CN108766784A - 一种自支撑钛酸锂/石墨烯泡沫复合阳极材料与应用 - Google Patents

一种自支撑钛酸锂/石墨烯泡沫复合阳极材料与应用 Download PDF

Info

Publication number
CN108766784A
CN108766784A CN201810660657.9A CN201810660657A CN108766784A CN 108766784 A CN108766784 A CN 108766784A CN 201810660657 A CN201810660657 A CN 201810660657A CN 108766784 A CN108766784 A CN 108766784A
Authority
CN
China
Prior art keywords
lithium
lithium titanate
titanate
grapheme foam
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810660657.9A
Other languages
English (en)
Inventor
来琳斐
李宝生
钱瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201810660657.9A priority Critical patent/CN108766784A/zh
Publication of CN108766784A publication Critical patent/CN108766784A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明涉及一种自支撑钛酸锂/石墨烯泡沫复合阳极材料与应用,属于新能源电池领域。我们通过水热法设计一种自支撑的钛酸锂/石墨烯泡沫复合网状结构,并将其作为阳极材料应用于锂离子电池,在0.2C的倍率下容量达到186mAh g‑1。引入商业化活性碳作为阴极,组装锂离子复合超级电容器,在能量密度为46mAh g‑1时,功率密度达到625mAh g‑1;且在1A g‑1下循环8000圈,容量剩余66.7%。本发明方法简单,成本较低,且制备的复合物表现出优异的电化学性能,可以作为一种有前景的阳极材料应用于下一代储能器件中。

Description

一种自支撑钛酸锂/石墨烯泡沫复合阳极材料与应用
技术领域
本发明涉及钛酸锂作为活性阳极材料应用于锂离子电池或锂离子复合超级电容器以及其制备方法,属于新能源电池领域。
技术背景
随着电动车行业的快速发展,高能量密度和功率密度的储能器件市场越来越大。但是目前的锂离子电池和超级电容器各自满足能量密度高和功率密度大的优点。
超级电容器是一种通过电极与电解液之间形成的界面双电层来存储能量的新型储能器件,主要分为双电层电容和赝电容。双电层电容指的是离子的吸附和脱附发生在电极和电解液的表面,而赝电容则发生了可逆的氧化还原反应。与传统物理电容器和蓄电池相比,超级电容器具有功率密度高(10kW kg-1)、循环寿命长(可达几万次)、免维护、绿色环保等优点。但是超级电容器存在能量密度不高、自放电快、最高电压太低、成本高等缺点,而锂电池的能量密度高(150-200Wh kg-1),工作电压较高,因此考虑将锂电池和超级电容器组合起来,形成一种新型的储能器件:锂离子复合超级电容器,因为它具有比常规电容器更高的能量密度,近年来备受研究者和工业界的广泛关注。
钛酸锂属于一种“零应变”材料,在锂离子充放电过程中体积几乎不发生变化,因此它具有结构稳定性高,循环性能好的优点。此外它的电压平台稳定而且较长(1.55Vvs.Li/Li+),理论容量175mAh g-1,不易产生锂枝晶,安全性高,被认为时最具应用前景的动力锂离子电池负极材料之一。但是钛酸锂的导电性差(<10-13S cm-1),且锂离子扩散效率低(~10-15cm2S-1),以及在充放电过程中的胀气问题严重阻碍钛酸锂的市场化速度。研究发现,通过设计不同形貌的纳米结构或者利用碳材料及掺杂其他导电性好的金属材料进行表面改性可以显著提高钛酸锂的电化学性能。
发明内容
本发明的目的在于构建一种新型的通过借助网状多孔的石墨烯泡沫作为基底来合成自支撑钛酸锂/石墨烯泡沫复合阳极材料(LTO/GF),解决现有钛酸锂电子导电性差和离子扩散系数低的缺点,借助网状多孔的石墨烯泡沫直接充当集流体,同时可避免粘结剂的不利影响。
为实现上述目的,本发明采用的方案包括以下几个步骤:(1)制备石墨烯泡沫。选择泡沫镍作为模板;(2)合成钛酸锂前驱体溶液。锂源为氢氧化锂,钛源为钛酸四丁酯,聚乙二醇作为分散剂;(3)将石墨烯泡沫加入上述钛酸锂前驱体溶液中,并在不锈钢反应釜中180℃水热12h;(4)在高温750℃煅烧2h。(5)不添加石墨烯泡沫作为基底,单纯的将钛源和锂源混合水热,并在同样的条件的退火,合成钛酸锂纳米颗粒作为对比。
这种自支撑的钛酸锂/石墨烯泡沫有如下几个优点:(1)不需要粘结剂,活性位点多;(2)合成的纳米尺度的钛酸锂倍率和循环性能都很好;(3)泡沫石墨烯提供的网状多孔结构有助于电解液的快速渗透。
附图说明
图1(a)LTO/GF复合材料以及粉末LTO的XRD图谱,(b)LTO/GF复合材料以及粉末LTO的拉曼光谱图。
图2(a)LTO/GF复合材料的XPS能谱,(b)C 1s,(c)Ti 2p,(d)O1s的谱图。
图3(a,b)LTO/GF的SEM照片,(c,d)分别为LTO/GF的TEM以及HRTEM照片。
图4(a)LTO的SEM照片,(b)LTO的TEM照片。
图5(a,b)分别表示LTO/GF以及LTO半电池的恒电流充放电曲线,(c)LTO/GF和LTO的倍率曲线,(d)LTO/GF以及LTO在0.1mV s-1的扫速下的循环伏安曲线。
图6组装的复合超级电容器件示意图。
图7(a)LTO/GF//AC复合超级电容器的不同扫速下的循环伏安曲线,(b)LTO/GF//AC的恒电流充放电曲线,(c)LTO/GF//AC的功率与能量密度分析示意图,(d)LTO/GF//AC与LTO//AC、AC//AC交流阻抗的对比示意图,(e)LTO/GF//AC的循环稳定性以及库伦效率分析示意图。
图8钛酸锂/石墨烯泡沫的机理图(左),复合超级电容器的功率密度与能量密度分析示意图(右)。
具体实施方式
下面结合附图对本发明作进一步说明:
实施例1:石墨烯泡沫的制备,具体包括以下步骤:
首先取一片大小为10cm×5cm的泡沫镍用乙醇超声洗涤,除去表面的杂质。然后将这块泡沫镍放入管式炉先通一会气体除去管内的空气和水分,设置炉内的温度为1000℃,通入Ar/H2混合气,流量分别为Ar(500sccm)以及H2(100sccm),保持10分钟,主要目的是用来除去镍表面的氧化层。随后增加Ar的流量至800sccm,H2的流量至500sccm,同时通入100sccm的甲烷气体,反应10分钟,完成石墨烯的生长,待冷却至常温,取出样品。将样品浸入1mol L-1FeCl3以及5wt%HCl的混合溶液中来除去泡沫镍,得到目标产物石墨烯泡沫。
实施例2:钛酸锂/石墨烯泡沫复合材料的制备及性能测试,具体包括以下步骤:
取2.5mL钛酸四丁酯溶于20mL无水乙醇中搅拌几分钟使均匀混合,另取0.15mg聚乙二醇以及0.32g氢氧化锂溶解在10mL水-乙醇的混合液中(体积比为1:1)。随后利用恒压漏斗将氢氧化锂溶液逐滴加入TBT的乙醇溶液中,搅拌1h。然后将一块大小为1cm×5cm的石墨烯泡沫加入上述混合溶液中并转移到50mL的高压反应釜中,在180℃条件下反应12h。冷却至室温,分别用水和乙醇各洗几次,除去表面多余的反应物,在真空烘箱中烘干,得到前驱体样品。最后将该前驱体至于管式炉中在氩气氛围下,750℃煅烧2h,得到目标产物钛酸锂/石墨烯泡沫(LTO/GF)复合阳极材料。
用铳子将所得自支撑材料铳成直径为10mm的圆形电极片,然后称重,烘干,放入手套箱中。选择1mol L-1LiPF6溶解于EC/DMC混合溶液作为电解液,2025型号电池壳,借助压片机制作成扣式锂离子电池。选择晨华的电化学工作站以及新威的电流测试仪测试材料的电化学性能,电压工作窗口为1-2.5V。
实施例3:钛酸锂粉末的制备及性能测试,具体步骤如下:
取2.5mL钛酸四丁酯加入20mL无水乙醇中搅拌几分钟使均匀混合,另取0.15mg聚乙二醇以及0.32g氢氧化锂溶解在10mL水-乙醇的混合液中(体积比为1:1)。随后利用恒压漏斗将氢氧化锂溶液逐滴加入TBT的乙醇溶液中,搅拌1h。然后将该混合溶液转移至到50mL的高压反应釜中,在180℃条件下反应12h。冷却至室温,分别用水和乙醇各洗几次,除去表面多余的反应物,在真空烘箱中烘干,得到前驱体样品。最后将该前驱体至于管式炉中在氩气氛围下,750℃煅烧2h,得到目标粉末样品。
按照8:1:1的质量比称取钛酸锂粉末、活性炭(导电剂)、PVDF(粘结剂),并加入1-甲基-2-吡咯烷酮作为溶剂搅拌均匀成浆料状。涂在铜箔上,120℃真空烘干。然后利用切片机切成12mm的电极片,称重,并放入手套箱,其他条件同实施例1。
图5展示了钛酸锂/石墨烯泡沫与钛酸锂粉末的电化学性能对比,石墨烯的引入可以明显提升钛酸锂的倍率容量及循环寿命。具体来说LTO/GF在0.2和10C的倍率下分别表现出186以及151mAh g-1的超高容量。而粉末LTO仅表现出137和105mAh g-1。此外钛酸锂/石墨烯泡沫在循环100圈之后容量几乎没有变化,而钛酸锂有10%的容量损失。
实施例4:锂离子复合超级电容器的组装及测试
将所制备的钛酸锂/石墨烯泡沫作为负极,选择商业化活性碳作为正极材料,电解液以及电池型号同实施例1。电压工作窗口为0.5-3V。图6是所组装的锂离子复合超级电容器件的原理图,图7是该复合器件的电化学性能。由图7可知该复合超级电容器在能量密度为46Wh kg-1时,功率密度有625W kg-1,而当能量密度为26Wh kg-1功率密度为2500W kg-1。且在1A g-1的电流密度下,循环4000圈还有83%的容量剩余,当循环达到8000圈时,容量剩余66.7%,且库伦效率几乎保持不变。

Claims (7)

1.一种自支撑钛酸锂/石墨烯泡沫复合阳极材料,其特征在于,由以下方法制备:
(1)制备石墨烯泡沫:取一片泡沫镍超声清洗表面的杂质,然后放入管式炉中通入Ar/H2混合气,氩气流量500sccm;氢气流量100sccm,炉内温度为1000℃,并保持10min,除去镍表面的氧化层;随后增加氩气的流量为800sccm,氢气流量为500sccm,同时通入100sccm的甲烷或者乙炔气体,反应10min,完成石墨烯的生长;冷却取出样品,并用1mol L-1FeCl3以及5wt%HCl的混合溶液中来除去泡沫镍;
(2)制备钛酸锂/石墨烯泡沫复合材料:将钛源与锂源按照一定的摩尔比,保证氢氧化锂过量30%,分别溶解在乙醇和乙醇-水的混合液中,然后混合搅拌,加入一块石墨烯泡沫,然后转移至不锈钢反应釜中,180℃水热12h;最后将所得前驱体在750℃的氩气中按照每分钟5℃的升温速度保温6h,冷却后得到钛酸锂/石墨烯泡沫复合物;
(3)得到的钛酸锂/石墨烯泡沫作为负极材料应用于锂离子电池,此外选择商业化材料作为正极,与钛酸锂/石墨烯泡沫复合材料匹配来组装锂离子复合超级电容器,锂离子电池测试时选择的工作电压区间为1~2.5V,复合超级电容器工作电压区间为0.5~3V。
2.根据权利要求1所述的自支撑钛酸锂/石墨烯泡沫复合阳极材料,其特征在于:所选择的锂源为氢氧化锂、乙酸锂或硝酸锂中的一种。
3.根据权利要求2所述的自支撑钛酸锂/石墨烯泡沫复合阳极材料,其特征在于:所选择的钛源为钛酸四丁酯或钛酸异丙酯。
4.根据权利要求3所述的自支撑钛酸锂/石墨烯泡沫复合阳极材料,其特征在于:所述锂源为氢氧化锂,所述钛源为钛酸四丁酯,氢氧化锂和钛酸四丁酯的摩尔比为5.2:5,其中氢氧化锂过量30%,确保二氧化钛完全转化成钛酸锂。
5.根据权利要求1所述的自支撑钛酸锂/石墨烯泡沫复合阳极材料,其特征在于:钛酸锂在该复合材料中所占的比例为20~30%。
6.根据权利要求1所述的自支撑钛酸锂/石墨烯泡沫复合阳极材料,其特征在于:采用水热法将钛酸锂纳米颗粒生长在石墨烯泡沫基底。
7.根据权利要求1所述的自支撑钛酸锂/石墨烯泡沫复合阳极材料,其特征在于:将该复合材料作为电池负极材料应用于锂离子电池或者锂离子复合超级电容器,对应的正极材料为商业化活性炭或者磷酸铁锂。
CN201810660657.9A 2018-06-25 2018-06-25 一种自支撑钛酸锂/石墨烯泡沫复合阳极材料与应用 Withdrawn CN108766784A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810660657.9A CN108766784A (zh) 2018-06-25 2018-06-25 一种自支撑钛酸锂/石墨烯泡沫复合阳极材料与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810660657.9A CN108766784A (zh) 2018-06-25 2018-06-25 一种自支撑钛酸锂/石墨烯泡沫复合阳极材料与应用

Publications (1)

Publication Number Publication Date
CN108766784A true CN108766784A (zh) 2018-11-06

Family

ID=63977302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810660657.9A Withdrawn CN108766784A (zh) 2018-06-25 2018-06-25 一种自支撑钛酸锂/石墨烯泡沫复合阳极材料与应用

Country Status (1)

Country Link
CN (1) CN108766784A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817937A (zh) * 2019-02-01 2019-05-28 哈尔滨工程大学 一种Ti2C衍生的TiO2复合石墨烯泡沫负极材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009236A (zh) * 2014-06-10 2014-08-27 华东理工大学 一种钛酸锂介孔单晶纳米颗粒/还原氧化石墨烯复合材料及其制备方法和应用
CN104600278A (zh) * 2014-12-31 2015-05-06 江苏江大环保科技开发有限公司 一种石墨烯/钛酸锂复合材料的制备方法及其应用
CN107799723A (zh) * 2016-08-30 2018-03-13 华为技术有限公司 一种硅基复合负极片及其制备方法和锂离子二次电池
CN108122684A (zh) * 2016-11-26 2018-06-05 中国科学院大连化学物理研究所 Li4Ti5O12/石墨烯复合材料和制备方法及其负极和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009236A (zh) * 2014-06-10 2014-08-27 华东理工大学 一种钛酸锂介孔单晶纳米颗粒/还原氧化石墨烯复合材料及其制备方法和应用
CN104600278A (zh) * 2014-12-31 2015-05-06 江苏江大环保科技开发有限公司 一种石墨烯/钛酸锂复合材料的制备方法及其应用
CN107799723A (zh) * 2016-08-30 2018-03-13 华为技术有限公司 一种硅基复合负极片及其制备方法和锂离子二次电池
CN108122684A (zh) * 2016-11-26 2018-06-05 中国科学院大连化学物理研究所 Li4Ti5O12/石墨烯复合材料和制备方法及其负极和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAO QIAN: "A free-standing Li4Ti5O12/graphene foam composite as anode material for Li-ion hybrid supercapacitor", 《 ELECTROCHIMICA ACTA》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817937A (zh) * 2019-02-01 2019-05-28 哈尔滨工程大学 一种Ti2C衍生的TiO2复合石墨烯泡沫负极材料及其制备方法

Similar Documents

Publication Publication Date Title
CN107369825B (zh) 一种氮掺杂碳包覆氧化锰锂离子电池复合负极材料及其制备方法与应用
Li et al. Highly controlled synthesis of multi-shelled NiO hollow microspheres for enhanced lithium storage properties
CN103022459B (zh) 一种石墨烯/钛酸锂复合负极材料的制备方法
CN105810914B (zh) 一种钠离子电池硫掺杂多孔碳材料及其制备方法
CN107275606B (zh) 一种碳包覆尖晶石锰酸锂纳米复合材料及制备方法与应用
CN103219168B (zh) 一种Li4Ti5O12/石墨烯复合电极材料及其制备方法
CN106935855B (zh) 一种多孔碳纳米管状材料及其制备方法和应用
Geng et al. Improved electrochemical performance of biomass-derived nanoporous carbon/sulfur composites cathode for lithium-sulfur batteries by nitrogen doping
CN104966824A (zh) 一种基于壳聚糖及其衍生物氮掺杂多孔碳球-氧化钴纳米复合负极材料及其制备方法
CN105428618B (zh) 一种壳核型碳包覆金属硫化物纳米复合粒子的制备方法及其应用
Qian et al. High rate lithium-sulfur batteries enabled by mesoporous TiO2 nanotubes prepared by electrospinning
CN108962632B (zh) 一种石墨烯/氮掺杂碳/镍/氧化镍复合材料制备方法
CN109860958B (zh) 一种锂-二氧化碳电池及其制备方法
CN106876682A (zh) 一种具有多孔结构的氧化锰/镍微米球及其制备和应用
CN104852028A (zh) 一种锂离子电池用钛酸锂/石墨烯复合负极材料
CN102306749B (zh) 一种基于螺旋状碳纳米纤维束的薄膜电极及其制备方法
CN108428870B (zh) 一种由金属及其金属衍生物复合的二维碳片气凝胶材料的规模化制备方法及其应用
CN109148859A (zh) 一种双碳层包覆氧化锰复合材料的制备方法
CN104157858A (zh) 分级多孔四氧化三铁/石墨烯纳米线及其制备方法和应用
CN106299344B (zh) 一种钠离子电池钛酸镍负极材料及其制备方法
Wang et al. Enhanced cyclic performance of Cu2V2O7/reduced Graphene Oxide mesoporous microspheres assembled by nanoparticles as anode for Li-ion battery
CN106654212A (zh) 四氧化三钴/石墨烯复合材料(Co3O4/N‑RGO)的制备方法及应用
CN107204450A (zh) 氧化镍纳米颗粒/碳纳米头盔复合材料(NiO/CNHs)的制备方法及其应用
CN104577126A (zh) 一种形貌均匀的MWCNT@a-C@Co9S8复合电极材料的制备方法及在锂电中的应用
CN107464938A (zh) 一种具有核壳结构的碳化钼/碳复合材料及其制备方法和在锂空气电池中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20181106

WW01 Invention patent application withdrawn after publication