015-04-30 주식회사 엘지화학 유기-무기 복합 다공성 막, 이를 포함하는 세퍼레이터 및 전극구조체
CN105051941A (zh) * 2013-03-19 2015-11-11 索尼公司 隔膜、电池、电池组、电子设备、电动车辆、电力储存装置以及电力系统
US20160104876A1 (en) * 2013-04-29 2016-04-14 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
CN106784529A (zh) * 2016-12-27 2017-05-31 深圳中兴创新材料技术有限公司 一种锂离子电池隔膜及其制备方法
CN106935778A (zh) * 2017-03-08 2017-07-07 东莞市赛普克电子科技有限公司 一种陶瓷隔膜及其制备方法
CN107799696A (zh) * 2016-08-29 2018-03-13 比亚迪股份有限公司 一种锂离子电池隔膜及其制备方法和锂离子电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811699A (zh) * 2012-11-08 2014-05-21 深圳市崧鼎实业有限公司 一种锂离子二次电池用隔离膜及其制备方法
KR102297823B1 (ko) * 2014-11-21 2021-09-02 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
CN207938697U (zh) * 2018-01-22 2018-10-02 东莞市赛普克电子科技有限公司 一种带有颜色标识涂层的陶瓷隔膜
KR102385925B1 (ko) * 2018-11-05 2022-04-11 주식회사 엘지에너지솔루션 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자
CN114142156A (zh) * 2021-12-01 2022-03-04 上海恩捷新材料科技有限公司 一种导热锂离子隔膜及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437302A (zh) * 2011-11-25 2012-05-02 东莞市比比克电子科技有限公司 一种锂离子电池隔膜及高温热稳定型锂离子电池
CN105051941A (zh) * 2013-03-19 2015-11-11 索尼公司 隔膜、电池、电池组、电子设备、电动车辆、电力储存装置以及电力系统
US20160104876A1 (en) * 2013-04-29 2016-04-14 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
KR20150046553A (ko) * 2013-10-22 2015-04-30 주식회사 엘지화학 유기-무기 복합 다공성 막, 이를 포함하는 세퍼레이터 및 전극구조체
CN107799696A (zh) * 2016-08-29 2018-03-13 比亚迪股份有限公司 一种锂离子电池隔膜及其制备方法和锂离子电池
CN106784529A (zh) * 2016-12-27 2017-05-31 深圳中兴创新材料技术有限公司 一种锂离子电池隔膜及其制备方法
CN106935778A (zh) * 2017-03-08 2017-07-07 东莞市赛普克电子科技有限公司 一种陶瓷隔膜及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023098044A1 (zh) * 2021-12-01 2023-06-08 上海恩捷新材料科技有限公司 一种导热锂离子隔膜及其制备方法
CN114709565A (zh) * 2022-06-07 2022-07-05 中材锂膜(宁乡)有限公司 有机/无机复合层多孔隔膜、其制备方法及电化学装置
WO2024031652A1 (zh) * 2022-08-12 2024-02-15 宁德时代新能源科技股份有限公司 隔离膜、其制备方法及使用其的二次电池、电池模块、电池包和用电装置

Also Published As

Publication number Publication date
WO2023098044A1 (zh) 2023-06-08

Similar Documents

Publication Publication Date Title
CN114142156A (zh) 一种导热锂离子隔膜及其制备方法
CN110265631B (zh) 一种三元正极材料及其制备方法和锂离子电池
CN109616605B (zh) 一种锂离子电池隔膜及其制备方法
CN105070867A (zh) 复合隔膜、其制备方法及锂离子电池
CN105762317A (zh) 一种水溶性聚合物辅助的无机复合隔膜的制备方法
JP2012199003A (ja) スラリー、固体電解質層の製造方法および電極活物質層の製造方法
CN110718659A (zh) 氮化硼涂覆的电池隔膜及其制备方法
WO2019206283A1 (zh) 聚合物隔膜及其制备方法和应用以及锂离子电池
CN103474602A (zh) 一种锂离子电池造孔陶瓷隔离膜及其制备方法
CN114843708B (zh) 一种多孔隔膜、其制备方法及电化学装置
Mi et al. Electrode-supported thin α-alumina separators for lithium-ion batteries
CN111072317A (zh) 陶瓷浆料、陶瓷隔膜和锂离子电池
CN110783571A (zh) 固体电池用电极和固体电池
CN111725466B (zh) 一种功能化聚烯烃复合隔膜及其制备方法和应用
CN112072047A (zh) 一种溶胶涂层隔膜及其制备方法
CN116014077A (zh) 一种锂离子电池负极极片以及一种锂离子电池
Rafiz et al. Safe Li-ion batteries enabled by completely inorganic electrode-coated silicalite separators
JP6969518B2 (ja) 固体電池用電極の製造方法
CN113013546A (zh) 一种有机/无机粒子涂层复合隔膜、制备方法及电池
CN112456536A (zh) 一种固态电解质材料、氟离子电池及其制备方法
Rafiz et al. Performance of electrode-supported silica membrane separators in lithium-ion batteries
CN110854347A (zh) 电化学装置及其隔膜
CN111081951A (zh) 陶瓷涂覆的电池隔膜及其制备方法
JP2009193857A (ja) 固体電解質グリーンシートの製造方法、固体電解質の製造方法、及びリチウム電池の製造方法
CN115020915A (zh) 电化学隔膜、制备方法及电化学装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230915

Address after: No. 125, Zhongxing North Road, Jintan District, Changzhou City, Jiangsu Province, 213200

Applicant after: Jiangsu Enjie New Material Technology Co.,Ltd.

Address before: 201306 No. 155 Nanlu Highway, Pudong New Area, Shanghai

Applicant before: SHANGHAI ENJIE NEW MATERIAL TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right