CN113787192B - 一种Cu相呈指状梯度分布的W-Cu复合板的制备方法 - Google Patents
一种Cu相呈指状梯度分布的W-Cu复合板的制备方法 Download PDFInfo
- Publication number
- CN113787192B CN113787192B CN202111209149.7A CN202111209149A CN113787192B CN 113787192 B CN113787192 B CN 113787192B CN 202111209149 A CN202111209149 A CN 202111209149A CN 113787192 B CN113787192 B CN 113787192B
- Authority
- CN
- China
- Prior art keywords
- finger
- green body
- composite plate
- powder
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/006—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/102—Metallic powder coated with organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1017—Multiple heating or additional steps
- B22F3/1021—Removal of binder or filler
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1103—Making porous workpieces or articles with particular physical characteristics
- B22F3/1109—Inhomogenous pore distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1121—Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F3/26—Impregnating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G41/00—Compounds of tungsten
- C01G41/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0475—Impregnated alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/058—Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/04—Alloys based on tungsten or molybdenum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/043—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/10—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/85—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/16—Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明公开了一种Cu相呈指状梯度分布的W‑Cu复合板的制备方法,是在W粉中加入以偏钨酸铵为原料通过燃烧合成方法获得的WOX粉末,并加入粘结剂和造孔剂制成浆料,然后通过流延、水中浸泡、烧结获得孔隙呈指状分布的W骨架,再经熔渗Cu获得目标产物。本发明方法制备的W‑Cu复合材料中Cu相由熔渗表面至试样内部呈指状梯度分布,且Cu相与W相相互钉扎,W‑Cu界面有良好的结合强度;本发明的方法具有材料成分性能可调控、工艺简单、成本低、适合规模化生产等特点。
Description
技术领域
本发明涉及一种Cu相呈指状梯度分布的W-Cu复合板的制备方法,属于金属基复合材料制备领域。
背景技术
功能梯度材料(FGM)是指通过连续地改变两种或两种以上性质不同的材料的结构、组成、密度等,使其内部界面减小甚至消失,从而得到材料成分非均匀变化而性能呈梯度变化的新型非均质复合材料。FGM的研究包括材料设计、材料合成(制备)和材料特性评价,这三部分相辅相成,缺一不可,其核心部分是材料制备。
W-Cu FGM结合了Cu的良好导电、导热和抗腐蚀性以及W的高硬度、强度和热稳定性,同时沿截面由高W(纯W)逐渐过渡至高Cu(纯Cu)层,具备了多种优异性能,在电子封装、航空航天中有良好的应用前景。然而,由于W和Cu之间熔点相差大,且互不相溶,通过粉末冶金工艺制备高致密的W-Cu FGM工艺难度较大且梯度成分分布难以有效控制。目前W-Cu梯度材料多采用叠层法制备,所得的W-Cu梯度复合材料大多为层状结构,其层与层之间仍有明显的界面,这种界面在极端的工作环境下容易因层与层之间的热膨胀差异而在界面处产生开裂等现象,从而影响其使用寿命,M.Richou等人设计的W-Cu层状梯度复合材料在经过972次热循环之后出现开裂现象(M.Richou,F.Gallay,B.et al.FusionEngineering and Design,2020,157.111610)。魏邦争等人以不同粒度W粉为原料、聚乙烯醇缩丁醛(PVB)为粘结剂、无水乙醇为溶剂制备浆料,而后通过沉降、排胶和预烧得到孔隙呈连续梯度分布的W骨架,随后渗Cu,得到了Cu含量由28.03%至44.47%分布的W-Cu功能梯度材料(Wei BZ,Yu XX,Chen RZ,et al.A Novel Approach to Fabricate W-CuFunctionally Graded Materials via Sedimentation and Infiltration Method[J].Materials Science and Engineering:A,2021.)。江大发等人对比了原始界面、纳米波纹界面、微立方体界面以及微坑界面四种界面之间W、Cu之间的粘结强度,得出W、Cu微坑界面全面提高了W、Cu接头的抗拉强度、剪切强度、传热能力、耐热应力和热疲劳寿命(Jiang D,Long J,Han J,et al.Materials Science and Engineering:A,2017,696(JUN.1):429-436.)。
综上,目前制备W-Cu梯度复合材料方面大多是层状结构,而像Cu相呈指状梯度分布的W-Cu梯度复合材料的研究较少。
发明内容
本发明的目的在于提供一种Cu相呈指状梯度分布的W-Cu复合板的制备方法,首先制备具有指状孔隙分布的W骨架,而后在熔渗烧结炉中,在N2或H2气氛保护下,将紫Cu块或Cu粉末压坯置于具有指状孔的W骨架表面,并加热使Cu熔化,Cu熔液在毛细管力的作用下渗入W骨架的指状孔中,最终得到Cu相由熔渗表面至试样内部呈指状梯度分布的复合板,且Cu相与W相相互钉扎,W、Cu界面有良好的结合强度。
为实现目的,本发明采用如下技术方案:
一种Cu相呈指状梯度分布的W-Cu复合板的制备方法,其特点在于,按如下步骤进行:
(1)将WOX粉末与W粉混合,获得粉末混合料;将所述粉末混合料与粘结剂聚醚砜、造孔剂聚乙烯吡咯烷酮一起加入N-甲基吡咯烷酮溶剂中,在行星式球磨机中球磨混合均匀,得到浆料;
(2)将所述浆料在PET膜上流延得到生坯,所得生坯与PET膜一起在水中浸泡以部分除去溶剂N-甲基吡咯烷酮,随后将生坯与PET膜分离,而后烘干;
(3)在H2气氛下,先将所得生坯在500~800℃预烧以脱除粘结剂并还原,再升温至800~2000℃烧结以得到孔隙呈指状分布的W骨架;
(4)对所述W骨架进行熔渗Cu,然后随炉冷却,即获得Cu相呈指状梯度分布的W-Cu复合板。
进一步的,所述WOX粉末是采用偏钨酸铵、硝酸铵、甘氨酸、乙二胺四乙酸为原料,加去离子水分散后放入马弗炉里恒温200℃通过燃烧合成方法获得。采用WOX粉末的目的,是为了防止脱除粘结剂并还原之后碳残留在材料中与W形成过量WC,从而影响最终材料的性能;所述WOX粉末是采用偏钨酸铵为原料通过燃烧合成方法获得的,这种方式获得的WOX粉末有着特殊的表面结构、化学活性最高,适用于超细颗粒钨粉以及各类纳米级钨化合物的生产。
进一步的,步骤(1)中,所述WOX粉末占所述粉末混合料质量的0~50wt.%;所述聚醚砜与所述聚乙烯吡咯烷酮的加入量各自独立的占所述粉末混合料质量的1~6%;所述浆料的固含量为50~85wt.%。
进一步的,步骤(1)中,所述球磨的转速为100~400r/min、球磨时间为2~48h。
进一步的,步骤(2)中,经流延所得生坯的厚度为200μm~2mm。
进一步的,步骤(2)中,所得生坯与PET膜一起在水中浸泡时,以PET膜在下、生坯在上并保证样品与水平面平行,从而控制生坯中的孔隙分布,浸泡时间为12~48h。
进一步的,步骤(2)中,所得生坯与PET膜一起在水中浸泡时,在生坯上表面与水的界面处发生水和N-甲基吡咯烷酮交换,并且水渗透到生坯中,形成指状孔。
进一步的,步骤(3)中,所得生坯在500~800℃的预烧时间为1~4h,在800~2000℃的烧结时间为1~4h,通过控制骨架烧结温度从而控制最终W-Cu复合板中梯度成分分布。
进一步的,步骤(4)中,对W骨架进行熔渗Cu是在熔渗烧结炉中,在N2或H2气氛保护下,将纯紫Cu块或电解Cu粉末压坯置于具有指状孔的W骨架表面,并加热使Cu熔化,Cu熔液在毛细管力的作用下渗入W骨架的指状孔中,熔渗Cu的温度范围为1200~1500℃、时间为1~4h。
本发明的有益效果体现在:
1、本发明方法制备的W-Cu复合材料中Cu相由熔渗表面至试样内部呈指状梯度分布,且Cu相与W相相互钉扎,W-Cu界面有良好的结合强度;本发明的方法具有材料成分性能可调控、工艺简单、成本低、适合规模化生产等特点。
2、本发明是以偏钨酸铵为原料通过燃烧合成方法制得WOX粉末,原料成本低、易获得,所得WOX粉末有着特殊的表面结构、化学活性最高,适用于超细颗粒钨粉以及各类纳米级钨化合物的生产。
3、本发明通过单向渗水而后脱除粘结剂预烧获得的W骨架具有指状孔隙的特殊结构。
4、本发明的方法,可以通过控制固含量从而控制指状孔隙的大小来控制梯度分布:当固含量较小时,溶液的扩散速度较快,形成的新核数量多尺寸小,此时形成的孔结构是海绵状;固含量较大时,溶液的扩散速度较慢,形成的新核持续长大,则形成的孔结构为指状孔。
5、本发明的方法中,通过脱除粘结剂并还原工艺获得指状孔隙分布的W骨架中,其指状孔隙由小到大,细粒度W粉具有更好的烧结活性,在较低温度下即可致密,所以通过控制烧结工艺,可以扩大W骨架中的孔隙分布范围,能够获得由纯W层到W-Cu层过渡的梯度材料,满足其在高温下的工作稳定性。
附图说明
图1为Cu相呈指状梯度分布的W-Cu复合板的结构示意图;
图2为实施例1中所得WOX粉末的SEM照片;
图3为实施例1中所得W骨架的SEM照片;
图4为实施例1中所得W-Cu复合板的SEM照片;
图5为实施例1中所得W-Cu复合板的EDS能谱图及含量分布。
具体实施方式
下面结合附图对本发明的实施例作详细说明,下述实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
(1)将偏钨酸铵、硝酸铵、甘氨酸和乙二胺四乙酸混合后,加去离子水分散,然后放入马弗炉里空气气氛下200℃恒温燃烧2h,获得WOX粉末;偏钨酸铵、硝酸铵、甘氨酸、乙二胺四乙酸和去离子水的质量比12:19.2:7:0.7:50。图2为所得WOX粉末的SEM照片,可以看出所得粉末为短棒状,直径为0.5~2μm,长度为2~10μm。
称取WOX粉50g、0.8μm W粉100g、聚醚砜4g、聚乙烯吡咯烷酮2.67g、N-甲基吡咯烷酮26.7g,一起加入球磨罐中,球料比1:5,球磨12h,转速400r/min,获得固含量为82%的浆料。
(2)将所得浆料在PET膜上流延得到厚度为2mm的生坯,所得生坯与PET膜一起在水中浸泡以部分除去溶剂N-甲基吡咯烷酮,浸泡时以PET膜在下、生坯在上并保证样品与水平面平行,从而控制生坯中的孔隙分布,浸泡时间为24h,浸泡时在生坯上表面与水的界面处发生水和N-甲基吡咯烷酮交换,并且水渗透到生坯中,形成指状孔。
浸泡结束后,将生坯与PET膜分离,而后烘干。
(3)在H2气氛下,先将所得生坯在500℃预烧4h以脱除粘结剂并还原,再升温至800℃烧结2h以得到孔隙呈指状分布的W骨架。图3为所得W骨架的SEM照片,可以看出从上至下指状孔隙由小到大。
(4)在熔渗烧结炉中,在N2气氛保护下,将纯紫Cu块置于具有指状孔的W骨架表面,并加热使Cu熔化,Cu熔液在毛细管力的作用下渗入W骨架的指状孔中,熔渗Cu的温度为1300℃、时间为2h。
图4为本实施例所得W-Cu复合板的SEM照片,可以看出Cu相呈指状梯度分布,且从上至下梯度由小到大。
图5为本实施例所得W-Cu复合板的EDS能谱图及含量分布,可以看出W相与Cu相之间结合良好。
以上仅为本发明的示例性实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (8)
1.一种Cu相呈指状梯度分布的W-Cu复合板的制备方法,其特征在于,按如下步骤进行:
(1)将WOX粉末与W粉混合,获得粉末混合料;将所述粉末混合料与粘结剂聚醚砜、造孔剂聚乙烯吡咯烷酮一起加入N-甲基吡咯烷酮溶剂中,在行星式球磨机中球磨混合均匀,得到浆料;
所述WOX粉末占所述粉末混合料质量的50wt.%及以下,且不为0;所述聚醚砜与所述聚乙烯吡咯烷酮的加入量各自独立的占所述粉末混合料质量的1~6%;所述浆料的固含量为50~85wt.%;
(2)将所述浆料在PET膜上流延得到生坯,所得生坯与PET膜一起在水中浸泡以部分除去溶剂N-甲基吡咯烷酮,随后将生坯与PET膜分离,而后烘干;
(3)在H2气氛下,先将所得生坯在500~800℃预烧以脱除粘结剂并还原,再升温至800~2000℃烧结以得到孔隙呈指状分布的W骨架;
(4)对所述W骨架进行熔渗Cu,然后随炉冷却,即获得Cu相呈指状梯度分布的W-Cu复合板。
2.根据权利要求1所述的一种Cu相呈指状梯度分布的W-Cu复合板的制备方法,其特征在于:所述WOX粉末是采用偏钨酸铵、硝酸铵、甘氨酸、乙二胺四乙酸为原料,加去离子水分散后放入马弗炉里恒温200℃通过燃烧合成方法获得。
3.根据权利要求1所述的一种Cu相呈指状梯度分布的W-Cu复合板的制备方法,其特征在于:步骤(1)中,所述球磨的转速为100~400r/min、球磨时间为2~48h。
4.根据权利要求1所述的一种Cu相呈指状梯度分布的W-Cu复合板的制备方法,其特征在于:步骤(2)中,经流延所得生坯的厚度为200μm~2mm。
5.根据权利要求1所述的一种Cu相呈指状梯度分布的W-Cu复合板的制备方法,其特征在于:步骤(2)中,所得生坯与PET膜一起在水中浸泡时,以PET膜在下、生坯在上并保证样品与水平面平行,从而控制生坯中的孔隙分布,浸泡时间为12~48h。
6.根据权利要求1所述的一种Cu相呈指状梯度分布的W-Cu复合板的制备方法,其特征在于:步骤(2)中,所得生坯与PET膜一起在水中浸泡时,在生坯上表面与水的界面处发生水和N-甲基吡咯烷酮交换,并且水渗透到生坯中,形成指状孔。
7.根据权利要求1所述的一种Cu相呈指状梯度分布的W-Cu复合板的制备方法,其特征在于:步骤(3)中,所得生坯在500~800℃的预烧时间为1~4h,在800~2000℃的烧结时间为1~4h。
8.根据权利要求1所述的一种Cu相呈指状梯度分布的W-Cu复合板的制备方法,其特征在于:步骤(4)中,对所述W骨架进行熔渗Cu是在熔渗烧结炉中,在N2或H2气氛保护下,将纯紫Cu块或电解Cu粉末压坯置于具有指状孔的W骨架表面,并加热使Cu熔化,Cu熔液在毛细管力的作用下渗入W骨架的指状孔中,熔渗Cu的温度范围为1200~1500℃、时间为1~4h。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111209149.7A CN113787192B (zh) | 2021-10-18 | 2021-10-18 | 一种Cu相呈指状梯度分布的W-Cu复合板的制备方法 |
US17/967,906 US20230117192A1 (en) | 2021-10-18 | 2022-10-18 | Preparation method for w-cu composite plate with cu phase in finger-shaped gradient distribution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111209149.7A CN113787192B (zh) | 2021-10-18 | 2021-10-18 | 一种Cu相呈指状梯度分布的W-Cu复合板的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113787192A CN113787192A (zh) | 2021-12-14 |
CN113787192B true CN113787192B (zh) | 2022-07-12 |
Family
ID=78878039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111209149.7A Active CN113787192B (zh) | 2021-10-18 | 2021-10-18 | 一种Cu相呈指状梯度分布的W-Cu复合板的制备方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20230117192A1 (zh) |
CN (1) | CN113787192B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116196771A (zh) * | 2023-04-28 | 2023-06-02 | 成都华之煜新材料有限公司 | 一种高孔隙率非对称多孔金属膜制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10258479A (ja) * | 1997-03-21 | 1998-09-29 | Honda Motor Co Ltd | 傾斜機能材料の製造方法 |
CN1593818A (zh) * | 2004-07-01 | 2005-03-16 | 北京科技大学 | 一种熔渗-焊接法制备钨/铜功能梯度材料的方法 |
CN103317140A (zh) * | 2013-06-25 | 2013-09-25 | 武汉理工大学 | 一种流延法制备W-Cu体系梯度复合材料的方法 |
CN109702200A (zh) * | 2019-02-28 | 2019-05-03 | 中国地质大学(武汉) | 一种W/Cu功能梯度材料及其制备方法 |
CN110434343A (zh) * | 2019-08-26 | 2019-11-12 | 合肥工业大学 | 一种W-Cu连续梯度复合材料的制备方法 |
CN110964939A (zh) * | 2019-12-30 | 2020-04-07 | 西安理工大学 | 一种W-Cu梯度功能材料的制备方法 |
CN110976889A (zh) * | 2019-12-30 | 2020-04-10 | 西安理工大学 | 一种高W量W-Cu复合材料的制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170368607A1 (en) * | 2016-05-29 | 2017-12-28 | Nader Parvin | Functionally graded w-cu composite |
-
2021
- 2021-10-18 CN CN202111209149.7A patent/CN113787192B/zh active Active
-
2022
- 2022-10-18 US US17/967,906 patent/US20230117192A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10258479A (ja) * | 1997-03-21 | 1998-09-29 | Honda Motor Co Ltd | 傾斜機能材料の製造方法 |
CN1593818A (zh) * | 2004-07-01 | 2005-03-16 | 北京科技大学 | 一种熔渗-焊接法制备钨/铜功能梯度材料的方法 |
CN103317140A (zh) * | 2013-06-25 | 2013-09-25 | 武汉理工大学 | 一种流延法制备W-Cu体系梯度复合材料的方法 |
CN109702200A (zh) * | 2019-02-28 | 2019-05-03 | 中国地质大学(武汉) | 一种W/Cu功能梯度材料及其制备方法 |
CN110434343A (zh) * | 2019-08-26 | 2019-11-12 | 合肥工业大学 | 一种W-Cu连续梯度复合材料的制备方法 |
CN110964939A (zh) * | 2019-12-30 | 2020-04-07 | 西安理工大学 | 一种W-Cu梯度功能材料的制备方法 |
CN110976889A (zh) * | 2019-12-30 | 2020-04-10 | 西安理工大学 | 一种高W量W-Cu复合材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113787192A (zh) | 2021-12-14 |
US20230117192A1 (en) | 2023-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101642539B1 (ko) | 알루미늄 다공질 소결체를 갖는 알루미늄 복합체의 제조 방법 | |
CN110434343B (zh) | 一种W-Cu连续梯度复合材料的制备方法 | |
CN114525438B (zh) | 钨铜复合材料及其制备方法 | |
KR20100098507A (ko) | 개포형 다공성 물질, 및 이의 제조를 위한 방법 및 혼합물 | |
CN113458387B (zh) | 一种3d打印梯度陶瓷金属材料以及制备方法 | |
US20230044409A1 (en) | Fe-al-based metal porous membrane and preparation method thereof | |
CN115286408B (zh) | 一种基于颗粒级配复合技术的激光3d打印制备碳化硅复合材料部件的方法 | |
CN109680177B (zh) | 一种镀W金刚石/W-Cu梯度复合材料的制备方法 | |
CN107604188A (zh) | 一种制备梯度多孔钨的方法 | |
JP2000203973A (ja) | 炭素基金属複合材料およびその製造方法 | |
CN113787192B (zh) | 一种Cu相呈指状梯度分布的W-Cu复合板的制备方法 | |
CN104736274A (zh) | 制造耐火金属构件 | |
CN115637346B (zh) | 一种Al/SiC复合材料及其制备方法 | |
CN109095930A (zh) | 一种氮化硼泡沫材料及其制备方法 | |
US11918958B2 (en) | Fe-Al-based metal porous membrane and preparation method thereof | |
CN111778424A (zh) | 一种有效可控的具有多极孔结构的骨架的制备方法 | |
CN113547101A (zh) | 一种高导热金刚石-铝基复合材料的制备方法及产品 | |
NL2022274B1 (en) | A method for preparing a magnesium composite material; a magnesium composite material obtainable from the method according to the present invention | |
CN112899510B (zh) | 一种TiC/Ni复合材料的原位反应合成方法 | |
CN116396089B (zh) | 一种三维碳化硅/碳化钼陶瓷骨架增强碳基复合材料及其制备方法和应用 | |
CN111876625A (zh) | 一种AlNMg复合材料及其制备方法 | |
CN116589299B (zh) | 一种仿生年轮结构的多孔碳化硅陶瓷骨架及其制备方法和在高性能复合相变材料中的应用 | |
CN108315629B (zh) | 一种Al/SiC金属陶瓷复合材料的制备方法 | |
CN111270103A (zh) | 一种TiC颗粒增强Ni复合多孔材料及其制备工艺 | |
CN111961901B (zh) | 原位自生WC强化WCu双梯度结构复合材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |