CN107093623B - 一种具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管 - Google Patents

一种具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管 Download PDF

Info

Publication number
CN107093623B
CN107093623B CN201710158895.5A CN201710158895A CN107093623B CN 107093623 B CN107093623 B CN 107093623B CN 201710158895 A CN201710158895 A CN 201710158895A CN 107093623 B CN107093623 B CN 107093623B
Authority
CN
China
Prior art keywords
type
epitaxial layer
band gap
wide band
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710158895.5A
Other languages
English (en)
Other versions
CN107093623A (zh
Inventor
段宝兴
吕建梅
曹震
袁嵩
杨银堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201710158895.5A priority Critical patent/CN107093623B/zh
Publication of CN107093623A publication Critical patent/CN107093623A/zh
Application granted granted Critical
Publication of CN107093623B publication Critical patent/CN107093623B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3738Semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明提出了一种具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管(VDMOS),该VDMOS器件主要特点是将宽带隙材料与硅材料相结合,在宽带隙N+型衬底材料上表面形成掺杂浓度较小的N型宽带隙外延层,再以该N型宽带隙外延层为基础异质外延生长(或利用键合技术形成)N型硅外延层,采用硅成熟工艺在硅外延层形成器件有源区。利用宽带隙材料中产生的纵向电场对硅外延层中产生的纵向电场的调制作用,使器件的击穿电压提高,同时宽带隙材料的高热导率特性有利于器件的散热,器件性能有效改善。

Description

一种具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场 效应管
技术领域
本发明涉及功率半导体器件领域,尤其涉及一种垂直双扩散金属氧化物场效应管。
背景技术
功率半导体器件是指主要用于电力设备的电能变换和控制电路方面的大功率电子器件。垂直双扩散金属氧化物半导体(VDMOS)作为功率半导体器件领域的重要元器件,因其具有开关速度快、损耗小、输入阻抗高、驱动功率小、频率特性好、跨导高线性度高等特性等优良特性,已经被广泛应用于功率集成电路与功率集成系统中。
近年来,对VDMOS器件的特性优化主要是研究成熟的超结工艺实现具有超结的VDMOS器件。
发明内容
本发明提出一种新的垂直双扩散金属氧化物半导体功率器件,旨在进一步提高VDMOS的击穿电压,改善器件性能。
本发明的技术方案如下:
该具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管,包括:
宽带隙半导体材料的N+型衬底;
在N+型衬底上表面形成的宽带隙半导体材料的N型外延层,记为N型宽带隙外延层;
在所述N型宽带隙外延层上表面异质外延生长或利用键合技术形成的N型硅外延层(利用键合技术形成的通常称之为键合层,本文统一记为N型硅外延层);
分别在所述N型硅外延层上部的左、右两端区域形成的两处P型基区;每一处P型基区中形成沟道以及N+型源区和P+沟道衬底接触,其中N+型源区与沟道邻接,P+沟道衬底接触相对于N+型源区位于沟道远端;
栅氧化层,覆盖所述N型硅外延层位于两处P型基区之间的部分以及相应的两处沟道;
栅极,位于栅氧化层上表面;
源极,覆盖P+沟道衬底接触与N+型源区相接区域的上表面;两处源极共接;
漏极,位于所述N+型衬底下表面;
所述N型宽带隙外延层的厚度和掺杂浓度由器件的耐压要求决定,N型宽带隙外延层的掺杂浓度低于N+型衬底的掺杂浓度。
在以上方案的基础上,本发明还进一步作了如下优化:
上述宽带隙半导体材料采用碳化硅或氮化镓。
上述N型宽带隙外延层的掺杂浓度与N+型衬底相比的差值根据设计的击穿电压确定,一般应小于N+型衬底浓度4‐6个数量级。
上述N型宽带隙外延层的厚度根据设计的击穿电压确定,例如:耐压为270V时,N型宽带隙外延层的厚度大约为5微米;耐压为400V时,厚度大约为15微米。
设定N+型衬底的掺杂浓度具体为1×1020cm‐3左右,则耐压为270V时,N型宽带隙外延层的掺杂浓度具体为1×1015cm‐3左右,耐压为400V时,N型宽带隙外延层的掺杂浓度具体为1×1015cm‐3左右。
上述P型基区及其N+型源区和P+沟道衬底接触以及沟道,是在N型硅外延层上部采用离子注入以及双扩散技术形成的。
上述栅极为多晶硅栅极,所述源极为金属化源极,漏极为金属化漏极。
一种制作上述具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管的方法,包括以下步骤:
(1)在宽带隙半导体材料的N+型衬底的上表面形成所述N型宽带隙外延层;
(2)通过异质外延生长技术生长N型硅外延层;
(3)在N+型衬底下表面形成金属化漏极;
(4)在N型硅外延层上部的左、右两端区域采用离子注入形成P型基区及其N+型源区和P+沟道衬底接触,并采用双扩散技术形成相应的沟道;
(5)在整个N型硅外延层上表面形成栅氧化层,并淀积多晶硅,然后刻蚀多晶硅以及栅氧化层(去除位于左、右两端区域的部分),形成多晶硅栅极;
(6)在器件表面淀积钝化层,并在对应于源极的位置刻蚀接触孔;
(7)在接触孔内淀积金属并刻蚀(去除周边其余的钝化层)形成源极,并将两处源极共接。
本发明技术方案的有益效果如下:
本发明将宽带隙材料与硅材料相结合,在N+型衬底上表面形成掺杂浓度较小的N型宽带隙外延层,再以该N型宽带隙外延层为基础异质外延生长(或利用键合技术形成)N型硅外延层,采用硅成熟工艺在硅外延层形成器件有源区。利用宽带隙材料中产生的纵向电场(器件关态耐压时)对硅外延层中的纵向电场的调制作用,使器件的纵向电场整体抬高,击穿电压增大,在器件漂移区长度相同,漂移区掺杂浓度相同的情况下,较之传统硅基VDMOS击穿电压可提高55%以上。同时宽带隙材料的高热导率特性有利于器件的散热,有效改善了器件性能。
附图说明
图1是本发明的结构示意图。
其中,1‐源极;2‐栅氧化层;3‐栅极;4‐源极;5‐P+沟道衬底接触(P+型体区);6‐N+型源区;7‐P型基区;801‐宽带隙材料的N+型衬底;802‐N型宽带隙外延层;9‐漏极。
具体实施方式
下面结合附图以N沟道VDMOS为例介绍本发明。
如图1所示,本实施例的结构包括:
宽带隙半导体材料的N+型衬底801;
在N+型衬底801上表面形成的宽带隙半导体材料的N型外延层,记为N型宽带隙外延层802;
在所述N型宽带隙外延层802上表面异质外延生长(或键合技术)的N型硅外延层;
分别在所述N型硅外延层上部的左、右两端区域形成的两处P型基区7;每一处P型基区7中形成沟道以及N+型源区6和P+沟道衬底接触5,其中N+型源区6与沟道邻接,P+沟道衬底接触5相对于N+型源区6位于沟道远端;
栅氧化层2,覆盖所述N型硅外延层位于两处P型基区7之间的部分以及相应的两处沟道;
栅极3,位于栅氧化层上表面;
源极1、4,覆盖P+沟道衬底接触5与N+型源区6相接区域的上表面;两处源极1、4共接;
漏极9,位于所述N+型衬底801下表面;
该器件具体可以通过以下步骤进行制备:
(1)在宽带隙半导体材料的N+型衬底801的上表面形成所述N型宽带隙外延层802;宽带隙半导体材料均采用碳化硅或氮化镓,N型宽带隙外延层(802)的掺杂浓度比N+型衬底(801)的掺杂浓度小4‐6个数量级;
(2)通过异质外延生长技术生长N型硅外延层;
(3)在N+型衬底801下表面形成金属化漏极;
(4)在N型硅外延层上部的左、右两端区域采用离子注入形成P型基区7及其N+型源区6和P+沟道衬底接触5,并采用双扩散技术形成相应的沟道;
(5)在整个N型硅外延层(或键合层)上表面形成栅氧化层,并淀积多晶硅,然后刻蚀多晶硅以及栅氧化层(去除位于左、右两端区域的部分),形成多晶硅栅极;
(6)在器件表面淀积钝化层,并在对应于源极的位置刻蚀接触孔;
(7)在接触孔内淀积金属并刻蚀(去除周边其余的钝化层)形成源极,并将两处源极共接。
经ISE TCAD仿真表明,该器件较之传统硅基VDMOS的性能改善,在两种器件漂移区长度相同,漂移区掺杂浓度相同的情况下,该器件的击穿电压提高了55%以上。
本发明中的VDMOS当然也可以为P型沟道,其结构与N沟道VDMOS等同,也应当视为属于本申请权利要求的保护范围,在此不再赘述。

Claims (9)

1.一种具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管,其特征在于,包括:
宽带隙半导体材料的N+型衬底(801);
在N+型衬底(801)上表面形成的宽带隙半导体材料的N型外延层,记为N型宽带隙外延层(802);
在所述N型宽带隙外延层(802)上表面异质外延生长或利用键合技术形成的N型硅外延层;
分别在所述N型硅外延层上部的左、右两端区域形成的两处P型基区(7);每一处P型基区(7)中形成沟道以及N+型源区(6)和P+沟道衬底接触(5),其中N+型源区(6)与沟道邻接,P+沟道衬底接触(5)相对于N+型源区(6)位于沟道远端;
形成于所述N型硅外延层上表面中间区域的栅氧化层(2),覆盖所述N型硅外延层位于两处P型基区(7)之间的部分以及相应的两处沟道;
栅极(3),位于栅氧化层上表面;
源极(1、4),覆盖P+沟道衬底接触(5)与N+型源区(6)相接区域的上表面;两处源极(1、4)共接;
漏极(9),位于所述N+型衬底(801)下表面;
所述N型宽带隙外延层(802)的厚度和掺杂浓度由器件的耐压要求决定,N型宽带隙外延层(802)的掺杂浓度低于N+型衬底(801)的掺杂浓度。
2.根据权利要求1所述的具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管,其特征在于:所述宽带隙半导体材料采用碳化硅或氮化镓。
3.根据权利要求1所述的具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管,其特征在于:N型宽带隙外延层(802)的掺杂浓度比N+型衬底(801)的掺杂浓度小4-6个数量级。
4.根据权利要求1所述的具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管,其特征在于:耐压要求为270V时,N型宽带隙外延层(802)的厚度为5微米;耐压要求为400V时,厚度为15微米。
5.根据权利要求1所述的具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管,其特征在于:设定N+型衬底(801)的掺杂浓度为1×1020cm-3,则:耐压要求为270V时,N型宽带隙外延层(802)的掺杂浓度为1×1015cm-3;耐压要求为400V时,N型宽带隙外延层(802)的掺杂浓度为1×1015cm-3
6.根据权利要求1所述的具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管,其特征在于:所述P型基区(7)及其N+型源区(6)和P+沟道衬底接触(5)以及沟道,是在N型硅外延层上部采用离子注入以及双扩散技术形成的。
7.根据权利要求1所述的具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管,其特征在于:所述栅极(3)为多晶硅栅极,所述源极(1、4)为金属化源极,漏极(9)为金属化漏极。
8.一种制作权利要求7所述的具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管的方法,包括以下步骤:
1)在宽带隙半导体材料的N+型衬底(801)的上表面形成所述N型宽带隙外延层(802);
2)通过异质外延生长技术生长N型硅外延层;
3)在N+型衬底(801)下表面形成金属化漏极;
4)在N型硅外延层上部的左、右两端区域采用离子注入形成P型基区(7)及其N+型源区(6)和P+沟道衬底接触(5),并采用双扩散技术形成相应的沟道;
5)在整个N型硅外延层上表面形成栅氧化层,并淀积多晶硅,然后刻蚀多晶硅以及栅氧化层,形成多晶硅栅极;
6)在器件表面淀积钝化层,并在对应于源极的位置刻蚀接触孔;
7)在接触孔内淀积金属并刻蚀形成源极,并将两处源极共接。
9.根据权利要求8所述的方法,其特征在于:所述宽带隙半导体材料采用碳化硅或氮化镓。
CN201710158895.5A 2017-03-16 2017-03-16 一种具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管 Active CN107093623B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710158895.5A CN107093623B (zh) 2017-03-16 2017-03-16 一种具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710158895.5A CN107093623B (zh) 2017-03-16 2017-03-16 一种具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管

Publications (2)

Publication Number Publication Date
CN107093623A CN107093623A (zh) 2017-08-25
CN107093623B true CN107093623B (zh) 2020-05-01

Family

ID=59648883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710158895.5A Active CN107093623B (zh) 2017-03-16 2017-03-16 一种具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管

Country Status (1)

Country Link
CN (1) CN107093623B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258040B (zh) * 2017-12-26 2021-01-01 西安电子科技大学 具有宽带隙半导体衬底材料的绝缘栅双极晶体管及其制作方法
CN108598159B (zh) * 2017-12-26 2021-01-01 西安电子科技大学 具有宽带隙半导体材料/硅半导体材料异质结的绝缘栅双极晶体管及其制作方法
CN110190114B (zh) * 2019-05-31 2021-01-01 西安电子科技大学 一种栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管
CN112885710A (zh) * 2021-01-15 2021-06-01 广州爱思威科技股份有限公司 半导体的外延片的制备方法及其应用
CN116741639A (zh) * 2023-06-20 2023-09-12 中国科学院上海微系统与信息技术研究所 半导体器件的制备方法及半导体器件
CN116646401B (zh) * 2023-07-19 2024-01-23 成都蓉矽半导体有限公司 一种碳化硅异质结的共源共栅mosfet器件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870204B2 (en) * 2001-11-21 2005-03-22 Astralux, Inc. Heterojunction bipolar transistor containing at least one silicon carbide layer
CN101101879A (zh) * 2006-07-06 2008-01-09 日产自动车株式会社 半导体装置的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870204B2 (en) * 2001-11-21 2005-03-22 Astralux, Inc. Heterojunction bipolar transistor containing at least one silicon carbide layer
CN101101879A (zh) * 2006-07-06 2008-01-09 日产自动车株式会社 半导体装置的制造方法

Also Published As

Publication number Publication date
CN107093623A (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
CN107093623B (zh) 一种具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管
CN107123684B (zh) 一种具有宽带隙材料与硅材料复合垂直双扩散金属氧化物半导体场效应管
CN108511528B (zh) 具有深漏区的横向双扩散金属氧化物复合半导体场效应管及其制作方法
JP5002693B2 (ja) 半導体装置
CN106783851B (zh) 集成肖特基二极管的SiCJFET器件及其制作方法
CN110148629B (zh) 一种沟槽型碳化硅mosfet器件及其制备方法
CN110544723B (zh) 具有部分碳化硅材料/硅材料异质结的u-mosfet及其制作方法
CN108538909A (zh) 具有电荷补偿块的异质结垂直双扩散金属氧化物半导体场效应管及其制作方法
CN107086243A (zh) 具有宽带隙材料与硅材料复合的u‑mosfet
CN110518069B (zh) 具有部分碳化硅/硅半导体材料异质结的vdmos及其制作方法
CN110429137B (zh) 具有部分氮化镓/硅半导体材料异质结的vdmos及其制作方法
CN112713190B (zh) 一种垂直结构氮化镓hemt器件的制备方法
CN108598159B (zh) 具有宽带隙半导体材料/硅半导体材料异质结的绝缘栅双极晶体管及其制作方法
CN110021660B (zh) AlGaN/GaN异质结垂直型场效应晶体管及其制作方法
CN115632031B (zh) 集成栅保护机制的平面栅碳化硅mosfet的制造方法
CN108258040B (zh) 具有宽带隙半导体衬底材料的绝缘栅双极晶体管及其制作方法
CN105826369A (zh) 一种新型增强型iii-v异质结场效应晶体管
CN109817711B (zh) 具有AlGaN/GaN异质结的氮化镓横向晶体管及其制作方法
CN110034183B (zh) 一种横向肖特基栅双极晶体管及其制作方法
CN109888009B (zh) 具有AlGaN/GaN异质结的横向晶体管及其制作方法
CN104269436A (zh) 采用两种性质的本征应变膜的应变ldmos器件
CN110047932B (zh) 具有电荷补偿层和低阻通道的vdmos及其制作方法
CN110739349A (zh) 一种碳化硅横向jfet器件及其制备方法
CN110571268B (zh) 具有部分宽禁带材料/硅材料异质结的igbt及其制作方法
CN110429138B (zh) 具有部分氮化镓/硅半导体材料异质结的u-mosfet及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant