CN113968740B - 一种Li-B-N材料的制备方法 - Google Patents

一种Li-B-N材料的制备方法 Download PDF

Info

Publication number
CN113968740B
CN113968740B CN202111228833.XA CN202111228833A CN113968740B CN 113968740 B CN113968740 B CN 113968740B CN 202111228833 A CN202111228833 A CN 202111228833A CN 113968740 B CN113968740 B CN 113968740B
Authority
CN
China
Prior art keywords
sintering
preparation
heating
temperature
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111228833.XA
Other languages
English (en)
Other versions
CN113968740A (zh
Inventor
李德
黄世界
陈朗朗
陈永
韦雅庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Priority to CN202111228833.XA priority Critical patent/CN113968740B/zh
Publication of CN113968740A publication Critical patent/CN113968740A/zh
Application granted granted Critical
Publication of CN113968740B publication Critical patent/CN113968740B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提出了一种Li‑B‑N材料的制备方法,包括如下步骤:(1)按摩尔质量比为1‑2:2‑3:1‑2,将氮化锂、氮化硼和硼粉混合,研磨,得前驱体粉末;(2)将前驱体粉末压片后,密封,通入氩气,从20‑30℃升温至900‑1000℃进行烧结,升温时间为100‑300min,保温时间为8‑12h,烧结后得Li‑B‑N材料。本发明制得的Li‑B‑N材料可用于锂离子电池的负极材料,制备方法简单、成本低,易于工业化的生产和推广,并为锂离子电池负极的探索与开发提供一条新的思路。

Description

一种Li-B-N材料的制备方法
技术领域
本发明涉及锂离子电池负极材料领域,特别涉及一种Li-B-N材料的制备方法。
背景技术
锂离子电池,一般使用嵌锂化合物LiMO作为正极活性材料,石墨等材料作为负极活性材料。但传统锂离子电池负极材料石墨,在充放电的使用过程中易使电解液分解,造成较大的不可逆容量,而且溶剂分子的共嵌入导致了石墨层的塌陷,层状结构稳定性较差,使电极的循环寿命急剧衰减,石墨负极材料纯度较低、副反应较多以致损害电池。因此,采用石墨作为负极材料已不满足现有产品对高质量锂离子电池的实际需求,现急需一种新的锂离子负极材料,以用于进一步提高锂离子电池的使用价值。
中国专利CN110911665B公开采用将三聚氰胺、硼酸氨、正硅酸乙酯、盐酸、去离子水和乙醇混合,获得胶状前驱体溶液,将溶液加热、洗涤、烘干后,在惰性气氛下碳化,再掺杂石墨进行球磨,得到硼、氮参加锂离子电池的负极材料;中国专利CN112850715A公开一种氮硼共掺杂纳米硅碳粉体材料作为锂离子电池的负极材料,将纳米硅溶解于去离子水中,进行搅拌和超声,加入瓜尔胶,水浴加热搅拌,静置后,再加入硼酸钠溶液,最后冷冻干燥和高温碳化,得到所述材料。现有技术缺少一种氮、硼、锂材料用于完全替代石墨,作为锂离子电池的负极材料。
发明内容
鉴于此,本发明的目的在于提出一种Li-B-N材料的制备方法,解决上述问题。
本发明的技术方案是这样实现的:
一种Li-B-N材料的制备方法,包括如下步骤:
(1)按摩尔质量比为1-2:2-3:1-2,将氮化锂、氮化硼和硼粉混合,放入研钵中充分研磨至不沾研钵棒,得前驱体粉末;
(2)将前驱体粉末压片后,放入不锈钢螺栓中,将螺栓拧紧密封后,放入石英管式炉中,通入氩气,从20-30℃升温至900-1000℃进行烧结,升温时间为100-300min,保温时间为8-12h,烧结完成即得Li-B-N材料。
优选地,氮化锂、氮化硼和硼粉的摩尔质量比为1:2:1。
进一步说明,步骤(1)中,研磨的时间为25-35min;研磨可使氮化锂、氮化硼和硼粉充分反应,避免产生杂相;优选地,研磨的时间为30min。
进一步说明,步骤(2)中,压片的压力为10-30MP,压片时间为0.5-3min;压片可使前驱体粉末烧结时均匀受热,反应充分。
优选地,步骤(2)中,从25℃升温至950℃,升温时间为200min;控制一定的升温速率,可使反应受热均匀;升温的温度低,则反应不充分,温度高易产生副产物。
优选地,升温至950℃,保温时间为10h。
该Li-B-N材料还可以包括如下的制备步骤:按摩尔质量比为1-2:1-2,将氢化锂和氮化硼混合,密封,通入氩气,从20-30℃升温至900-1000℃进行烧结,升温时间为100-300min,保温时间为8-12h,烧结后得Li-B-N材料。
优选地,氢化锂和氮化硼的摩尔质量比为1:1。
与现有技术相比,本发明的有益效果为:
本发明采用氮化锂、氮化硼和硼粉制备的Li-B-N,是一种可用于锂离子电池负极材料的新型材料,其具有热稳定性好、对环境无污染、制备方法简单和易于回收等有点,而且Li-B-N材料纯度高,化学性质稳定,副反应极少,可提高锂离子电池的使用稳定性,易于工业化的生产和推广,并为锂离子电池负极的探索与开发提供一条新的思路。
此外,本发明的Li-B-N材料还可以通过氢化锂和氮化硼制备所得,制备方法简单,生产工艺易于控制,为锂离子电池负极的探索与开发提供一条新的思路。
附图说明
图1为实施例1经XRD扫描分析图,注:烧结处理1为900℃的XRD图谱,烧结处理2为950℃的XRD图谱,烧结处理3为1000℃的XRD图谱;
图2为实施例1充放电的曲线图;
图3为实施例2经XRD扫描分析图,注:烧结处理1为900℃的图,烧结处理2为950℃的XRD图谱,烧结处理3为1000℃的XRD图谱;
图4为对比例1经XRD扫描分析图,注:950℃+不压为对比例1的XRD图谱,950℃+压实为实施例1的XRD图谱;
图5为对比例5经XRD扫描分析图,注:950℃+压实为对比例5的XRD图谱,950℃+不压为实施例2的XRD图谱。
具体实施方式
为了更好理解本发明技术内容,下面提供具体实施例,对本发明做进一步的说明。
本发明实施例所用的实验方法如无特殊说明,均为常规方法。
本发明实施例所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1-一种Li-B-N材料的制备方法
该Li-B-N材料的制备方法,包括如下步骤:
(1)按摩尔质量比为1:2:1,在充满氩气、水氧值<0.1ppm的手套箱中取出氮化锂、氮化硼和硼粉,混合,放入研钵中充分研磨30min,得前驱体粉末;
(2)采用液压机以压力为20MP,压片时间为1min,将前驱体粉末放入模具中压片,取出,放入不锈钢管中,将螺栓拧紧密封,将密封好的不锈钢管放入到石英管式炉,通入氩气烧结,烧结处理如下:
烧结处理1:从25℃升温至900℃,升温时间为200min,保温时间为10h;
烧结处理2:从25℃升温至950℃,升温时间为200min,保温时间为10h;
烧结处理3:从25℃升温至1000℃,升温时间为200min,保温时间为10h;
烧结完成即得Li-B-N材料。
将Li-B-N材料采用XRD(X-射线衍射仪)进行扫描分析,由图1可知,烧结处理2得到的Li-B-N材料,其杂峰更少,且结晶度更好;由图2可知,烧结处理2可替换石墨用于锂离子电池的负极材料,充放电性能稳定。
实施例2-一种Li-B-N材料的制备方法
该Li-B-N材料的制备方法还可以包括如下步骤:
按摩尔质量比为1:1,在充满氩气、水氧值<0.1ppm的手套箱中取出氢化锂和氮化硼,充分混合,放入钽管中密封,再用铜管将钽管包裹,密封,放入石英管式炉中,通入氩气烧结,烧结处理如下:
烧结处理1:从25℃升温至900℃,升温时间为200min,保温时间为10h;
烧结处理2:从25℃升温至950℃,升温时间为200min,保温时间为10h;
烧结处理3:从25℃升温至1000℃,升温时间为200min,保温时间为10h;
烧结完成即得Li-B-N材料。
将Li-B-N材料采用XRD(X-射线衍射仪)进行扫描分析,由图3可知,烧结处理2得到的Li-B-N材料,纯度更高,结晶性更好。
实施例3-一种Li-B-N材料的制备方法
该Li-B-N材料的制备方法,包括如下步骤:
(1)按摩尔质量比为1:2:2,在充满氩气、水氧值<0.1ppm的手套箱中取出氮化锂、氮化硼和硼粉,混合,放入研钵中充分研磨25min,得前驱体粉末;
(2)采用液压机以压力为10MP,压片时间为0.5min,将前驱体粉末放入模具中压片,取出,放入不锈钢管中,将螺栓拧紧密封,将密封好的不锈钢管放入到石英管式炉,通入氩气烧结,从20℃升温至950℃,升温时间为100min,保温时间为8h,烧结完成即得Li-B-N材料。
实施例4-一种Li-B-N材料的制备方法
该Li-B-N材料的制备方法,包括如下步骤:
(1)按摩尔质量比为2:3:1,在充满氩气、水氧值<0.1ppm的手套箱中取出氮化锂、氮化硼和硼粉,混合,放入研钵中充分研磨35min,得前驱体粉末;
(2)采用液压机以压力为30MP,压片时间为3min,将前驱体粉末放入模具中压片,取出,放入不锈钢管中,将螺栓拧紧密封,将密封好的不锈钢管放入到石英管式炉,通入氩气烧结,从30℃升温至950℃,升温时间为300min,保温时间为12h,烧结完成即得Li-B-N材料。
对比例1-一种Li-B-N材料的制备方法
根据实施例1以及烧结处理2的制备方法,其区别在于:步骤(2)中,未进行压片;其余步骤同实施例1。
由图4可知,对比例1的Li-B-N材料不仅杂相多,而且峰值高。
对比例2-一种Li-B-N材料的制备方法
根据实施例1以及烧结处理2的制备方法,其区别在于:按摩尔质量比为3:5:1,将氮化锂、氮化硼和硼粉混合。
经XRD扫描分析,对比例2的Li-B-N材料杂相较多。
对比例3-一种Li-B-N材料的制备方法
根据实施例1以及烧结处理2的制备方法,其区别在于:步骤(1)中,未进行研磨。
经XRD扫描分析,对比例3的Li-B-N材料出现不同程度的杂相。
对比例4-一种Li-B-N材料的制备方法
根据实施例1的制备方法,其区别在于:步骤(2)中,从25℃升温至1200℃进行烧结,升温时间为400min,保温时间为15h;其余步骤同实施例1。
经XRD扫描分析,对比例4的Li-B-N材料出现杂相较多。
对比例5-一种Li-B-N材料的制备方法
(1)按摩尔质量比为1:1,在充满氩气、水氧值<0.1ppm的手套箱中取出氢化锂和氮化硼,混合,放入研钵中充分研磨30min,得前驱体粉末;
(2)采用液压机以压力为20MP,压片时间为1min,将前驱体粉末放入模具中压片,取出,放入钽管中密封,再用铜管将钽管包裹,密封,放入石英管式炉中,通入氩气烧结,从25℃升温至950℃,升温时间为200min,保温时间为10h,烧结完成即得Li-B-N材料。
由图5可知,对比例5的Li-B-N材料经过压片,生成的杂相相对较多。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种Li-B-N材料的制备方法,其特征在于,包括如下步骤:
(1)按摩尔质量比为1-2:2-3:1-2,将氮化锂、氮化硼和硼粉混合,研磨25-35min,得前驱体粉末;
(2)将前驱体粉末以10-30MP压片0.5-3min后,密封,通入氩气,从20-30℃升温至900-1000℃进行烧结,升温时间为100-300min,保温时间为8-12h,烧结后得Li-B-N材料。
2.根据权利要求1的一种Li-B-N材料的制备方法,其特征在于,所述氮化锂、氮化硼和硼粉的摩尔质量比为1:2:1。
3.根据权利要求1的一种Li-B-N材料的制备方法,其特征在于,所述研磨的时间为30min。
4.根据权利要求1的一种Li-B-N材料的制备方法,其特征在于,所述从25℃升温至950℃,升温时间为200min。
5.根据权利要求1的一种Li-B-N材料的制备方法,其特征在于,所述升温至950℃,保温时间为10h。
6.一种Li-B-N材料的制备方法,其特征在于,包括如下步骤:
按摩尔质量比为1-2:1-2,将氢化锂和氮化硼混合,密封,通入氩气,从20-30℃升温至900-1000℃进行烧结,升温时间为100-300min,保温时间为8-12h,烧结后得Li-B-N材料。
7.根据权利要求6的一种Li-B-N材料的制备方法,其特征在于,所述从25℃升温至950℃,升温时间为200min。
8.根据权利要求6的一种Li-B-N材料的制备方法,其特征在于,所述升温至950℃,保温时间为10h。
9.根据权利要求6的一种Li-B-N材料的制备方法,其特征在于,氢化锂和氮化硼的摩尔质量比为1:1。
10.根据权利要求1或6任一项的一种Li-B-N材料的制备方法制备得到的Li-B-N材料。
CN202111228833.XA 2021-10-21 2021-10-21 一种Li-B-N材料的制备方法 Active CN113968740B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111228833.XA CN113968740B (zh) 2021-10-21 2021-10-21 一种Li-B-N材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111228833.XA CN113968740B (zh) 2021-10-21 2021-10-21 一种Li-B-N材料的制备方法

Publications (2)

Publication Number Publication Date
CN113968740A CN113968740A (zh) 2022-01-25
CN113968740B true CN113968740B (zh) 2022-09-16

Family

ID=79587771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111228833.XA Active CN113968740B (zh) 2021-10-21 2021-10-21 一种Li-B-N材料的制备方法

Country Status (1)

Country Link
CN (1) CN113968740B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855314A (ja) * 1981-09-30 1983-04-01 Komatsu Ltd 立方晶窒化硼素の合成法
CN1836022A (zh) * 2003-08-20 2006-09-20 昭和电工株式会社 立方氮化硼、制造立方氮化硼的方法、含有立方氮化硼的砂轮、和烧结立方氮化硼压制体
CN1232441C (zh) * 2003-12-10 2005-12-21 北京科技大学 一种用碳化硼和氮化锂为原料制备硼氮化锂的方法
JP2011195385A (ja) * 2010-03-19 2011-10-06 National Institute For Materials Science リチウムケイ素窒化物とその製造方法
CN112624135B (zh) * 2020-12-21 2022-07-19 海南大学 一种电极材料锂硼及其制备方法
CN113258048A (zh) * 2021-04-29 2021-08-13 南京工业大学 一种熔融态锂电池负极材料、制备方法以及全固态锂电池

Also Published As

Publication number Publication date
CN113968740A (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
CN112397715B (zh) 一种硬碳材料及其制备方法和钠离子电池
CN108054357A (zh) 动力锂离子电池用煤基复合负极材料及其制备方法
CN113651307A (zh) 基于废弃木屑制备的钠离子电池碳负极材料及其制备方法
CN109755482A (zh) 硅/碳复合材料及其制备方法
CN111769272A (zh) 一种Bi@C空心纳米球复合材料及其制备方法与应用
CN105845912A (zh) 一种以硅藻土为原料制备锂离子电池多孔硅二氧化钛复合负极材料的方法
CN110474034B (zh) 一种氮掺多孔纳米片硅碳复合材料及其制备方法和应用
CN114242968A (zh) 一种碳包覆氟磷酸铁钠材料及其制备方法与应用
CN108448114A (zh) 一种锂离子电池软碳负极材料及其制备方法
CN113651361A (zh) 一种钨铌复合氧化物的制备方法及其应用
CN115744872A (zh) 沥青基软碳复合纤维素硬碳的负极材料及其制备方法
CN113968740B (zh) 一种Li-B-N材料的制备方法
CN1948138A (zh) 钠离子电池用氟磷酸亚铁钠的高温固相法
CN102324509B (zh) 一种亚稳相LiC6合金的制备方法
CN115043404A (zh) 一种碳包覆的管状纳米硅材料及其制备方法和应用
CN105702934B (zh) 一种钠离子电池负极用SnO/导电石墨/导电炭黑电极材料的制备方法
CN111661877B (zh) 二硫化钨/碳复合纳米棒的制备方法及其制品、应用
CN116265391A (zh) 一种糟类生物质硬碳材料及其制备方法和应用
CN114914414A (zh) 一种锂离子电池硅/钛-铌氧化物复合负极材料的制备方法
CN112430089A (zh) 一种ReO3剪切结构MoNb6O18材料的制备方法及其应用
CN102092691B (zh) 一种氮化钒纳米微晶的制备方法
WO2020063345A1 (zh) 一种铝电解固体废料分离回收和石油焦高温脱硫的装置
CN108766784A (zh) 一种自支撑钛酸锂/石墨烯泡沫复合阳极材料与应用
CN114671461B (zh) 一种含氧空位的尖晶石结构金属氧化物负极材料的高温高压制备方法
CN107658457A (zh) 一种熔盐电解用SiO2‑Gc/C复合电极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant