CN110190114B - 一种栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管 - Google Patents

一种栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管 Download PDF

Info

Publication number
CN110190114B
CN110190114B CN201910471454.XA CN201910471454A CN110190114B CN 110190114 B CN110190114 B CN 110190114B CN 201910471454 A CN201910471454 A CN 201910471454A CN 110190114 B CN110190114 B CN 110190114B
Authority
CN
China
Prior art keywords
base
electrode
silicon carbide
grid
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910471454.XA
Other languages
English (en)
Other versions
CN110190114A (zh
Inventor
段宝兴
董自明
杨银堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201910471454.XA priority Critical patent/CN110190114B/zh
Publication of CN110190114A publication Critical patent/CN110190114A/zh
Application granted granted Critical
Publication of CN110190114B publication Critical patent/CN110190114B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开一种栅控双极‑场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管,该器件通过采用基区与栅极相连的电极连接方式,代替传统的碳化硅VDMOS中基区与源极短接的电极连接方式。该器件工作在关态时源区、基区和漂移区之间寄生的双极型晶体管不工作,防止二次击穿,器件的击穿特性与传统器件击穿特性相同;该器件工作在开态时,使得器件寄生的双极型晶体管开启,提供了一个新的导电通道,与此同时,器件的沟道同样能正常开启进行导电。因此,本发明在保证器件具有相同击穿电压的同时,大幅度提高器件的导通电流,极大改善碳化硅晶体管的导通性能。

Description

一种栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半 导体晶体管
技术领域
本发明涉及半导体功率器件技术领域,具体涉及一种垂直双扩散晶体管。
背景技术
功率MOS场效应晶体管是在MOS集成电路工艺基础上发展起来的新一代半导体功率开关器件,二十年来取得了长足的进步,由LDMOS结构起步,经历了VVMOS、VUMOS、VDMOS、EXTFET等结构的演化,目前仍以VDMOS结构为主,垂直双扩散金属氧化物半导体(VDMOS)器件具有输入阻抗高、开关速度快、工作频率高、电压控制、热稳定性好等一系列独特特点,目前已在开关稳态电源、高频加热、计算机接口电路以及功率放大器等方面获得了广泛的应用。
碳化硅材料具有良好的物理和电学特性,以其大禁带宽度、高临界击穿电场、高热导率和高饱和漂移速度等独特有点,成为制作高压、高功率、耐高温、抗辐照器件的理想材料,其在军事和民工等发面都有着广泛的前景。
发明内容
本发明提出了一种栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管,旨在不影响击穿特性的前提下,进一步降低器件的导通电阻,改善碳化硅晶体管的导通性能。
本发明的解决方案如下:
该栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管,包括:
半导体材料的衬底;
位于衬底上表面的外延层,形成漂移区;
在所述外延层上部两侧分别形成的两处基区;
在所述外延层上表面中间区域形成的栅绝缘层;
在每一处所述基区形成的基区接触、源区以及相应的沟道;
在栅绝缘层上表面形成的栅极;
在源区上表面形成的源极;
在衬底下表面形成的漏极;
其特殊之处在于:
所述衬底为碳化硅材料;所述基区接触的上表面形成基极,所述基极与源极隔离,与栅极电连接,满足:栅极接入电压时,基区获得的电压使得器件寄生的双极型晶体管开启。
基极与栅极之间的连接材料可以是导体材料(例如铜或铝),使得栅极接入电压时基极与栅极电位一致。
基极与栅极之间的连接材料也可以是半导体材料(例如半绝缘多晶硅);使得基极接入电压时基极电位大于栅极电位,栅极接入电压时栅极电位大于基极电位。
进一步的,所述衬底的掺杂浓度为1×1019cm-3
进一步的,所述漂移区的材料为碳化硅,漂移区的掺杂浓度为1×1015cm-3
进一步的,所述基区接触的掺杂浓度为1×1019cm-3
本发明技术方案的有益效果如下:
该碳化硅器件采用基区与栅极相连的电极连接方式,代替传统的碳化硅VDMOS中基区与源极短接的电极连接方式。该器件工作在关态时,器件的耐压特性与传统的碳化硅VDMOS的一致。器件的栅极,基区和源极接地,漏极接高电位。所以器件关态工作时源区、基区和漂移区之间寄生的双极型晶体管不工作,防止二次击穿,器件的击穿特性与传统器件击穿特性相同。该器件工作在开态时,由于栅极与基区相连。当在栅极接入栅压时,基区也接入一定电压,使得器件寄生的双极型晶体管开启,同时,器件的沟道同样能正常开启进行导电。器件导通电流得到大幅度增加,大大降低器件的导通电阻。
附图说明
图1为本发明的栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管结构示意图。
图2基于图1所示结构示意了导电通道。其中,A为沟道形成的导电通道,B为寄生的双极型晶体管开启形成的导电通道。
附图标号说明:
1-碳化硅衬底;2-漂移区;3-基区;4-源区;5-基区接触;6-源极;7-栅极,8-漏极;9-基极。
具体实施方式
如图1所示,该栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管包括:
碳化硅材料衬底1,掺杂浓度为1×1019cm-3
在衬底1上外延生成出漂移区2;漂移区的材料也为碳化硅,掺杂浓度为1×1015cm-3
在漂移区表面形成的栅绝缘层,并在栅绝缘层上方形成栅极7;
在漂移区上形成基区3;
在基区上形成源区4和基区接触5同时在所述基区上形成沟道;其中,基区接触的掺杂浓度为1×1019cm-3
在源区4、基区接触5和衬底1底部上分别生成源极6、基极9和漏极7。
器件的基极9与栅极7相连接。具体来说:
基极9与栅极7之间的连接材料可为导体材料(如铜和铝等),栅极7接入电压时,基极9与栅极7电位一致。
基极9与栅极7之间的连接材料也可为电阻材料(如半绝缘多晶硅等)。基极9接入电压时,则基极9电位大于栅极7电位;栅极7接入电压时,则栅极7电位大于基极9电位。
需要说明的是,附图中所示栅极与基极共接引出接线端子为拓扑示意,实际产品中基极和栅极相连后引出的电极,它可以从基极处直接引出或是从栅极处直接引出。所以会因基极和栅极间的电阻以及引出电极位置的不同导致栅极与基极的电位存在差异。
本发明的碳化硅器件采用基区与栅极相连的电极连接方式。该器件工作在关态时,器件的耐压特性与传统的碳化硅VDMOS的一致。器件的栅极,基区和源极接地,漏极接高电位。所以器件关态工作时源区,基区和漂移区之间寄生的双极型晶体管不工作,防止二次击穿,器件的击穿特性与传统器件击穿特性相同。该器件工作在开态时,由于栅极与基区相连。当在栅极接入栅压时,基区也接入一定电压,使得器件寄生的双极型晶体管开启,提供了一个新的导电通道。同时,器件的沟道同样能正常开启进行导电。器件导通电流得到大幅度增加,大大降低器件的导通电阻。
采用本发明的电极连接方式的碳化硅器件较之传统器件的导通电流密度大幅度提升,两种器件的在漂移区相同的情况下,器件的导通电流密度提升了1到3个数量级。
当然,本发明中的VDMOS也可以为P沟道,其结构与N沟道VDMOS相同,在此不再赘述。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换的方案也落入本发明的保护范围。

Claims (3)

1.一种栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管,包括:
半导体材料的衬底;
位于衬底上表面的外延层,形成漂移区;
在所述外延层上部两侧分别形成的两处基区;
在所述外延层上表面中间区域形成的栅绝缘层;
在每一处所述基区形成的基区接触、源区以及相应的沟道;
在栅绝缘层上表面形成的栅极;
在源区上表面形成的源极;
在衬底下表面形成的漏极;
其特征在于:
所述衬底和漂移区均为碳化硅材料,漂移区的掺杂浓度为1×1015cm-3,基区接触的掺杂浓度为1×1019cm-3;所述基区接触的上表面形成基极,所述基极与源极隔离,与栅极电连接,基极与栅极之间的连接材料为半导体材料,使得基极接入电压时基极电位大于栅极电位,栅极接入电压时栅极电位大于基极电位,并满足:栅极接入电压时,基区获得的电压使得器件寄生的双极型晶体管开启。
2.根据权利要求1所述的栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管,其特征在于:连接基极与栅极的半导体材料为半绝缘多晶硅。
3.根据权利要求1所述的栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管,其特征在于:碳化硅材料衬底的掺杂浓度为1×1019cm-3
CN201910471454.XA 2019-05-31 2019-05-31 一种栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管 Active CN110190114B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910471454.XA CN110190114B (zh) 2019-05-31 2019-05-31 一种栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910471454.XA CN110190114B (zh) 2019-05-31 2019-05-31 一种栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管

Publications (2)

Publication Number Publication Date
CN110190114A CN110190114A (zh) 2019-08-30
CN110190114B true CN110190114B (zh) 2021-01-01

Family

ID=67719586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910471454.XA Active CN110190114B (zh) 2019-05-31 2019-05-31 一种栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管

Country Status (1)

Country Link
CN (1) CN110190114B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114068675A (zh) * 2021-11-16 2022-02-18 大连海事大学 一种双极分裂栅增强型功率晶体管

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3666280B2 (ja) * 1999-01-20 2005-06-29 富士電機ホールディングス株式会社 炭化けい素縦形fetおよびその製造方法
US20070108517A1 (en) * 2005-11-12 2007-05-17 Taiwan Semiconductor Manufacturing Co., Ltd. LDMOS with independently biased source
CN101777582A (zh) * 2010-01-12 2010-07-14 上海宏力半导体制造有限公司 一种可提高栅氧可靠性的ldmos器件及其制造方法
CN107093623B (zh) * 2017-03-16 2020-05-01 西安电子科技大学 一种具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管

Also Published As

Publication number Publication date
CN110190114A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
CN103413824B (zh) 一种rc-ligbt器件及其制作方法
US9240469B2 (en) Transverse ultra-thin insulated gate bipolar transistor having high current density
CN102231390B (zh) 一种超结结构的纵向双扩散金属氧化物半导体功率器件
TW201507164A (zh) 橫向功率半導體電晶體
WO2019085850A1 (zh) Igbt功率器件
CN103855155A (zh) 一种三模式集成绝缘栅型双极晶体管及其形成方法
CN110534558B (zh) 一种栅控双极-场效应复合氮化镓垂直双扩散金属氧化物半导体晶体管
CN106920840B (zh) 消除横向绝缘栅双极型晶体管拖尾电流的方法
CN110190114B (zh) 一种栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管
CN107516679B (zh) 一种深槽超结dmos器件
CN106098764A (zh) 一种双通道rc‑ligbt器件及其制备方法
US20150144990A1 (en) Power semiconductor device and method of manufacturing the same
CN110504305B (zh) 一种具有自偏置pmos钳位载流子存储层的SOI-LIGBT器件
CN108447904B (zh) 一种横向igbt的制造方法
CN110544722A (zh) 一种栅控双极-场效应复合氮化镓横向双扩散金属氧化物半导体晶体管
CN110783398A (zh) 一种大电流绝缘体上硅横向绝缘栅双极型晶体管
CN102738229B (zh) 功率晶体管结构及其制作方法
CN110212032B (zh) 一种栅控双极-场效应复合元素半导体基横向双扩散金属氧化物半导体晶体管
CN103887332A (zh) 一种新型功率半导体器件
CN210073861U (zh) 一种具有高开关速度的平面栅器件结构
CN110212034B (zh) 一种栅控双极-场效应复合元素半导体基vdmos
CN110212033B (zh) 一种栅控双极-场效应复合碳化硅ldmos
CN108767001B (zh) 具有屏蔽栅的沟槽型igbt器件
TWI641131B (zh) 橫向雙擴散金屬氧化半導體元件
CN108172610B (zh) 一种具有内置镇流电阻的高压igbt器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant