CN113730562B - 以壳聚糖修饰plga的wt1多肽纳米粒疫苗及其制备方法和应用 - Google Patents

以壳聚糖修饰plga的wt1多肽纳米粒疫苗及其制备方法和应用 Download PDF

Info

Publication number
CN113730562B
CN113730562B CN202111064465.XA CN202111064465A CN113730562B CN 113730562 B CN113730562 B CN 113730562B CN 202111064465 A CN202111064465 A CN 202111064465A CN 113730562 B CN113730562 B CN 113730562B
Authority
CN
China
Prior art keywords
polypeptide
chitosan
nanoparticle vaccine
vaccine
nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111064465.XA
Other languages
English (en)
Other versions
CN113730562A (zh
Inventor
孙红武
张泽珑
刘佳晖
杨赟
罗兴
曾小强
叶演
赵世博
涂亚涛
蔡丁一
覃靖怡
吴梓靖
王天芮
欧阳健恒
鲁东水
曾浩
邹全明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Third Military Medical University TMMU
Original Assignee
Third Military Medical University TMMU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Third Military Medical University TMMU filed Critical Third Military Medical University TMMU
Priority to CN202111064465.XA priority Critical patent/CN113730562B/zh
Publication of CN113730562A publication Critical patent/CN113730562A/zh
Application granted granted Critical
Publication of CN113730562B publication Critical patent/CN113730562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • A61K9/5153Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明专利公开了一种以壳聚糖修饰PLGA的WT1多肽纳米粒疫苗及其制备方法和应用,该纳米粒疫苗粒径为1nm~300nm,PDI分散指数小于0.3;其制备方法如下:将WT1多肽加入到含聚乙烯醇和多磷酸钠的溶液中,然后搅拌下加入丙酮溶解的聚乳酸‑羟基乙酸共聚物溶液,接着搅拌下加入冰醋酸溶解的壳聚糖溶液,充分分散,过滤,离心洗涤获得纳米粒疫苗。该纳米粒疫苗,且质量稳定,分散性良好,可诱导机体产生高效的免疫应答对,对白血病及相关肿瘤疾病的预防和治疗具有重要意义。

Description

以壳聚糖修饰PLGA的WT1多肽纳米粒疫苗及其制备方法和 应用
技术领域
本发明涉及恶性肿瘤治疗领域,具体涉及一种以壳聚糖修饰PLGA的WT1多肽纳米粒疫苗;还涉及该疫苗的制备方法和应用。
背景技术
白血病又称“血癌”,是造血组织的恶性疾病,其特征为白细胞在骨髓及其他造血组织中呈恶性、无限制地增生,进而浸润全身各组织和脏器,对机体产生严重损害。白血病发病率随年龄增长而增加,美国仅在2012年有将近14000名成年人诊断为白血病,这一年中大约10000名白血病患者失去生命。在我国白血病发病率为 5~17/10 万,儿童及35岁以下成人的死亡率位居恶性肿瘤死亡率的第一位,可见白血病是危害人类主要的恶性肿瘤之一。
传统的放疗或化疗具有一定的治疗作用,也是目前临床采用的主要治疗方法。但其在杀死白血病细胞的同时,也杀死了体内的正常细胞。中性粒细胞数目的减少易导致感染而严重影响白血病的治疗效果。如果能让白血病病人体内的免疫系统识别肿瘤细胞继而抑制其繁殖,那么肿瘤细胞就无法逃脱免疫系统的监控,从而使高危的急性白血病患者产生针对肿瘤细胞的特异性免疫反应,提高其长期生存率。
最新研究表明,白血病疫苗能激活一系列免疫增强反应,使免疫系统能够识别并清除白血病细胞,取得了很好的治疗效果。研究表明,白血病疫苗包括白血病细胞疫苗、白血病相关多肽疫苗、树突状细胞疫苗和DNA疫苗,其中多肽疫苗研究尤其火热。WT1(Wilmstumor gene 1)可以诱导特异性细胞及体液免疫反应,并且已经有学者报道WT1多肽疫苗的Ⅰ期临床试验,证明了WT1多肽的免疫原性及安全性。WT1多肽疫苗的临床Ⅱ期试验,验证了WT1 疫苗可以诱导有功能的CTL反应,并且可能与临床改善相关。
但由于多肽疫苗分子量小,免疫原性弱,容易降解,不易被抗原提呈细胞摄取,具有MHC限制性,因此其抗肿瘤活性远不如预期。PLGA有很好的稳定性和安全性,具有易于被吞噬细胞摄取,通过在颗粒表面吸附相应的配体可以定位到特定的组织或器官等优点,美国食品药品管理局 (FDA)已认定 PLGA有良好的生物相容性和安全性。同时美国德克萨斯大学西南医学中心的高金明教授和美国国家科学院院士陈志坚教授等人发现,一种由酸度响应聚合物组成的纳米颗粒(PC7A)与抗原组成的简单复合物不仅可以有效促进抗原在抗原递呈细胞中的胞质输送、显著增强抗原呈递,还可以通过激活Ⅰ型干扰素刺激因子(STING)刺激产生Ⅰ型干扰素,显著增强该纳米疫苗的抗癌效应。国内纳米多肽疫苗的研究有鸡新城疫病毒、禽流感病毒、猪圆环病毒2型等,但是尚未见WT1纳米粒疫苗报道。
发明内容
有鉴于此,本发明的目的之一在于提供以壳聚糖修饰PLGA的WT1多肽纳米粒疫苗;本发明的目的之二在于提供以壳聚糖修饰PLGA的WT1多肽纳米粒疫苗的制备方法;本发明的目的之三在于提供所述以壳聚糖修饰PLGA的WT1多肽纳米粒疫苗在制备治疗急性髓系白血病药物中的应用。
为达到上述目的,本发明提供如下技术方案:
1、一种以壳聚糖修饰PLGA的WT1多肽纳米粒疫苗,所述纳米粒疫苗由聚乙烯醇、多磷酸钠、聚乳酸-羟基乙酸和壳聚糖包裹WT1多肽,通过溶剂蒸发法交联得到粒径为1-300nm的纳米粒疫苗,所述纳米粒疫苗的PDI值小于0.3,所述WT1多肽氨基酸序列为RM-FPNAPYL。
优选的,所述WT1多肽的浓度为0.5-4 mg/ml。
优选的,所述聚乙烯醇和多磷酸钠的浓度分别为0.02 g/ml和0.002 g/ml。
优选的,所述聚乳酸-羟基乙酸共聚物浓度为0.002~0.02 g/ml,加入每45ml含0.01~0.2g聚乳酸-羟基乙酸共聚物。
优选的,所述壳聚糖溶液的浓度为0.0005~0.01 g/ml,加入后每45ml含0.01~0.2g壳聚糖。
优选的,所述搅拌的转速为800转/min;所述充分分散为以800转/min的速度搅拌8h;所述离心为13000 rpm离心10 min;所述过滤为用0.22 µm滤器头过滤。
2、以壳聚糖修饰PLGA的WT1多肽纳米粒疫苗的制备方法,具体步骤如下:将WT1多肽溶液加入含聚乙烯醇和多磷酸钠的溶液中,然后搅拌下加入丙酮溶解的聚乳酸-羟基乙酸共聚物溶液,接着搅拌下加入冰醋酸溶解的壳聚糖溶液,充分分散,过滤,离心洗涤获得WT1多肽纳米粒疫苗;或将WT1多肽溶液加入含聚乙烯醇和多磷酸钠的溶液中,然后搅拌下加入丙酮溶解的聚乳酸-羟基乙酸共聚物溶液,接着搅拌下加入冰醋酸溶解的壳聚糖溶液,充分分散,去除残留乳化剂,冷冻干燥,获得WT1多肽纳米粒疫苗。
优选的,具体步骤如下:WT1多肽溶液加入含0.02 g/ml聚乙烯醇和0.002 g/ml多磷酸钠的溶液A中,混匀,然后搅拌下加入丙酮溶解的0.01g/ml聚乳酸-羟基乙酸共聚物溶液B,混匀,接着搅拌下加入冰醋酸溶解的0.001g/ml壳聚糖溶液C,充分分散,过滤,离心,洗涤获得WT1多肽纳米粒疫苗;或将WT1多肽溶液加入含0.02 g/ml聚乙烯醇和0.002 g/ml多磷酸钠的溶液A中,然后搅拌下加入丙酮溶解的0.01g/ml聚乳酸-羟基乙酸共聚物溶液B,接着搅拌下加入冰醋酸溶解的0.001g/ml壳聚糖溶液C,充分分散,去除残留乳化剂,冷冻干燥,获得WT1多肽纳米粒疫苗。
优选的,所述溶液A、B、C的体积比为1:4:4。
本发明更优选的,所述搅拌的转速为800转/min,所述充分分散为以800转/min的速度搅拌8h。
3、所述以壳聚糖修饰PLGA的WT1多肽纳米粒疫苗在制备治疗急性髓系白血病药物中的应用。本发明的有益效果在于:本发明以聚乳酸-羟基乙酸共聚物(PLGA)、壳聚糖(CS)、WT1多肽等原辅料,通过处方筛选等,制备出新型的白血病纳米粒多肽疫苗;对纳米粒疫苗的理化特征和稳定性等进行评价;体内毒性研究疫苗体内外安全性,这可为后期白血病治疗疫苗应用奠定坚实基础和提供科学理论依据。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为合成的WT1多肽及鉴定图(A:合成的多肽;B:HPLC实验结果;C:质谱检测结果);
图2为不同载药浓度的WT1多肽纳米粒疫苗样品(A)及其粒度(B)、分散性(C)和电位(D);
图3为WT1多肽纳米粒疫苗的形态学表征;
图4为WT1多肽纳米粒疫苗的粒度(A)及电位分布(B);
图5为空白纳米粒(A)、WT1多肽水溶液(B)及纳米粒疫苗(C)的质谱图;
图6为小鼠血清中IFN-γ的水平;
图7为小鼠血清中IL-2的水平;
图8为小鼠血清中TGF-β的水平;图9为小鼠血清中IL-10的水平。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1、WT1多肽的合成与鉴定
利用日本岛津PSSM-8型多肽合成仪合成WT1 126-134多肽(氨基酸序列为RM-FPNAPYL),进行纯化分离,并用液相色谱检测其含量,质谱检测其分子质量。步骤如下:反应釜中的树脂浸泡在DMF中。经过5次浸泡和洗涤,加入氨基酸 Fmoc-ile-oh,Pybop,Hobt 和NMM。反应20min 后,用DMF洗涤树脂5次,加入合成的六氢吡啶。用DMF或二氯甲烷对树脂进行6-9次洗涤;对六氢吡啶进行清洗和干燥;加入相同摩尔当量的 Fmoc-ile-oh和Pybop,Nmm 和Hobt反应;20min后,去除多余的氨基酸试剂,加入六氢吡啶去除保护基;经过12个循环,肽连接反应完成;所需的连接产品后用反相高效液相色谱纯化。结果如图1所示,WT1的含量为95.53%(图1,B),WT1的分子量为1108(图1,C),该多肽的纯度高可以为后期WT1纳米粒疫苗提供充足的原料保证。
实施例2、WT1纳米粒最佳载药量的确定
利用溶剂蒸发法和前期实验室技术,采用如下步骤进行:
1)称取0.05 g 聚乳酸-羟基乙酸共聚物(PLGA),加入5 ml丙酮,搅拌至完全溶解。
2)称取0.02 g 壳聚糖(CS),加入20 ml 1%冰醋酸中,搅拌至完全溶解。
3)称取0.4 g 聚乙烯醇(PVA)、0.04 g多磷酸钠,加入15 ml纯水中,搅匀。
4)分别稀释WT1蛋白。
5)分别将4)中不同浓度WT1多肽蛋白液加入3)中,纯水定容至20 ml,WT1多肽至终浓度为0.5 mg/ml;1 mg/ml;2 mg/ml;4mg/ml。
6)在800 转/min磁力搅拌下,将1)逐滴加入5)中。
7)在800 转/min磁力搅拌下,将2)逐滴加入6)中。
8)通风厨内(室温,风力60%)800转/min搅拌8 h。
9)样品用0.22 µm滤器头过滤。
10)13000 rpm离心10 min,并用超纯水洗涤,反复两次。
11)弃上清,1 ml纯水重悬沉淀。
采用上述步骤,分别制备WT1载药浓度为0.5 mg/ml、1 mg/ml、2.0 mg/ml和4.0mg/ml的WT1的纳米粒疫苗样品(图2,A)。并对样品稀释100倍后,用粒度电位分析检测其粒度(图2,B)、分散性(图2,C)和电位(图2,D)。从图2,B可以看出,当WT1浓度从0.5 mg/ml到4mg/ml,其粒度先从大变小,当浓度为2mg/ml时候,其粒度最小;图2,C可看出当WT1浓度从0.5 mg/ml到4 mg/ml,在浓度为1mg/ml时分数指数大于0.3分散性较差,其余浓度分散性较好;图2,D看出,当WT1浓度从0.5 mg/ml到4 mg/ml,其电位先变大后变小,当浓度为2 mg/ml时候,其电位明显改变。综上所述,选择2mg/ml作为WT1纳米粒最佳载药浓度。
实施例3、WT1纳米粒疫苗的制备及其形态学表征
利用溶剂蒸发法和获得的最佳载药浓度后,采用如下步骤进行:
1)称取0.05 g PLGA,加入5 ml丙酮,搅拌至完全溶解。
2)称取0.02 g CS,加入20 ml 1%冰醋酸中,搅拌至完全溶解。
3)称取0.4 g PVA、0.04 g多磷酸钠,加入15 ml纯水中,搅匀。
4)分别稀释WT1蛋白。
5)分别将4)中不同浓度WT1多肽蛋白液加入3)中,纯水定容至20 ml,加入WT1多肽。
6)在800 转/min磁力搅拌下,将1)逐滴加入5)中。
7)在800 转/min磁力搅拌下,将2)逐滴加入6)中。
8)通风厨内(室温,风力60%)800转/min搅拌8 h。
9)样品用0.22 µm滤器头过滤。
10)13000 rpm离心10 min,并用超纯水洗涤,反复两次
11)弃上清,1 ml纯水重悬沉淀。
采用上述步骤,制备出载药量为2 mg/ml 的WT1纳米粒疫苗。
(1)透射电镜(TEM)检测
用超纯水将制得的纳米乳稀释100倍,取5 μL于电镜铜网上,静置10分钟,使用滤纸小心吸干多余水分,滴加10 μL 1%磷钨酸染色1分钟,用滤纸吸干多余水分,在TEVNAI10透射电镜下观察并采集图像;
(2)粒度和电位检测
用超纯水将制得的纳米乳稀释100倍,在Nano ZA动态光散射粒径电位仪中检测粒径及Zeta电位。
放大不同倍数下的纳米粒多肽疫苗,结果如图3所示。图3中放大倍数从大到小依次为120K、100K、80K、60K、30K、20K。从图3可看出制作的纳米粒形态为规整的圆球形,分散性好,无聚集现象,大小约200 nm左右,符合实验预期要求,充分表明WT1纳米粒疫苗形态学良好。
WT1纳米粒疫苗的理化特征的结果如图4所示,图4,A粒度表明,WT1多肽纳米粒粒径为199.7±2.66 nm,小于200.0 nm 的粒子占70%;小于217 nm 的粒子占100%,可见制得的纳米粒的粒径分布范围窄,粒径比较均匀,所有的纳米粒颗粒粒度均处于1-1000 nm,充分证明已经成功制备纳米粒。其多肽纳米粒的分散指数(PDI)为0.078±0.011,其分散指数小于0.3,表明制备的WT1多肽纳米粒疫苗分布狭窄。WT1纳米粒的粒径为199.7 nm,均处于1-1000 nm的尺度范围。电位位于-30 mV内质量稳定。利用电位分析检测到WT1多肽纳米粒的电位分布见图4,B。结果表明,实验制备的WT1纳米粒疫苗的电位-16.16±0.41 mV,其电位位于-30-30 mV 之间,其结果表明,WT1纳米粒疫苗属于稳定体系范围。
实施例4、WT1纳米粒疫苗中WT1多肽的稳定性
通过激光辅助解吸附-飞行时间质谱法(MALDI-TOF MS)对WT1多肽疫苗稳定性进行考察。采用MALDI-7090 MS质谱仪对空白纳米粒(简称BNP)、2000 μg/mL WT1多肽水溶液以及WT1纳米粒疫苗(简称WT1 NP)进行检测,比对离子峰信息。
结果如图5所示。图5,A所示,BNP质谱表现为聚合物特殊峰型,除纳米粒离子峰外,未见其他离子峰。图5,B为WT1多肽水溶液质谱,在约m/z =1108处有明显主峰。图5,C为WT1NP纳米粒疫苗的质谱图,可见除了聚合物特殊峰型外,在约m/z = 1108处有明显离子峰,位置与WT1多肽所形成的离子峰基本一致。结果显示,WT1多肽在WT1 NP中稳定存在,提示纳米粒制备过程对WT1多肽未造成明显影响。
实施例5、WT1纳米粒疫苗的肌肉注射毒性初步观察
试验分为:正常组、空白纳米粒、2 mg/mL WT1水溶液和WT1 NP纳米粒疫苗组(n=5)。根据分组按照50 μg/mice剂量,100µl体积在0、14、28天分别肌肉注射于小鼠两侧腿部后观察小鼠的毒性反应及存活率,正常组注射相同量的PBS。
对WT1 NP疫苗的肌肉毒性初步发现所有给药组的小鼠均无明显的毒性反应,小鼠均存活。结果表明,制备的WT1 NP疫苗安全性良好。
实施例6、
试验分为:PBS、空白纳米粒、WT1水溶液和WT1 NP疫苗组(n=5)。根据分组按照50 μg/mice剂量,100µl体积在0、14、28天3次分别肌肉免疫注射,正常组注射相同量的PBS。末次免疫7天,小鼠眼眶取血。应用ELISA方法检测小鼠血清中IFN-γ(杭州博日科技)、TGF-β(杭州博日科技)、IL-10(杭州博日科技)和IL-2(杭州博日科技)的应答水平。实验结果显示,WT1纳米粒组的IFN-γ(图6)和IL-2(图7)水平均显著高于WT1对照组(P<0.0001);但TGF-β(图8)及IL-10(图9)水平均明显低于均显著低于WT1对照组(P<0.0001)。
IFN-γ是Th1型细胞因子的重要成员之一,主要由活化的CD4+T细胞及NK细胞分泌。IFN-γ具有较强的抗肿瘤免疫调节功能:促进巨噬细胞杀伤肿瘤细胞及吞噬微生物;提高MHC-I类分子表达,诱发多种细胞表达MHC-II类分子;加速T、B淋巴细胞分化。因此,测定CTL效应细胞体内IFN-γ的分泌水平可以反映其诱导Th1型细胞免疫的能力。IL-2是诱发T细胞、NK细胞反应和刺激细胞增殖的细胞因子,具有较好的非特异性抗肿瘤免疫反应。IL-10和TGF-β是免疫抑制因子,不能有效活化T细胞产生特异性抗肿瘤效应,即出现T细胞免疫耐受。因此,抑制体内IL-10和TGF-β水平可逃避T细胞免疫耐受,刺激细胞因子的合成及分泌,促进Th1细胞分化及CTL增殖,增强细胞毒性作用。本实验结果显示,WT1多肽纳米疫苗治疗组INF-γ、IL-2明显高于WT1组,说明WT1多肽纳米疫苗刺激效应细胞提高体内INF-γ及IL-2水平发挥抗肿瘤效应。WT1多肽纳米疫苗组的IL-10和TGF-水平明显低于WT1多肽组,说明WT1多肽纳米粒疫苗可以通过抑制效应细胞IL-10和TGF-β的分泌,解除免疫抑制,增强机体的抗肿瘤能力。
总的来说,本发明专利以PLGA、壳聚糖为材料,用溶剂蒸发法,首次成功制备包裹美国、德国临床II期的抗急性髓系白血病WT1多肽、粒度为200nm,质量稳定,安全性良好的WT1多肽纳米粒疫苗,它可为后期白血病治疗疫苗应用奠定坚实基础和提供科学理论依据。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (1)

1.一种以壳聚糖修饰PLGA的WT1多肽纳米粒疫苗,其特征在于:所述纳米粒疫苗由聚乙烯醇、多磷酸钠、聚乳酸-羟基乙酸和壳聚糖包裹WT1多肽,通过溶剂蒸发法交联得到粒径为1-300 nm的纳米粒疫苗,所述纳米粒疫苗的PDI值小于0.3,所述WT1多肽氨基酸序列为RMFPNAPYL;所述壳聚糖修饰PLGA的WT1多肽纳米粒疫苗中WT1多肽浓度为2 mg/mL;
所述以壳聚糖修饰PLGA的WT1多肽纳米粒疫苗的制备方法,具体步骤如下:
1)称取0.05 g 聚乳酸-羟基乙酸共聚物,加入5 mL丙酮,搅拌至完全溶解;
2)称取0.02 g 壳聚糖,加入20 mL 1%冰醋酸中,搅拌至完全溶解;
3)称取0.4 g 聚乙烯醇、0.04g多磷酸钠,加入15 ml纯水中,搅匀;
4)溶解WT1多肽;
5)将4)中WT1多肽液加入3)中,纯水定容至20 mL;
6)在800 转/min磁力搅拌下,将1)逐滴加入5)中;
7)在800 转/min磁力搅拌下,将2)逐滴加入6)中;
8)通风厨内,室温,风力60%,800转/min搅拌8 h;
9)样品用0.22 µm滤器头过滤;
10)13000 rpm离心10 min,并用超纯水洗涤,反复两次;
11)弃上清,1 mL纯水重悬沉淀。
CN202111064465.XA 2021-09-10 2021-09-10 以壳聚糖修饰plga的wt1多肽纳米粒疫苗及其制备方法和应用 Active CN113730562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111064465.XA CN113730562B (zh) 2021-09-10 2021-09-10 以壳聚糖修饰plga的wt1多肽纳米粒疫苗及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111064465.XA CN113730562B (zh) 2021-09-10 2021-09-10 以壳聚糖修饰plga的wt1多肽纳米粒疫苗及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113730562A CN113730562A (zh) 2021-12-03
CN113730562B true CN113730562B (zh) 2024-06-04

Family

ID=78738133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111064465.XA Active CN113730562B (zh) 2021-09-10 2021-09-10 以壳聚糖修饰plga的wt1多肽纳米粒疫苗及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113730562B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114644686B (zh) * 2022-03-24 2023-09-05 中国人民解放军陆军军医大学 一种用于dna疫苗递送系统及其应用和dna疫苗

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1671733A (zh) * 2001-10-30 2005-09-21 科里克萨有限公司 用于wt1特异性免疫疗法的组合物和方法
CN1816349A (zh) * 2003-04-30 2006-08-09 科里克萨有限公司 用于wt1特异性免疫治疗的组合物和方法
CN105377291A (zh) * 2013-01-15 2016-03-02 纪念斯隆凯特林癌症中心 免疫原性wt-1肽和其使用方法
CN110302369A (zh) * 2019-06-28 2019-10-08 中国人民解放军陆军军医大学 以壳聚糖修饰PLGA的大肠杆菌Vo外膜蛋白纳米粒疫苗及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3471778A4 (en) * 2016-06-20 2020-02-19 The Regents of The University of Michigan COMPOSITIONS AND METHOD FOR DELIVERING BIOMACROMOLECOLIC ACTIVE SUBSTANCES
EP3534952A4 (en) * 2016-11-04 2020-06-10 Memorial Sloan-Kettering Cancer Center BI-SPECIFIC ACTIVATORS FOR ANTI-TUMOR THERAPY

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1671733A (zh) * 2001-10-30 2005-09-21 科里克萨有限公司 用于wt1特异性免疫疗法的组合物和方法
CN1816349A (zh) * 2003-04-30 2006-08-09 科里克萨有限公司 用于wt1特异性免疫治疗的组合物和方法
CN105377291A (zh) * 2013-01-15 2016-03-02 纪念斯隆凯特林癌症中心 免疫原性wt-1肽和其使用方法
CN110302369A (zh) * 2019-06-28 2019-10-08 中国人民解放军陆军军医大学 以壳聚糖修饰PLGA的大肠杆菌Vo外膜蛋白纳米粒疫苗及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
壳聚糖修饰的PLGA纳米粒作为蛋白多肽类药物载体的研究;陈红丽等;功能材料(02);全文 *
壳聚糖表面修饰PLGA纳米粒对小鼠骨髓系树突细胞交叉递呈的影响;邹家龙等;中国医院药学杂志(03);全文 *
应用纳米技术发展血液恶性肿瘤检测与治疗的新技术和新方法;熊非等;中国基础科学(第3期);第20页左栏第1-2段、右栏第1段,第21页左栏第1段、右栏第1段 *
纳米材料在肿瘤免疫治疗中的应用;张李栋等;免疫学杂志(08);全文 *
纳米药物输送系统提高肿瘤多肽疫苗效应的研究进展;赵妍等;中国药学杂志(06);全文 *

Also Published As

Publication number Publication date
CN113730562A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
Saleh et al. Immunomodulatory properties of Coriolus versicolor: the role of polysaccharopeptide
WO2021174738A1 (zh) 表面pd-l1分子过表达的间充质干细胞膜包被的仿生纳米颗粒及其制备和应用
Yang et al. Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: Preparation and in vitro evaluation
WO2018028058A1 (zh) 一种表面功能化可载药洗脱微球的制备方法
CN110613844B (zh) 一种迷你联合佐剂纳米颗粒及其制备方法和应用
CN113730562B (zh) 以壳聚糖修饰plga的wt1多肽纳米粒疫苗及其制备方法和应用
CN110585131A (zh) 共载化疗药物的1-甲基色氨酸免疫前药胶束、制备方法及其应用
Lv et al. Properties of a stable and sustained-release formulation of recombinant human parathyroid hormone (rhPTH) with chitosan and silk fibroin microparticles
WO2023274299A1 (zh) 全靶点抗原呈递细胞肿瘤疫苗及其制备方法和应用
CN108113977B (zh) 一种红细胞膜包封的明胶载盐酸小檗碱纳米粒的制备方法及其应用
CN111110866B (zh) 还原性聚谷氨酸/聚乙烯亚胺/siRNA复合纳米粒及制备与应用
CN110755607B (zh) 氧化锌、抗原共载药物纳米疫苗、其制备方法与应用
CN103154012B (zh) 聚丙基醚亚胺的糖树状聚体
CN110302369B (zh) 以壳聚糖修饰PLGA的大肠杆菌Vo外膜蛋白纳米粒疫苗及其制备方法和应用
CN115252790B (zh) 双靶向的肿瘤微环境响应的多功能纳米递送系统及其制备方法与应用
CN115054699B (zh) 一种肝靶向递送miR-26a类似物的纳米药物载体及其制备方法
CN115737895A (zh) 一种用于抗肝癌的磁性栓塞微球及其制备方法与应用
CN105194663A (zh) 聚乙二醇化磷脂为载体的胶束多肽疫苗
CN111394392B (zh) 一种脂肪细胞靶向阳离子基因载体、其制备方法及其应用
CN114788811A (zh) 一种盐酸吉西他滨壳聚糖胶束及其制备方法
CN109395086B (zh) 一种氧化石墨烯基复合纳米药物载体及其制备方法
Zhang et al. Lentinan-functionalized PBAE-G-nanodiamonds as an adjuvant to induce cGAS-STING pathway-mediated macrophage activation and immune enhancement
CN114949246B (zh) 一种Toll样受体激动剂纳米粒子及其制备方法和应用
CN108210457B (zh) 胶原蛋白肽的药物应用、葫芦素口服胶束及其制备方法
CN114456373B (zh) 一种基于亮氨酸的聚酯酰胺的纳米递药体系及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant