CN113782720B - 一种锂离子电池用复合硅碳负极材料的制备方法 - Google Patents

一种锂离子电池用复合硅碳负极材料的制备方法 Download PDF

Info

Publication number
CN113782720B
CN113782720B CN202111006274.8A CN202111006274A CN113782720B CN 113782720 B CN113782720 B CN 113782720B CN 202111006274 A CN202111006274 A CN 202111006274A CN 113782720 B CN113782720 B CN 113782720B
Authority
CN
China
Prior art keywords
carbon
lithium ion
ion battery
powder
prussian blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111006274.8A
Other languages
English (en)
Other versions
CN113782720A (zh
Inventor
崔大祥
卢玉英
张芳
葛美英
颜雪冬
王亚坤
张放为
王金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Veken Battery Co ltd
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Ningbo Polytechnic
Original Assignee
Ningbo Veken Battery Co ltd
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Ningbo Polytechnic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Veken Battery Co ltd, Shanghai National Engineering Research Center for Nanotechnology Co Ltd, Ningbo Polytechnic filed Critical Ningbo Veken Battery Co ltd
Priority to CN202111006274.8A priority Critical patent/CN113782720B/zh
Publication of CN113782720A publication Critical patent/CN113782720A/zh
Application granted granted Critical
Publication of CN113782720B publication Critical patent/CN113782720B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种锂离子电池用复合硅碳负极材料的制备方法,复合硅碳负极材料通过对硅氧(SiOx)粉体混入碳源及普鲁士蓝进行煅烧包覆处理得到一种改性的硅碳负极材料。硅氧(SiOx)粉体与碳源和普鲁士蓝的混合通过振动磨碎机进行预混合处理,得到混合均匀的前驱体。此方法获得的负极材料包含了1D碳纳米管,2D石墨烯,以及硅氧表面的碳包覆,一方面保持了普鲁士蓝原本的立方结构,另一方面通过热分解造成了多空结构,使粉体具有更好的电化学性能,比容量高,循环膨胀小,从而达到减缓电池容量衰减,提高电池循环寿命的目的。

Description

一种锂离子电池用复合硅碳负极材料的制备方法
技术领域
本发明涉及一种锂离子电池用复合硅碳负极材料的制备方法。
背景技术
近年来,锂离子电池作为绿色清洁新能源已被广泛应用于移动电源和电动汽车上。随着新能源电动汽车需求的不断增长,对锂离子电池提出更高倍率的充放电等要求,提出了新的需求。为了提升锂离子电池的电化学性能,与之匹配的负极材料也有待进一步开发。
负极材料作为锂离子电池的重要组成部分,也是锂离子电池进一步研发的重点。目前,石墨类负极材料是当前商业化应用规模最大的负极材料,但其能量密度较低,不能满足锂离子电池及其应用领域的飞速发展,对于高能量密度材料的需求使我们着眼于开发新型的大倍率负极材料。
近年来,由于其特殊的物理化学性质,普鲁士蓝衍生的纳米材料被广泛地应用在能源领域当中,包括锂离子电池、液流电池、燃料电池、钠离子电池、超级电容器、电催化等诸多领域。由于在储能领域表现出了优异的性能,这类纳米材料受到了能源领域研究者们的广泛关注。
发明内容
本发明目的在于提供一种锂离子电池用复合硅碳负极材料的制备方法。
本发明目的通过以下方案实现:一种锂离子电池用复合硅碳负极材料的制备方法,通过对硅氧(SiOx)粉体混入碳源及普鲁士蓝进行煅烧包覆处理,得到一种改性的硅碳负极材料,包括以下步骤:
(1)将SiOx放入振动磨碎机中进行研磨,得到合适粒度的硅氧粉体;
(2)将碳源与普鲁士蓝按比例放入硅氧粉体中,碳源、普鲁士蓝与SiOx的混合比例为(1-3):(2-3):100,在振动磨碎机中进行预混,得到分散均匀的前驱体;
(3)将步骤(2)所得前驱体放入管式炉中,通入氮气保护气氛,进行煅烧;
(4)将煅烧后的粉体再次放入振动磨碎机中分散,得到复合硅碳负极粉体。
其中,步骤(1)所述SiOx的粒径为2-6微米。
步骤(2)所述的碳源为壳聚糖,石墨,沥青中的一种或组合。
步骤(3)所述的煅烧温度为800-1000℃。
本发明提出了一种锂离子电池用复合硅碳负极材料的制备方法,提供一种制备工艺简单,流程短,可操作性强的3D多孔结构的硅碳负极材料制备方法。在氮气氛围下,普鲁士蓝煅烧可转化为1D碳纳米管/2D石墨烯片/Fe3C,可以提高电子导电率,减小穿梭效应,且3D多孔结构有利于电解液的渗透和扩散,碳源经煅烧后在硅氧颗粒表面形成包覆层抑制体积膨胀造成的容量衰减,使材料倍率性能和循环稳定性显著改善。
附图说明
图1为实施例1倍率循环图,为设置倍率0.2C,0.3C,0.5C,1C,3C和5C,每个倍率下循环5次所得曲线;
图2为实施例1循环图:为电池以0.2C充电,0.1C放电条件下所得循环曲线。
具体实施方式
下面通过具体实例对本发明进行详细的描述,这些描述仅仅是解释本发明,但本发明的保护范围并不受限于这些实施例。
实施例1
一种锂离子电池用复合硅碳负极材料,通过对硅氧(SiOx)粉体混入碳源及普鲁士蓝进行煅烧包覆处理,得到一种改性的硅碳负极材料,按以下步骤制备:
(1)将工业用SiOx放入振动磨碎机中进行研磨30min,得到粒度为2-6微米的硅氧粉体;
(2)将碳源沥青与普鲁士蓝放入硅氧粉体中,混合质量比为1:1:100,在振动磨碎机中预混5min,得到分散均匀的前驱体;
(3)将步骤(2)所得前驱体放入管式炉中,通入氮气保护气氛,进行煅烧,升温速率为5℃/min,煅烧温度为850℃,保温2小时;
(4)将煅烧后的粉体再次放入振动磨碎机中分散5min,得到复合硅碳负极粉体。将所得负极粉体装成扣式半电池,进行电性能测试:
设置倍率0.2C,0.3C,0.5C,1C,3C和5C,每个倍率下循环5次所得曲线如图1所示,材料在小倍率和大倍率充放电都表现出稳定的比容量,倍率性能良好。
电池以0.2C充电,0.1C放电条件下所得循环曲线如图2所示,初始比容量高,达到1376mAh/g,在循环过程中,比容量衰减不明显,循环100次后容量保持为1343mAh/g,容量保持率97.6%,循环性能优良。
实施例2
一种锂离子电池用复合硅碳负极材料,与实施例1近似,按以下步骤制备:
(1)将工业用SiOx放入振动磨碎机中进行研磨30min,得到粒度为2-6微米的硅氧粉体;
(2)将碳源沥青与普鲁士蓝放入硅氧粉体中,混合质量比为1:1.5:100,在振动磨碎机中预混5min,得到分散均匀的前驱体;
(3)将步骤(2)所得前驱体放入管式炉中,通入氮气保护气氛,进行煅烧,升温速率为5℃/min,煅烧温度为900℃,保温2小时;
(4)将煅烧后的粉体再次放入振动磨碎机中分散5min,得到复合硅碳负极粉体。
实施例3
一种锂离子电池用复合硅碳负极材料,与实施例1近似,按以下步骤制备:
(1)将工业用SiOx放入振动磨碎机中进行研磨30min,得到粒度为2-6微米的硅氧粉体;
(2)将碳源壳聚糖与普鲁士蓝放入硅氧粉体中,混合质量比为2:2:100,在振动磨碎机中预混5min,得到分散均匀的前驱体;
(3)将步骤(2)所得前驱体放入管式炉中,通入氮气保护气氛,进行煅烧,升温速率为5℃/min,煅烧温度为1000℃,保温2小时;
(4)将煅烧后的粉体再次放入振动磨碎机中分散5min,得到复合硅碳负极粉体。

Claims (3)

1.一种锂离子电池用复合硅碳负极材料的制备方法,其特征在于,通过对硅氧SiOx粉体混入碳源及普鲁士蓝进行煅烧包覆处理,得到一种改性的硅碳负极材料,普鲁士蓝煅烧可转化为1D碳纳米管/2D石墨烯片/Fe3C,包括以下步骤:
(1)将SiOx放入振动磨碎机中进行研磨;
(2)将碳源与普鲁士蓝按比例放入硅氧粉体中,碳源、普鲁士蓝与SiOx的混合比例为(1-3):(2-3):100,在振动磨碎机中进行预混,得到分散均匀的前驱体;
(3)将步骤(2)所得前驱体放入管式炉中,通入氮气保护气氛,进行煅烧;煅烧温度为800-1000℃,保温2小时;
(4)将煅烧后的粉体再次放入振动磨碎机中分散,得到复合硅碳负极粉体。
2.根据权利要求1所述的锂离子电池用复合硅碳负极材料的制备方法,其特征在于,步骤(1)所述SiOx的粒径为2-6微米。
3.根据权利要求1所述的锂离子电池用复合硅碳负极材料的制备方法,其特征在于,步骤(2)所述的碳源为壳聚糖,石墨,沥青中的一种或组合。
CN202111006274.8A 2021-08-30 2021-08-30 一种锂离子电池用复合硅碳负极材料的制备方法 Active CN113782720B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111006274.8A CN113782720B (zh) 2021-08-30 2021-08-30 一种锂离子电池用复合硅碳负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111006274.8A CN113782720B (zh) 2021-08-30 2021-08-30 一种锂离子电池用复合硅碳负极材料的制备方法

Publications (2)

Publication Number Publication Date
CN113782720A CN113782720A (zh) 2021-12-10
CN113782720B true CN113782720B (zh) 2023-02-14

Family

ID=78840223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111006274.8A Active CN113782720B (zh) 2021-08-30 2021-08-30 一种锂离子电池用复合硅碳负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN113782720B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115411260B (zh) * 2022-11-01 2023-01-31 山东海化集团有限公司 一种普鲁士蓝类钠电正极材料的气相改性方法及由该方法制备的正极材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106252621A (zh) * 2016-08-24 2016-12-21 江西丰日电源有限公司 一种锂离子电池负极材料及其制备方法
CN108598412A (zh) * 2018-04-23 2018-09-28 中南大学 基于金属有机物的硅合金复合负极材料及其制备方法
CN112551522A (zh) * 2020-12-11 2021-03-26 上海纳米技术及应用国家工程研究中心有限公司 一种锂离子电池用硅碳负极材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106252621A (zh) * 2016-08-24 2016-12-21 江西丰日电源有限公司 一种锂离子电池负极材料及其制备方法
CN108598412A (zh) * 2018-04-23 2018-09-28 中南大学 基于金属有机物的硅合金复合负极材料及其制备方法
CN112551522A (zh) * 2020-12-11 2021-03-26 上海纳米技术及应用国家工程研究中心有限公司 一种锂离子电池用硅碳负极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Fabrication of N-doped Graphene–Carbon Nanotube Hybrids from Prussian Blue for Lithium–Sulfur Batteries";Dawei Su等;《Advanced Energy Materials》;20161221;第7卷;1602014第1~12页 *

Also Published As

Publication number Publication date
CN113782720A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
Zheng et al. Influence of Nb Doping on Electrochemical Performance of Nanostructured Cation Disordered Li1+ x/100Ni1/2–x/100Ti1/2–x/100Nb x/100O2 Composites Cathode for Li-Ion Batteries
CN109742383A (zh) 基于酚醛树脂的钠离子电池硬碳负极材料及其制备方法和应用
CN111129466B (zh) 一种高性能正极材料及其制备方法和在锂离子电池中的应用
CN111146416B (zh) 氮掺杂硅基材料及其制备方法和在电池中的应用
CN110323073B (zh) 一种氧掺杂磷化钴镍-还原氧化石墨烯复合材料的制备方法及其应用
CN111785946B (zh) 负极活性材料及其制备及应用
CN106374086B (zh) 纳米钛酸锂-石墨烯复合材料及其制备方法
CN114122352A (zh) 一种多孔碳掺杂诱导硅沉积的硅碳负极材料及其制备方法
Wang et al. Facile synthesis of boron-doped porous carbon as anode for lithium–ion batteries with excellent electrochemical performance
CN110224111A (zh) 氮化钛包覆的铌酸钛材料及其制备方法和负极、电池
CN115714170A (zh) 一种高能量密度快充负极材料的制备方法
CN113782720B (zh) 一种锂离子电池用复合硅碳负极材料的制备方法
Wang et al. Synthesis of nitrogen and phosphorus dual-doped graphene oxide as high-performance anode material for lithium-ion batteries
CN109638231B (zh) 氧化亚硅复合负极材料及其制备方法和锂离子电池
Peng et al. Hierarchical porous biomass activated carbon for hybrid battery capacitors derived from persimmon branches
CN117080407A (zh) 一种硼掺杂复合硅基锂离子电池负极材料及其制备方法
CN110504450B (zh) 一种杂原子掺杂的多级孔碳材料的制备方法及在锂电池负极浆料中的应用
CN115332507B (zh) 一种碳包覆磷酸铁钠复合电极材料及其制备和应用
CN104377368A (zh) 一种高效锂空气电池空气电极炭材料及其制备方法
CN111082005A (zh) 负极材料、复合材料及其制备方法
CN115893471A (zh) 一种等离子体诱导氧化银复合氟化碳的方法及锂一次电池应用
CN103928684A (zh) 改性锂离子电池石墨负极材料及其制备方法
KR100536250B1 (ko) 연료전지용 분리판과 그 제조방법 및 이로부터 제조되는연료전지 시스템
CN113036122B (zh) 一种膨胀石墨正极材料及其制备方法、电极和铝离子电池
CN114583137B (zh) 一种在碳表面进行硫掺杂磷修饰的方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant