CN114122113B - 一种高可靠的mosfet功率半导体器件结构 - Google Patents
一种高可靠的mosfet功率半导体器件结构 Download PDFInfo
- Publication number
- CN114122113B CN114122113B CN202210097804.2A CN202210097804A CN114122113B CN 114122113 B CN114122113 B CN 114122113B CN 202210097804 A CN202210097804 A CN 202210097804A CN 114122113 B CN114122113 B CN 114122113B
- Authority
- CN
- China
- Prior art keywords
- conductive type
- region
- trench gate
- type
- trench
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 18
- 238000005468 ion implantation Methods 0.000 claims abstract description 11
- 210000000746 body region Anatomy 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 6
- 210000003850 cellular structure Anatomy 0.000 claims 1
- 239000003989 dielectric material Substances 0.000 claims 1
- 230000003071 parasitic effect Effects 0.000 abstract description 10
- 230000015556 catabolic process Effects 0.000 abstract description 4
- 238000002347 injection Methods 0.000 abstract description 2
- 239000007924 injection Substances 0.000 abstract description 2
- 150000002500 ions Chemical class 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7827—Vertical transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/063—Reduced surface field [RESURF] pn-junction structures
- H01L29/0634—Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
本发明公开了一种高可靠的MOSFET功率半导体器件结构,将现有MOSFET功率半导体器件结构中呈条状并排的源区和接触区改成沿器件横向延伸方向呈交替分布的N+型和P+型离子注入区域。交替分布的N+型和P+型离子注入区域相互之间形成了电荷平衡,可以有效防止寄生BJT开启,大大降低了雪崩击穿的发生,扩大了器件安全工作区,提高了器件的可靠性。
Description
技术领域
本发明涉及一种功率半导体器件,尤其涉及一种MOSFET功率半导体器件。
背景技术
功率MOSFET因其开关速度快、损耗小、输入阻抗高、驱动功率小、频率特性好等优点,在功率变换领域起到重要作用。不断提高的系统性能要求功率MOSFET在具有更低功率损耗的同时,在高电应力下也应具有更高的可靠性。当系统回路中存在非箝位电感负载时,导通状态下存储在电感中的能量会在关断时全部由MOSFET释放,高电压和大电流将同时施加在功率MOSFET上,极易造成器件失效。因此,非箝位感性负载下的开关过程(UnclampedInductive Switching,UIS)通常被认为是功率MOSFET在应用中所能面临的最极端的电应力情况。因此器件的抗UIS失效能力常被用于评定MOSFET功率半导体的可靠性,而UIS耐量是衡量MOSFET功率半导体的抗UIS失效能力的重要参数。
中国专利CN201810990451.2公开了一种超结MOS型功率半导体器件,该器件主要通过引入三维超结结构克服厚漂移区和深沟槽所带来漂移区无法完全耗尽的问题,在提高器件耐压性能的同时能够降低其导通电阻,并且无需将栅极结构延伸到氧埋层以提供电场调节作用,从而能够降低栅电容,提高器件开关速度。但该器件会存在寄生BJT(BipolarJunction Transistor,双极型晶体管)开启的可能,而寄生BJT的开启是引起UIS失效的重要原因之一。UIS的失效通常被认为是器件“主动”模式,这是由于寄生BJT在UIS雪崩时的导通,导通后流过体内的大电流将使器件迅速升温,损坏器件。该器件的N+源区作为寄生BJT的发射区,N型漂移区构成寄生BJT的集电极区,而P型体区作为基区,当器件发生雪崩击穿时,雪崩电流经由N+源区下方的P型体区到达N型漂移区,而雪崩电流流经寄生BJT的基区时,由于P型体区本身存在电阻必然会产生正向压降,当压降大于寄生BJT的正向导通压降时,寄生BJT的发射极正偏,进入正向放大工作区,放大雪崩电流,造成器件的发热烧毁。
发明内容
发明目的:针对上述现有技术,提出一种高可靠的MOSFET功率半导体器件结构,降低MOSFET功率器件寄生晶体管的开启几率,从而有效防止器件雪崩击穿的发生。
技术方案:一种高可靠的MOSFET功率半导体器件结构,其元胞结构纵向自下而上包括衬底电极、A导电类型衬底、埋氧层、B导电类型缓冲层,B导电类型缓冲层的表面设有三维超结结构,三维超结构由沿横向延伸方向交替相接的B导电类型漂移区和A导电类型柱区构成,其中B导电类型漂移区和A导电类型柱区的上、下表面平齐;
三维超结构的表面一侧具有沟槽栅结构,沟槽栅结构包括沟槽栅电极以及其侧面和底面的沟槽栅介质;三维超结构的表面另一侧具有B+导电类型漏区,B+导电类型漏区的表面具有金属化漏极;沟槽栅结构与B+导电类型漏区之间的三维超结构中具有深介质沟槽,深介质沟槽与沟槽栅结构之间的三维超结构顶层具有A导电类型体区,A导电类型体区中具有相互独立的源区和接触区,源区和A导电类型体区通过侧面的沟槽栅介质与沟槽栅电极接触,接触区与深介质沟槽直接接触;源区和接触区的上表面具有金属化源极;金属化源极和沟槽栅电极通过沟槽栅介质相隔离;
源区沿横向延伸方向由A+导电类型和B+导电类型依次交替离子注入,接触区沿横向延伸方向由B+导电类型和A+导电类型依次交替离子注入,源区和接触区相正对的各段注入的离子导电类型不同。
进一步的,导电类型A为P型,导电类型B为N型;或者,导电类型A为N型,导电类型B为P型。
进一步的,深介质沟槽纵向深度大于其宽度,即深介质沟槽的横纵比小于1。
进一步的,A导电类型体区的结深小于沟槽栅电极的深度,而沟槽栅电极的纵向深度小于深介质沟槽的纵向深度。
进一步的,源区和接触区沿横向延伸方向依次交替离子注入的段数大于等于4。
有益效果:本发明将现有MOSFET功率半导体器件结构中呈条状并排的源区和接触区改成沿器件横向延伸方向呈交替分布的N+型和P+型离子注入区域。交替分布的N+型和P+型离子注入区域即在源区内部之间形成了电荷平衡,无法作为寄生BJT的发射区,从而可以有效避免现有技术中寄生BJT开启几率,大大降低了雪崩击穿的发生,扩大了器件安全工作区,提高了器件的可靠性。
附图说明
图1为本发明器件的结构示意图;
图2是图1中沿AB的平面示意图;
图3是图1中沿CD的平面示意图;
图4是图1中沿EF的平面示意图;
图5是图1中沿GH的平面示意图。
具体实施方式
下面结合附图对本发明做更进一步的解释。
如图1至图5所示,一种高可靠的MOSFET功率半导体器件结构,其元胞结构纵向自下而上包括衬底电极215、A导电类型衬底214、埋氧层213、B导电类型缓冲层212,B导电类型缓冲层212的表面设有三维超结结构,三维超结构由沿横向延伸方向交替相接的B导电类型漂移区210和A导电类型柱区211构成,其中B导电类型漂移区210和A导电类型柱区211的上、下表面平齐。
三维超结构的表面一侧具有沟槽栅结构,沟槽栅结构包括沟槽栅电极201以及其侧面和底面的沟槽栅介质202。三维超结构的表面另一侧具有B+导电类型漏区209,B+导电类型漏区209的表面具有金属化漏极205。沟槽栅结构与B+导电类型漏区209之间的三维超结构中具有深介质沟槽204,深介质沟槽204与沟槽栅结构之间的三维超结构顶层具有A导电类型体区208,A导电类型体区208中具有相互独立的源区206和接触区207,源区206和A导电类型体区208通过侧面的沟槽栅介质202与沟槽栅电极201接触,接触区207与深介质沟槽204直接接触。源区206和接触区207的上表面具有金属化源极203,金属化源极203和沟槽栅电极201通过沟槽栅介质202相隔离。
源区206沿横向延伸方向由A+导电类型和B+导电类型依次交替离子注入,具体的,在B导电类型漂移区210区域正上方形成N段离子注入区域,即206-1段~206-N段,在A导电类型柱区211正上方形成N段离子注入区域,即206-N+1段~206-N+N段。接触区207沿横向延伸方向由B+导电类型和A+导电类型依次交替离子注入,具体的,在B导电类型漂移区210区域正上方形成N段离子注入区域,即207-1段~207-N段,在A导电类型柱区211正上方形成N段离子注入区域,即207-N+1段~207-N+N段。上述结构中,N取大于等于2。源区206和接触区207相正对的各段注入的离子导电类型不同,如下表所示,且相正对各段的长度一致。
上述结构中,导电类型A为P型,导电类型B为N型;或者,导电类型A为N型,导电类型B为P型。深介质沟槽204纵向深度大于其宽度,即深介质沟槽204的横纵比小于1。A导电类型体区208的结深小于沟槽栅电极201的深度,而沟槽栅电极201的纵向深度小于深介质沟槽204的纵向深度。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (5)
1.一种高可靠的MOSFET功率半导体器件结构,其特征在于,其元胞结构纵向自下而上包括衬底电极(215)、A导电类型衬底(214)、埋氧层(213)、B导电类型缓冲层(212),B导电类型缓冲层(212)的表面设有三维超结结构,三维超结构由沿横向延伸方向交替相接的B导电类型漂移区(210)和A导电类型柱区(211)构成,其中B导电类型漂移区(210)和A导电类型柱区(211)的上、下表面平齐;
三维超结构的表面一侧具有沟槽栅结构,沟槽栅结构包括沟槽栅电极(201)以及其侧面和底面的沟槽栅介质(202);三维超结构的表面另一侧具有B+导电类型漏区(209),B+导电类型漏区(209)的表面具有金属化漏极(205);沟槽栅结构与B+导电类型漏区(209)之间的三维超结构中具有深介质沟槽(204),深介质沟槽(204)与沟槽栅结构之间的三维超结构顶层具有A导电类型体区(208),A导电类型体区(208)中具有相互独立的源区(206)和接触区(207),源区(206)和A导电类型体区(208)通过侧面的沟槽栅介质(202)与沟槽栅电极(201)接触,接触区(207)与深介质沟槽(204)直接接触;源区(206)和接触区(207)的上表面具有金属化源极(203);金属化源极(203)和沟槽栅电极(201)通过沟槽栅介质(202)相隔离;
源区(206)沿横向延伸方向由A+导电类型和B+导电类型依次交替离子注入,接触区(207)沿横向延伸方向由B+导电类型和A+导电类型依次交替离子注入,源区(206)和接触区(207)相正对的各段注入的离子导电类型不同。
2.根据权利要求1所述的高可靠的MOSFET功率半导体器件结构,其特征在于,导电类型A为P型,导电类型B为N型;或者,导电类型A为N型,导电类型B为P型。
3.根据权利要求1所述的高可靠的MOSFET功率半导体器件结构,其特征在于,深介质沟槽(204)纵向深度大于其宽度,即深介质沟槽(204)的横纵比小于1。
4.根据权利要求1所述的高可靠的MOSFET功率半导体器件结构,其特征在于,A导电类型体区(208)的结深小于沟槽栅电极(201)的深度,而沟槽栅电极(201)的纵向深度小于深介质沟槽(204)的纵向深度。
5.根据权利要求1所述的高可靠的MOSFET功率半导体器件结构,其特征在于,源区(206)和接触区(207)沿横向延伸方向依次交替离子注入的段数大于等于4。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210097804.2A CN114122113B (zh) | 2022-01-27 | 2022-01-27 | 一种高可靠的mosfet功率半导体器件结构 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210097804.2A CN114122113B (zh) | 2022-01-27 | 2022-01-27 | 一种高可靠的mosfet功率半导体器件结构 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114122113A CN114122113A (zh) | 2022-03-01 |
CN114122113B true CN114122113B (zh) | 2022-05-03 |
Family
ID=80361373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210097804.2A Active CN114122113B (zh) | 2022-01-27 | 2022-01-27 | 一种高可靠的mosfet功率半导体器件结构 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114122113B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003214585A1 (en) * | 2002-04-18 | 2003-10-27 | Koninklijke Philips Electronics N.V. | Trench-gate semiconductor devices |
CN101162697A (zh) * | 2006-10-13 | 2008-04-16 | 台湾积体电路制造股份有限公司 | 半导体元件的制造方法 |
CN109065626A (zh) * | 2018-08-21 | 2018-12-21 | 电子科技大学 | 一种具有介质阻挡层的槽栅dmos器件 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4994871A (en) * | 1988-12-02 | 1991-02-19 | General Electric Company | Insulated gate bipolar transistor with improved latch-up current level and safe operating area |
GB0225812D0 (en) * | 2002-11-06 | 2002-12-11 | Koninkl Philips Electronics Nv | Semiconductor devices and methods of manufacturing thereof |
JP4225177B2 (ja) * | 2002-12-18 | 2009-02-18 | 株式会社デンソー | 半導体装置およびその製造方法 |
JP4470454B2 (ja) * | 2003-11-04 | 2010-06-02 | 株式会社豊田中央研究所 | 半導体装置とその製造方法 |
DE102005014744B4 (de) * | 2005-03-31 | 2009-06-18 | Infineon Technologies Ag | Trenchtransistor mit erhöhter Avalanchefestigkeit und Herstellungsverfahren |
CN101916780A (zh) * | 2010-07-22 | 2010-12-15 | 中国科学院上海微系统与信息技术研究所 | 一种具有多层超结结构的ldmos器件 |
JP2012142334A (ja) * | 2010-12-28 | 2012-07-26 | Renesas Electronics Corp | 半導体装置 |
CN102110716B (zh) * | 2010-12-29 | 2014-03-05 | 电子科技大学 | 槽型半导体功率器件 |
CN102130012B (zh) * | 2010-12-31 | 2012-06-27 | 中国科学院上海微系统与信息技术研究所 | Soi超结ldmos器件的ldd、lds及缓冲层一体化制作方法 |
CN102222620A (zh) * | 2011-06-23 | 2011-10-19 | 上海集成电路研发中心有限公司 | 一种有效收集衬底电流的ldmos制备方法 |
CN102832249A (zh) * | 2012-09-11 | 2012-12-19 | 电子科技大学 | 一种mos型功率半导体器件 |
WO2014174741A1 (ja) * | 2013-04-26 | 2014-10-30 | パナソニックIpマネジメント株式会社 | 半導体装置 |
US9455332B2 (en) * | 2014-03-06 | 2016-09-27 | Texas Instruments Incorporated | LDMOS transistor and method of forming the LDMOS transistor with improved Rds*Cgd |
CN105097914B (zh) * | 2014-05-04 | 2018-02-06 | 无锡华润上华科技有限公司 | 横向扩散金属氧化物半导体器件及其制造方法 |
CN105118861B (zh) * | 2015-08-21 | 2018-01-12 | 西南交通大学 | 一种横向finfet器件 |
CN109473476B (zh) * | 2017-09-07 | 2020-12-25 | 无锡华润上华科技有限公司 | 一种横向双扩散金属氧化物半导体器件及其制作方法 |
CN108346701B (zh) * | 2018-04-12 | 2020-05-26 | 电子科技大学 | 一种屏蔽栅功率dmos器件 |
CN109119461B (zh) * | 2018-08-28 | 2020-09-29 | 电子科技大学 | 一种超结mos型功率半导体器件及其制备方法 |
US11894457B2 (en) * | 2020-05-09 | 2024-02-06 | Joulwatt Technology Co., Ltd. | Semiconductor device and manufacturing method thereof |
CN113787788B (zh) * | 2021-09-13 | 2023-08-15 | 广州大学 | 一种石墨烯/金属复合材料及其制备方法和应用 |
-
2022
- 2022-01-27 CN CN202210097804.2A patent/CN114122113B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003214585A1 (en) * | 2002-04-18 | 2003-10-27 | Koninklijke Philips Electronics N.V. | Trench-gate semiconductor devices |
CN101162697A (zh) * | 2006-10-13 | 2008-04-16 | 台湾积体电路制造股份有限公司 | 半导体元件的制造方法 |
CN109065626A (zh) * | 2018-08-21 | 2018-12-21 | 电子科技大学 | 一种具有介质阻挡层的槽栅dmos器件 |
Also Published As
Publication number | Publication date |
---|---|
CN114122113A (zh) | 2022-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6800897B2 (en) | Integrated circuit power devices having junction barrier controlled schottky diodes therein | |
KR100628938B1 (ko) | 개선된 고주파 스위칭 특성 및 항복 특성을 갖는 전력용반도체 장치들 | |
CN110190113B (zh) | 一种消除负阻效应的阳极短路型横向绝缘栅双极型晶体管 | |
EP2362423A2 (en) | Vertical power semiconductor device and method of making the same | |
US20070138547A1 (en) | Semiconductor device and method of manufacturing the same | |
WO2003046996A1 (en) | Vertical mosfets having crossing trench-based gate electrodes that extend into deeper trench-based source electrodes and methods of forming same | |
US7276778B2 (en) | Semiconductor system functioning as thyristor in on-state, and as bipolar transistor in transient state or with overcurrent | |
CN108493241B (zh) | 一种具有内置jfet结构的igbt器件 | |
CN109888007B (zh) | 具有二极管钳位载流子存储层的soi ligbt器件 | |
CN109166921B (zh) | 一种屏蔽栅mosfet | |
KR101422953B1 (ko) | 전력 반도체 소자 및 그 제조 방법 | |
JP2008124421A (ja) | 半導体装置及びその製造方法 | |
CN107516679B (zh) | 一种深槽超结dmos器件 | |
CN114122113B (zh) | 一种高可靠的mosfet功率半导体器件结构 | |
CN114784102B (zh) | 一种具有混合导电模式的ligbt | |
CN108122962B (zh) | 一种绝缘栅双极型晶体管 | |
CN101388406B (zh) | 半导体装置 | |
CN103887332A (zh) | 一种新型功率半导体器件 | |
CN109888006B (zh) | 一种低功耗绝缘体上硅横向绝缘栅双极型晶体管 | |
CN110190114B (zh) | 一种栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管 | |
CN113851542A (zh) | 一种具有软反向恢复特性的超结mosfet | |
CN111933687A (zh) | 具有高安全工作区的横向功率器件 | |
CN113555424A (zh) | 一种自适应低损耗功率器件 | |
CN113078211B (zh) | 一种集成mos自适应控制soi ligbt | |
CN113066862B (zh) | 一种集成mos自适应控制soi ligbt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220513 Address after: No. 88, Wenchang East Road, Yangzhou, Jiangsu 225000 Patentee after: Jiangsu Daoyuan Technology Group Co.,Ltd. Address before: 211135 enlightenment star Nanjing maker space G41, second floor, No. 188, Qidi street, Qilin science and Technology Innovation Park, Qixia District, Nanjing, Jiangsu Province Patentee before: Jiangsu Peregrine Microelectronics Co.,Ltd. |
|
TR01 | Transfer of patent right |