CN1138810C - 制造聚醚多元醇的方法 - Google Patents

制造聚醚多元醇的方法 Download PDF

Info

Publication number
CN1138810C
CN1138810C CNB008113432A CN00811343A CN1138810C CN 1138810 C CN1138810 C CN 1138810C CN B008113432 A CNB008113432 A CN B008113432A CN 00811343 A CN00811343 A CN 00811343A CN 1138810 C CN1138810 C CN 1138810C
Authority
CN
China
Prior art keywords
reactor
alkylene oxide
polyether glycol
weight
metal cyanide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008113432A
Other languages
English (en)
Other versions
CN1368989A (zh
Inventor
S
S·埃勒斯
J·霍夫曼
ϣ
M·蒂特里希
P·古普塔
C·施坦莱恩
H·茨维克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of CN1368989A publication Critical patent/CN1368989A/zh
Application granted granted Critical
Publication of CN1138810C publication Critical patent/CN1138810C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2696Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the process or apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/26Cyanides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2663Metal cyanide catalysts, i.e. DMC's

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyethers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

本发明涉及一种采用双金属氰化物(DMC)催化剂制备聚醚多元醇的方法,采用这种方法,诱导期显著缩短。与不连续活化相比,通过计量向原料-催化剂混合物中连续加入烯化氧,能显著缩短诱导期。

Description

制备聚醚多元醇的方法
本发明涉及一种采用双金属氰化物(DMC)催化制备聚醚多元醇的方法,其中显著地缩短了诱导期。
根据现有技术,聚醚多元醇是利用金属氢氧化物(例如KOH)催化,通过烯化氧与具有活性氢原子的原料化合物进行聚合加成反应制备的,参见厄尔曼工业化学大全(Ullmanns“Encyclopdie dertechnischen Chemie”,14卷,1963,49页)等。在这种方法中,聚合加成的反应速率非常慢。在现有技术的方法中,根据反应温度、催化剂浓度和所制备的聚醚多元醇的OH数目,还生成具有终端双键的单官能聚醚,即通常所说的一元醇,它限制了产品对随后生产聚氨酯的应用。此外,在聚合加成反应之后,必须除去所使用的碱。例如,除碱可以通过加酸进行,可以使用中和吸收剂、或离子交换剂进行,或也可以采用其它方法进行。在进一步加工之前,同样必须分离在这种情况下产生的中和水和生成的盐。对根据目前的技术状态所采用的方法的这一简要说明阐明了制备聚醚多元醇的耗费和成本。
长期以来已经知道制备聚醚多元醇的双金属氰化物(DMC)催化剂(参见例如美国专利-A 3 404 109、3 829 505、3 941 849、和5158 922)。这些DMC催化剂对制备聚醚多元醇的应用,与采用碱性催化剂制备聚醚多元醇的常规方法相比,特别是产生具有终端双键的单官能聚醚——通常所说的一元醇——的比例减少。如此制备的聚醚多元醇能被加工成高级聚氨酯(例如弹性体、泡沫塑料、和涂料)。例如,在欧洲专利-A 700 949、761 708、WO 97/40086、WO 98/16310、德国专利-A 197 45 120、197 57 574、和198 10 269中所叙述的改进的DMC催化剂具有特别高的活性,能在非常低的催化剂浓度(≤25ppm)下制备聚醚多元醇,以致不再需要从多元醇中分离催化剂。
DMC催化制备聚醚多元醇的缺点是有时诱导期长。在这个阶段中,成链仅非常缓慢,所以只能获得非常低的时空产率。这又意味着,其与KOH催化方法相比的较快的聚合加成反应及其后的很简单的产品加工的经济效益有所下降。
缩短诱导期的一种可能性在于提高反应器中烯化氧的浓度。然而,高浓度的游离烯化氧会构成一种较大的潜在危险,因为催化剂的活化可能引起强烈地放热,因而无法控制的温度上升。这会造成多元醇具有较大的热负荷,以致一方面,例如由于较高的粘度或较宽的分子量分布,可能损害产品的质量,另一方面,加速的老化作用可能降低催化剂的活性。在极端情况下,无法控制的温度上升甚至可能导致聚醚多元醇的绝热热分解。
根据上面所述的困难,反应器通常只加入向多元醇转化所需的烯化氧总量的一部分(参见例如WO 97/23544)。然后等到反应器中明显出现由催化剂被完全活化的压降信号以后,再向反应器中加入烯化氧。
现在意外地发现,如果在诱导期中,以连续方式加入少量的烯化氧,能显著缩短DMC催化制备聚醚多元醇的诱导期,优选烯化氧的用量是使反应器中的压力保持恒定。活化所用的游离烯化氧的量这时应根据允许的最高反应器温度(T最高)进行调整,或如果该温度在所制备的聚醚多元醇的分解温度以上,也可根据其分解温度(T最高)调整。反应器中游离烯化氧的极限浓度(C极限),可作为反应温度(T反应)和反应热焓(ΔHR)的函数,按下式计算:
              C极限≤(T最大-T反应)/ΔHR
因此,本发明的目的是提供一种利用烯化氧与具有活性氢原子的原料化合物的DMC催化聚合加成反应制备聚醚多元醇的方法,其中在诱导期中,以连续方式将烯化氧加入反应器中。制备聚醚多元醇所需的原料化合物和催化剂的总量,优选在反应开始时就包含在反应器中。优选的烯化氧的加入方式是在诱导期中保持反应器的压力恒定。
在诱导期中,一般在温度20-200℃,优选在40-180℃,特别优选在温度50-150℃下,使DMC催化剂活化。在这个阶段,可以在总压0.001-20bar,优选在总压0.5-10bar,特别优选在总压1-6bar下进行反应。
诱导时间的特征在于,为了保持反应器的压力恒定,只需加入非常少量的烯化氧。在这个阶段,催化剂的活性缓慢增加,以使烯化氧的量逐渐增加。催化剂的完全活化,可根据在显著提高烯化氧的加入速率的同时又未发现反应器中压力的增加来判断。在催化剂完全活化以后,开始进行聚合加成反应,反应常常进行得如此迅速,以致加料速率只受反应器或受外部传热装置的传热速率的限制。图1示出,与非连续加料相比这种方法能使催化剂的活化更明显地加速。
在相对所采用的原料量,游离烯化氧的含量为10重量%时,采用连续加料能够达到的诱导时间,与采用约18重量%的含量和非连续加料所达到的诱导时间相当。在催化剂的诱导时间之后,是DMC混合物的烷氧基化阶段。在这个阶段中,一般不再通过反应器的压力,而是通过反应器的温度控制反应。由于催化剂的活性高,所以加料速率常常受反应器或连接在旁路中的热交换装置的传热速率的限制。
适合根据本发明方法的DMC催化剂基本上是已知的,在上文提到的现有技术中已有详细地说明。例如优选采用在欧洲专利-A 700949、761 708、WO 97/40086、WO 98/16310、德国专利-A 197 45 120、197 57 574、和198 10 269中所述的,改进的,高活性的DMC催化剂。典型的实例是在德国专利-A 198 10 269中所述的DMC催化剂,除了双金属氰化合物(例如六氰钴(III)酸锌)和有机络合配位体(例如特丁醇)以外,这种催化剂还包含数均分子量大于500g/mol的环氧乙烷聚醚。
优选采用的烯化氧是环氧乙烷、环氧丙烷、环氧丁烷和它们的混合物。由烷氧基化形成聚醚链例如可以仅仅采用单体环氧化物进行,或采用2或3种不同的单体环氧化物,以无规或嵌段方式进行。在厄尔曼“工业化学大全”,A21卷,1992,670页等中包含更详细的资料。
优选采用的具有活性氢原子的原料化合物,是分子量为18-2000g/mol,优选200-2000g/mol,并具有1-8个,优选2-6个羟基的化合物。作为实例可以举出下列化合物:丁醇、乙二醇、二甘醇、三甘醇、1,2-丙二醇、1,4-丁二醇、1,6-己二醇、双酚A,三羟甲基丙烷、丙三醇、季戊四醇、山梨醇、蔗糖、降解淀粉或水。
采用具有活性氢原子的原料化合物是比较有利的,例如,这些化合物是采用常规碱催化,由前述的低分子量原料和所述数均分子量为200-2000g/mol的低聚烷氧基化产物制备的。
优选采用具有1-8个羟基,特别优选2-6个羟基,数均分子量为200-2000g/mol的丙氧基化的低聚原料化合物。例如,这些化合物可以按照厄尔曼“工业化学大全”,A21卷,1992,670页等制备。
烯化氧与原料化合物的DMC催化聚合加成反应,一般在温度20-200℃,优选在40-180℃,特别优选在温度50-150℃下进行。该反应可在总压0.001-20bar下进行。聚合加成反应可以采用本体进行,或在一种惰性有机溶剂中,例如在甲苯或THF中进行。相对待制备的聚醚多元醇量,溶剂量通常为10-30重量%。
选择DMC催化剂的浓度,使在给定的反应条件下能够很好地控制聚合加成反应。相对待制备的聚醚多元醇量,催化剂浓度一般为0.0005重量%-1重量%,优选0.001重量%-0.1重量%,特别优选0.001-0.01重量%。
采用根据本发明的方法,制备的聚醚多元醇的分子量为1000-100000g/mol,优选1500-50000g/mol,特别优选2000-20000g/mol。
高分子量的聚醚多元醇,作为制备聚氨酯的原料产品是非常重要的。可根据其分子量和官能度,优选采用它们制备弹性体、分散体的预聚物、柔软的泡沫塑料和聚氨酯漆。
                         实施例高活性DMC催化剂的制备(根据欧洲专利-A 700 949合成)
在强烈搅拌(24,000rpm)下,将在20ml无离子水中的12.5g(91.5mmol)氯化锌溶液,加到在70ml无离子水中的4g(12mmol)六氰钴酸钾溶液中。然后立即将由50g特丁醇和50g无离子水制备的混合物加入到所制备的悬浮液中,接着强烈搅拌(24000rpm)10分钟。然后加入由1g数均mol质量为2000g/mol的聚丙二醇、1g特丁醇、和100g无离子水制备的混合物,搅拌(1000rpm)3分钟。采用过滤分离固体,然后固体与由70g特丁醇、30g无离子水、和1g上述的聚丙二醇制备的混合物搅拌(10000rpm)10分钟,再次过滤。最后固体与由100g特丁醇和0.5g上述的聚丙二醇制备的混合物再搅拌(10000rpm)10分钟。过滤后,在50℃和标准压力下干燥催化剂,直至恒重为止。
干燥的粉末状催化剂的产量:6.23g。实施例1 采用连续加入环氧丙烷的方法制备聚醚多元醇
将2696g分子量为416g/mol的聚醚和0.4g DMC催化剂放入20升的反应器中,加热到105℃。在反应器呈惰性后,加入268g环氧丙烷(相当于所用原料的10重量%)。这时绝对压力为2.3bar。在活化阶段,通过连续加入环氧丙烷,保持这个压力恒定。催化剂完全活化(相应于诱导期结束),可根据加料速率的显著增加来判断。在反应过程中保持温度恒定。在催化剂活化以后,以4.6kg/h的加料速率,加入其余的环氧丙烷(10000g)。如此制备的聚醚的粘度η=386mPas(25℃),OH数=55.3mgKOH/g,双键含量=5mmol/kg。诱导期为224分钟。实施例2(对比例) 在诱导期采用不连续加入环氧丙烷的方法制备聚醚多元醇
将2724g/mol质量为416g/mol的聚醚和0.4g DMC催化剂放入20升的反应器中,加热到105℃。在反应器呈惰性后,加入545g环氧丙烷(相对所采用的原料量,相当于20重量%)。这时绝对压力为3.4bar。催化剂的活化作用,是根据压力较快地下降判断的。在反应过程中温度保持恒定。在催化剂活化以后,以4.6kg/h的加料速率,加入其余量的环氧丙烷(10234g)。如此制备的聚醚具有下列性质:粘度η=382mPas(25℃),OH数量=55.2mgKOH/g,双键含量=5mmol/kg。诱导期为144分钟。
采用这种加料方法的另一些对比实验证明,虽然增加反应器中游离环氧丙烷的浓度能缩短活化时间,但系统的安全费用增加。例如在采用不连续加料方法时,烯化氧的浓度降低到10重量%没有达到任何目的,因为在这种情况下,诱导期变得如此之长,以致几乎没有或甚至根本没有任何经济效益。如图1所示,采用根据本发明的方法,在给定的反应条件下,可将催化剂活化时游离烯化氧的浓度降低到10重量%而没有任何问题,获得的活化时间,与按所采用的原料量计使用约18重量%的烯化氧的不连续活化的活化时间相当。

Claims (5)

1.一种制备聚醚多元醇的方法,该方法是在双金属氰化物催化剂存在下,使烯化氧与原料化合物进行聚合加成反应,其中通过连续将烯化氧加入反应器中使双金属氰化物催化剂活化,其条件是在双金属氰化物催化剂活化期间,反应器的压力是恒定的,其中烯化氧为选自环氧乙烷、环氧丙烷、环氧丁烷及其混合物,原料化合物具有1-8个羟基和数均分子量为18-2000g/mol。
2.根据权利要求1的方法,其中在双金属氰化物催化剂活化期间,反应器的压力为1-6×105帕(1-6bar)。
3.根据权利要求1或2的方法,其中在双金属氰化物催化剂活化开始时,在反应器中存在用于制备聚醚多元醇的全部原料化合物和双金属氰化物催化剂。
4.根据权利要求1的方法,其中原料化合物是具有1-8个羟基和数均分子量为200-2000g/mol的丙氧基化的低聚物。
5.根据权利要求1的方法,其中双金属氰化物催化剂的存在量按聚醚多元醇的总重量计为0.001重量%-0.1重量%。
CNB008113432A 1999-08-06 2000-07-25 制造聚醚多元醇的方法 Expired - Fee Related CN1138810C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19937114.8 1999-08-06
DE19937114A DE19937114C2 (de) 1999-08-06 1999-08-06 Verfahren zur Herstellung von Polyetherpolyolen

Publications (2)

Publication Number Publication Date
CN1368989A CN1368989A (zh) 2002-09-11
CN1138810C true CN1138810C (zh) 2004-02-18

Family

ID=7917415

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008113432A Expired - Fee Related CN1138810C (zh) 1999-08-06 2000-07-25 制造聚醚多元醇的方法

Country Status (19)

Country Link
US (1) US6486361B1 (zh)
EP (1) EP1206498B1 (zh)
JP (1) JP2003506543A (zh)
KR (1) KR20020019605A (zh)
CN (1) CN1138810C (zh)
AT (1) ATE256158T1 (zh)
AU (1) AU6697700A (zh)
BR (1) BR0012994A (zh)
CA (1) CA2381188A1 (zh)
CZ (1) CZ293452B6 (zh)
DE (2) DE19937114C2 (zh)
ES (1) ES2213034T3 (zh)
HK (1) HK1049344B (zh)
HU (1) HUP0202848A3 (zh)
MX (1) MXPA02001255A (zh)
PL (1) PL353099A1 (zh)
PT (1) PT1206498E (zh)
RU (1) RU2250910C2 (zh)
WO (1) WO2001010933A1 (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060183882A1 (en) * 2001-12-21 2006-08-17 Dexheimer Edward M Continuous process for preparation of polyether polyols
JP4277686B2 (ja) 2002-01-22 2009-06-10 旭硝子株式会社 ポリエーテル類の連続製造方法
DE10205086A1 (de) * 2002-02-07 2003-08-21 Basf Ag Verfahren zur Aktivierung von Doppelmetallcyanid-Verbindungen
KR101164264B1 (ko) * 2003-11-13 2012-07-09 바스프 에스이 폴리에테르 알콜의 제조 방법
US20050107643A1 (en) * 2003-11-13 2005-05-19 Thomas Ostrowski Preparation of polyether alcohols
US7186867B2 (en) * 2004-04-21 2007-03-06 Basf Aktiengesellschaft Process for preparing reactive polyether polyols having an ethylene oxide end block
US20060223979A1 (en) * 2005-04-04 2006-10-05 Thomas Ostrowski Process for preparing polyether polyols
US8692030B1 (en) * 2006-04-20 2014-04-08 Pittsburg State University Biobased-petrochemical hybrid polyols
DE102006024025A1 (de) * 2006-05-23 2007-11-29 Bayer Materialscience Ag Verfahren zur Herstellung von Polyetherpolyolen
US20080132729A1 (en) * 2006-12-01 2008-06-05 Mcdaniel Kenneth G Continuous process for the production of ethoxylates
DE102008009407A1 (de) 2008-02-15 2009-08-20 Bayer Materialscience Ag Klebstoff
DE102008000903A1 (de) * 2008-04-01 2009-10-08 Evonik Goldschmidt Gmbh Neue Organosiloxangruppen tragende Polyetheralkohole durch Alkoxylierung epoxidfunktioneller (Poly)Organosiloxane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung
DE102009008867A1 (de) 2009-02-13 2010-08-19 Bayer Materialscience Ag Klebstoff
HUE044164T2 (hu) * 2009-10-19 2019-10-28 Basf Se Kettõs fém-cianid katalizátorok kondicionálása
JP5951496B2 (ja) 2009-11-18 2016-07-13 ネクター セラピューティクス ポリマー−薬物コンジュゲートの酸性塩形態及びアルコキシル化方法
KR101404702B1 (ko) 2011-03-08 2014-06-17 에스케이이노베이션 주식회사 에테르 결합 단위체를 함유한 이산화탄소/에폭사이드 공중합체의 제조 방법
US9994672B2 (en) 2011-12-20 2018-06-12 Covestro Deutschland Ag Hydroxy-aminopolymers and method for producing same
DE102011089783A1 (de) 2011-12-23 2013-06-27 Bayer Materialscience Aktiengesellschaft Niedrigviskose reaktive Polyurethan-Zusammensetzungen
CN103360595B (zh) * 2013-06-26 2015-09-09 淮安巴德聚氨酯科技有限公司 间歇法中催化环氧化物开环聚合时缩短诱导时间的方法
EP3106221A1 (en) 2015-06-15 2016-12-21 Universität Hamburg Process for preparing double metal cyanide catalysts and their use in polymerization reactions
GB201515350D0 (en) 2015-08-28 2015-10-14 Econic Technologies Ltd Method for preparing polyols
CN109689728B (zh) * 2016-09-20 2021-09-17 陶氏环球技术有限责任公司 使用管式反应器的烷氧基化方法
GB201703324D0 (en) 2017-03-01 2017-04-12 Econic Tech Ltd Method for preparing polyether carbonates
EP3589672B1 (de) 2017-03-02 2022-01-12 Covestro Intellectual Property GmbH & Co. KG Reaktionsgemische von isocyanaten und polyolen mit verlängerter topfzeit
GB201717441D0 (en) 2017-10-24 2017-12-06 Econic Tech Ltd A polymerisation process
GB201814526D0 (en) 2018-09-06 2018-10-24 Econic Tech Ltd Methods for forming polycarbonate ether polyols and high molecular weight polyether carbonates
GB201906210D0 (en) 2019-05-02 2019-06-19 Econic Tech Limited A polyol block copolymer, compositions and processes therefor
GB201906214D0 (en) 2019-05-02 2019-06-19 Econic Tech Ltd A polyol block copolymer, compositions and processes therefor
GB202003003D0 (en) 2020-03-02 2020-04-15 Econic Tech Ltd A polyol block copolymer
GB202003002D0 (en) 2020-03-02 2020-04-15 Crane Ltd Method of preparation of a polyol block copolymer
CN111518268B (zh) * 2020-05-28 2022-09-16 万华化学集团股份有限公司 一种聚醚多元醇的制备方法
GB202017531D0 (en) 2020-11-05 2020-12-23 Econic Tech Limited (poly)ol block copolymer
CN118103137A (zh) 2021-08-11 2024-05-28 伊科尼克技术有限公司 使用大环双金属催化剂与双金属氰化物催化剂的混合物通过环氧化物和co2共聚制备表面活性剂的方法
GB202115335D0 (en) 2021-10-25 2021-12-08 Econic Tech Ltd Surface-active agent
CN115181259B (zh) * 2022-08-11 2024-04-09 万华化学集团股份有限公司 一种连续化制备聚醚的方法
EP4397691A1 (de) 2023-01-06 2024-07-10 Covestro Deutschland AG Verfahren zur herstellung eines polyoxyalkylenpolyols

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1063525A (en) 1963-02-14 1967-03-30 Gen Tire & Rubber Co Organic cyclic oxide polymers, their preparation and tires prepared therefrom
US3829505A (en) 1970-02-24 1974-08-13 Gen Tire & Rubber Co Polyethers and method for making the same
US3941849A (en) 1972-07-07 1976-03-02 The General Tire & Rubber Company Polyethers and method for making the same
AU552988B2 (en) * 1982-03-31 1986-06-26 Shell Internationale Research Maatschappij B.V. Polymerizing epoxides and catalyst suspensions for this
US5158922A (en) 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
US5482908A (en) 1994-09-08 1996-01-09 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
US5545601A (en) 1995-08-22 1996-08-13 Arco Chemical Technology, L.P. Polyether-containing double metal cyanide catalysts
US5767323A (en) 1995-12-22 1998-06-16 Arco Chemical Technology, L.P. Process for preparing polyoxyalkylene polyether polyols having low levels of transition metals through double metal cyanide complex polyoxyalkylation
US5777177A (en) 1996-02-07 1998-07-07 Arco Chemical Technology, L.P. Preparation of double metal cyanide-catalyzed polyols by continuous addition of starter
US5627120A (en) 1996-04-19 1997-05-06 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
US5689012A (en) 1996-07-18 1997-11-18 Arco Chemical Technology, L.P. Continuous preparation of low unsaturation polyoxyalkylene polyether polyols with continuous additon of starter
US5714428A (en) 1996-10-16 1998-02-03 Arco Chemical Technology, L.P. Double metal cyanide catalysts containing functionalized polymers
DE19730467A1 (de) * 1997-07-16 1999-01-21 Bayer Ag Neue Zink/Metall-Hexacyanocobaltat-Katalysatoren für die Herstellung von Polyetherpolyolen
ID24172A (id) * 1997-10-13 2000-07-13 Bayer Ag Katalis logam ganda yang sangat aktif untuk memproduksi poliol-poliol poliester
US6358877B1 (en) * 1999-09-10 2002-03-19 The Dow Chemical Company Metal catalysts complexed with sulfone or sulfoxide compounds

Also Published As

Publication number Publication date
ES2213034T3 (es) 2004-08-16
AU6697700A (en) 2001-03-05
HUP0202848A3 (en) 2003-11-28
HK1049344B (zh) 2004-12-17
RU2250910C2 (ru) 2005-04-27
KR20020019605A (ko) 2002-03-12
JP2003506543A (ja) 2003-02-18
EP1206498B1 (de) 2003-12-10
MXPA02001255A (es) 2002-08-12
DE19937114C2 (de) 2003-06-18
BR0012994A (pt) 2002-05-07
PT1206498E (pt) 2004-04-30
ATE256158T1 (de) 2003-12-15
HUP0202848A2 (hu) 2002-12-28
EP1206498A1 (de) 2002-05-22
CZ293452B6 (cs) 2004-04-14
CN1368989A (zh) 2002-09-11
HK1049344A1 (en) 2003-05-09
CA2381188A1 (en) 2001-02-15
DE19937114A1 (de) 2001-02-15
PL353099A1 (en) 2003-10-20
US6486361B1 (en) 2002-11-26
CZ2002459A3 (cs) 2002-05-15
WO2001010933A1 (de) 2001-02-15
DE50004742D1 (de) 2004-01-22

Similar Documents

Publication Publication Date Title
CN1138810C (zh) 制造聚醚多元醇的方法
CN100526365C (zh) 聚醚醇的制备方法
US5545601A (en) Polyether-containing double metal cyanide catalysts
EP0700949A2 (en) Highly active double metal cyanide catalysts
CN101225162A (zh) 用于制备聚醚多元醇的双金属氰化物催化剂
EP3494161B1 (en) Systems and processes for producing polyether polyols
JP4975935B2 (ja) 金属シアン化物触媒/ポリオール開始剤スラリーの製造方法
AU2003220309B2 (en) Method for preparing metal cyanide catalysts using insoluble metal salts
MXPA02005086A (es) Proceso para la produccion de polioles de polieter.
US6900156B2 (en) Method for preparing metal cyanide catalysts using zero valent metals
CN114736365B (zh) 一种双金属催化剂的制备方法、产品及应用
US6358877B1 (en) Metal catalysts complexed with sulfone or sulfoxide compounds
WO2022160078A1 (zh) 一种用于环氧化物连续聚合的诱导体系、诱导剂以及环氧化物连续聚合的方法
KR20020028210A (ko) 설폰 또는 설폭사이드 화합물로 착화된 금속 촉매

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1049344

Country of ref document: HK

C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee