CN113699143A - 从生物样品中分离微泡和提取核酸的方法 - Google Patents

从生物样品中分离微泡和提取核酸的方法 Download PDF

Info

Publication number
CN113699143A
CN113699143A CN202110781733.3A CN202110781733A CN113699143A CN 113699143 A CN113699143 A CN 113699143A CN 202110781733 A CN202110781733 A CN 202110781733A CN 113699143 A CN113699143 A CN 113699143A
Authority
CN
China
Prior art keywords
dna
rna
biological sample
capture surface
microvesicles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110781733.3A
Other languages
English (en)
Inventor
J·K·O·斯科格
D·恩德尔
A·拉马钱兰
H·颜
E·伯格霍夫
T-F·魏
M·内尔霍姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exosome Diagnostics Inc
Original Assignee
Exosome Diagnostics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exosome Diagnostics Inc filed Critical Exosome Diagnostics Inc
Publication of CN113699143A publication Critical patent/CN113699143A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/149Particles, e.g. beads

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Tires In General (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

本发明提供用于从生物样品中分离核酸、包括游离DNA和/或游离DNA和包括至少来自微泡的RNA的核酸以及用于从所述微泡和/或从所述生物样品中提取核酸的新型方法和试剂盒。

Description

从生物样品中分离微泡和提取核酸的方法
本申请是申请日为2015年7月9日,中国国家申请号为201580049375.X,发明名称为“从生物样品中分离微泡和提取核酸的方法”的发明申请的分案申请。
相关申请
本申请要求2014年7月9日提交的美国临时申请号62/022,538、2014年11月14日提交的美国临时申请号62/079,763和2015年5月27日提交的美国临时申请号62/166,890的优先权和权益,上述美国临时申请中每一者的内容以全文通过引用并入本文。
发明领域
本发明提供用于从生物样品中分离核酸、包括游离(cell-free)DNA和/或游离DNA和包括至少来自微泡的RNA的核酸以及用于从微泡和/或从生物样品中提取核酸的新型方法和试剂盒。
背景
细胞脱落的膜囊泡统称为微泡。来自各种细胞来源的微泡已关于蛋白质和脂质含量被广泛研究。最近,已发现微泡还含有DNA和RNA两者,包括基因组DNA、cDNA、线粒体DNA、微RNA(miRNA)和信使RNA(mRNA)。
由于细胞所脱落微泡中含有的遗传和蛋白质组信息,当前研究指向利用微泡来获得对这些细胞的状况的进一步洞悉,例如疾病状态或疾病素因。另外,当前研究还指向利用游离DNA来获得对细胞状况的进一步洞悉。
因此,需要分离游离DNA和从生物样品中分离微泡的方法以及提取高质量核酸的方法,以用于医疗状况和疾病的准确诊断。
发明内容
本发明提供用于从样品中分离游离DNA(“cfDNA”,还称作循环DNA)和/或组合分离cfDNA和包括至少来自微泡的RNA的核酸的方法,所述方法通过将DNA、DNA和RNA和/或微泡捕获至表面,随后裂解微泡以释放其中含有的核酸、特别是RNA,并且从捕获表面洗脱DNA和/或DNA和包括至少RNA的核酸。本领域普通技术人员将理解微泡部分(microvesiclefraction)还包括DNA。因此,微泡部分的裂解释放RNA和DNA两者。此外,分离的DNA可来自各种来源中的任何一种,包括但不限于核小体和其他游离DNA来源。
用于从样品中分离和提取核酸、例如cfDNA和/或DNA和包括至少来自样品的微泡部分的RNA的核酸的以前的程序依赖于使用超速离心,例如以多于10,000×g旋转1-3hr,接着移除上清液,洗涤小丸,裂解小丸和在柱上纯化核酸例如DNA和/或DNA和RNA。这些以前德方法展现出若干缺点,诸如缓慢、乏味,经受批间可变性,和不适合于可扩展性。本文提供的用于分离和提取的方法和试剂盒克服了这些缺点,并且提供基于旋转的柱以用于快速、稳健和可容易扩展至大体积的分离和提取。
所述方法和试剂盒使用在本文中称为“EXO52”的以下通用程序来从样品中分离和提取核酸、例如DNA和/或DNA和包括至少RNA的核酸。首先,使样品中的核酸例如DNA和/或DNA和微泡部分结合至诸如膜过滤器的捕获表面,并且洗涤捕获表面。然后,使用试剂来执行核酸例如DNA和/或DNA和RNA的膜上裂解和释放。然后,使用PLG管执行氯仿提取,接着是乙醇调节。然后,使核酸例如DNA和/或DNA和RNA结合至硅胶柱,洗涤和洗脱。
EXO52方法和试剂盒中使用的膜具有大孔并带正电。在一些实施方案中,在EXO52方法和试剂盒中使用多于一个膜,例如,使用两个或更多个膜。在一些实施方案中,使用三个膜。在EXO52方法和试剂盒中使用的膜数与可一次分析的样品总体积相关。在一些实施方案中,EXO52方法和试剂盒中使用的每层膜处理约1ml样品。
在一些实施方案中,所述膜是带正电膜。在一些实施方案中,所述捕获表面是阴离子交换剂。在一些实施方案中,捕获表面是具有季胺的阴离子交换剂。在一些实施方案中,捕获表面是Q膜,其为带正电膜和具有季胺的阴离子交换剂。例如,Q膜用季铵官能化,R-CH2-N+(CH3)3。在一些实施方案中,膜具有至少3μm的孔径。
包括微泡部分的样品的纯化使用离子交换技术来执行。在一些实施方案中,离子交换技术是选自本文提供的工作实例中所示那些的技术。
在一些实施方案中,用于膜上裂解的试剂是苯酚基试剂。在一些实施方案中,裂解试剂是胍盐基试剂。在一些实施方案中,裂解试剂是高盐基缓冲液。在一些实施方案中,裂解试剂是QIAzol。在一些实施方案中,裂解试剂是苯酚基裂解试剂,例如QIAzol,并且它以约700ul的体积使用。
在一个方面中,用于从生物样品中提取核酸的方法包括:(a)提供生物样品;(b)在足够使微泡部分保留于捕获表面上或中的条件下使生物样品与捕获表面接触;(c)在微泡处于捕获表面上或中的同时裂解微泡部分;以及(d)从微泡部分中提取核酸。或者,用于从生物样品中提取核酸的方法进一步包括在步骤(b)之后从捕获表面洗脱微泡部分,收集洗脱的微泡部分,并且从洗脱的微泡部分中提取核酸。任选地,洗脱的微泡部分可通过旋转浓缩器来浓缩以获得浓缩微泡部分,并且随后从浓缩微泡部分提取核酸。
在另一个方面中,用于从生物样品中提取核酸的方法包括:(a)提供生物样品;(b)在足够使微泡部分保留于捕获表面上或中的条件下使生物样品与捕获表面接触;以及(c)在微泡处于捕获表面上或中的同时洗脱微泡部分。洗脱的微泡部分然后可经处理以用于进一步分析。任选地,洗脱的微泡部分可通过旋转浓缩器来浓缩以获得浓缩的微泡部分。在一些实施方案中,随后从浓缩微泡部分提取核酸。
在一些实施方案中,捕获表面是膜。在一个方面中,膜包含再生纤维素。例如,膜具有至少1μm的孔径,诸如在2-5μm之间的范围内。在一些实施方案中,膜具有在3-5μm之间范围内的孔径。在一些实施方案中,膜包含聚醚砜(PES)。
在一些实施方案中,膜带电。在一些实施方案中,膜带正电。在一些实施方案中,膜带负电。
在一些方面中,膜被官能化。例如,膜用季铵官能化R-CH2-N+(CH3)3
在一个实施方案中,捕获表面包含多于一个膜。在一些实施方案中,捕获表面包含至少两个膜,其中每个膜相邻地紧挨其他一个或更多个膜。在一些实施方案中,捕获表面包含至少三个膜,其中三个膜中每一个直接彼此相邻。在一些实施方案中,捕获表面包含至少四个膜,其中四个膜中每一个直接彼此相邻。
在一些实施方案中,捕获表面是微珠。例如,微珠是磁性的。或者,微珠是非磁性的。在又一个实施方案中,微珠用亲和配体官能化。
在一些实施方案中,捕获表面是一种或更多种聚合物的浆液。在一些实施方案中,一种或多种聚合物的浆液成形为微珠。
在一些实施方案中,生物样品是血浆。在一些实施方案中,生物样品是血清。在一些实施方案中,生物样品是尿液。在一些实施方案中,生物样品是脑脊液。在一些实施方案中,生物样品是细胞培养上清液。
在一些方面中,本文所述的方法进一步包括使生物样品与加样缓冲液接触。加样缓冲液的pH在4-8范围内。在一个方面中,加样缓冲液具有中性pH。
本文所述的方法提供从微泡中提取核酸。优选地,提取的核酸是DNA和/或DNA和RNA。提取的RNA可包含信使RNA、核糖体RNA、转移RNA、或小RNA诸如微RNA,或者它们的任何组合。
使用各种核酸测序技术来检测和分析核酸,诸如从来自生物样品的微泡部分中提取的游离DNA和/或RNA。由于其中可容易收集微泡的非侵入性质,出于诊断目的对核酸诸如游离DNA和/或提取自微泡的核酸进行的分析具有广泛的含意。使用微泡分析取代侵入性组织活检将积极影响患者福利,改进进行纵向疾病监测的能力,和改进获得表达谱的能力,甚至当组织细胞并非容易可及时(例如,在卵巢癌或脑癌患者中)也是如此。
在一些实施方案中,本发明涉及用于对核酸测序技术包括例如下一代测序(NGS)测定法提供过程中控制的组合物和方法,以检测低频序列变体。这些控制提供若干技术优点。
生物样品是体液。体液可为分离自受试者身体中任何部位、优选外围位置的液体,包括但不限于:例如,血液,血浆,血清,尿液,痰,脊髓液,脑脊液,胸膜液,乳头抽吸液,淋巴液,呼吸道、肠道和生殖泌尿道液,泪液,唾液,母乳,来自淋巴系统的液体,精液,脑脊液,器官内系统液,腹水,肿瘤囊液,羊水以及它们的组合。例如,体液是尿液、血液、血清或脑脊液。
在前述方法中的任何一种中,核酸是DNA和/或DNA和RNA。RNA的实例包括信使RNA、转移RNA、核糖体RNA、小RNA(非蛋白编码RNA,非信使RNA)、微RNA、piRNA、exRNA、snRNA和snoRNA。
在前述方法中的任何一种中,核酸分离自或另外来源于样品,包括分离自样品微泡部分的RNA。
在前述方法中的任何一种中,核酸是游离核酸,本文还称为循环核酸。在一些实施方案中,游离核酸是DNA或RNA。
现将详细描述本发明的各种方面和实施方案。将理解在不脱离本发明范围的情况下可作出对细节的修改。此外,除非在上下文中另外要求,否则单数术语应包括复数并且复数术语应包括单数。
所有鉴定的专利、专利申请和出版物以引用的方式明显并入本文,出于描述和公开例如可与本发明结合使用的此类出版物中所述方法学的目的。这些出版物仅仅提供在本申请的申请日之前的公开内容。在这点上没有什么应解释为承认本发明人由于先前发明或出于任何其他理由而未经授权先于此类公开。关于日期的所有声明或关于这些文献内容的表示都基于申请人可得到的信息,并且不构成关于这些文献的日期或内容更正的任何承认。
附图简述
图1是展现出使用两个单独的规程来分离微泡部分、释放微泡核酸以及提取RNA和DNA的RNA和DNA分离规程的一个实施方案的示意图。
图2是展现出使用单个规程来分离微泡部分、释放微泡核酸以及提取RNA和DNA的RNA和DNA分离规程的另一个实施方案的示意图。
图3是显示出单次提取中用于分离微泡RNA和DNA的相分离中氯仿浓度的效应的图表,如通过检测野生型BRAF RNA和DNA所展现的。
图4是显示出单次提取中用于分离微泡RNA和DNA的相分离中氯仿浓度的效应的图表,如通过检测GAPDH RNA和DNA所展现的。
图5是显示出在相分离中调整pH影响DNA提取和检测的图表。
图6是显示出脑脊液(CSF)样品体积的滴定对微泡RNA提取和检测的影响的图表。
图7是显示出比较来自超速离心和EXO60分离方法的微泡RNA靶检测的图表。
图8是显示出针对不同患者CSF样品比较来自超速离心和EXO60分离方法的微泡RNA靶检测的图表。患者样品由患者ID指定。利用变化的样品体积。(*)指示死后样品。
图9是显示出CSF样品体积(0.25ml,0.5ml,1.0ml和2.0ml)对不同微泡RNA分离和提取方法的影响的图表。UC(超速离心)、uCSC(尿液过滤方法)和EXO60。
图10是描绘来自相比于尿液循环干细胞(uCSC)方法而言使用EXO70规程从2个不同尿液样品进行的提取的RNA图谱的一系列生物分析仪图。
图11是显示出在相比于尿液CSC方法而言通过EXO70来分离和提取之后RNA检测之间相关性的图表。
图12是显示出在通过EXO70或uCSC方法来分离和提取之后不同RNA靶检测的两个图表。从分离的微泡部分(EXO70或uCSC)和分离后流出物(flow-through)或上清液部分(EXO70流或uCSC流)中提取和分析RNA。(A)mRNA靶;(B)miRNA靶。
图13-223是描绘EXO52 DNA和RNA分离和提取方法的灵敏度和特异性、连同与本文中称作可商购CNA试剂盒的可商购循环核酸分离试剂盒比较的一系列图表和图解。
图13是经设计以评估用和不用PLG管来提取DNA的研究的示意性表示。
图14、15、16和17是描绘使用DNA/RNA分离的初始方法(EXO52.1)和可商购试剂盒、用和不用PLG管来提取DNA的一系列图表。
图18和19是描绘使用本公开的方法对比可商购循环核酸提取试剂盒来提取DNA的一系列图表。
图20是描绘氯仿滴定对苯酚相的RNA和DNA分离的影响的图表。
图21是经设计以评估氯仿滴定对PLG管中苯酚相的RNA分离和DNA分离的影响的研究的示意性表示。
图22、23、24、25和26是描绘氯仿滴定对RNA分离(图22)、RNA和DNA分离(图23、24)和DNA分离(图25、26)的影响的一系列图表。
图27是描绘使用RNeasy规程(不用PLG管)和氯仿滴定来分离DNA的图表。
图28是经设计以评估不用PLG管和用氯仿滴定来分离DNA的研究的示意性表示。
图29、30和31是描绘使用RNeasy规程(不用PLG管)和氯仿滴定来分离DNA的一系列图表。
图32是描绘调整氯仿添加共分离DNA和RNA的图表。
图33是经设计以评估不用PLG管和用氯仿滴定来分离DNA的研究的示意性表示。
图34、35、36、37、38、39、40、41、42、43和44是描绘使用RNeasy规程(不用PLG管)和氯仿滴定来分离DNA的一系列图表。
图45是描绘相分离中pH变化对DNA分离的影响的图表。
图46是经设计以评估用pH滴定自水相分离DNA的研究的示意性表示。
图47是制备pH调节溶液的方法的示意性表示。
图48是描绘对分离的RNA和DNA的Nala扩增曲线的图表。
图49、50、51、52、53和54是描绘pH滴定对自水相分离DNA的影响的一系列图表。
图55是描绘氯仿添加是确定水相的DNA含量中的主导因素的图表。
图56是描绘RNA信号不通过增加DNA分离而受影响的图表。
图57是经设计以评估利用氯仿滴定和具有或不具有添加pH溶液自水相分离DNA的研究的示意性表示。
图58是制备pH调节溶液的方法的示意性表示。
图59、60、61、62、63、64、65、66、67和68是描绘具有和不具有添加pH溶液的氯仿滴定对自水相分离DNA的影响的一系列图表。
图69是描绘4℃或室温Qiazol旋转步骤对使用可商购试剂盒分离RNA的影响的图表。
图70是描绘4℃或室温Qiazol旋转步骤对本公开所述方法的影响的图表。
图71和72是经设计以评估使用具有4℃或室温Qiazol旋转步骤的可商购试剂盒来分离RNA的研究的示意性表示和概述。
图73、74和75是描绘4℃或室温Qiazol旋转步骤对可商购试剂盒的影响的一系列图表。
图76和77是经设计以评估使用具有4℃或室温Qiazol旋转步骤的EXO52方法来分离RNA的研究的示意性表示和概述。
图78和79是描绘4℃或室温Qiazol旋转步骤对本公开所述方法的影响的一系列图表。
图81是经设计以评估在1.5×至2.6×之间的变化的乙醇体积的影响的研究的示意性表示。
图81和82是描绘在1.5×至2.6×之间的变化的乙醇体积对DNA和RNA分离的影响的一系列图表。
图83是描绘在结合步骤之前室温下ProtK消化的结果的图表。
图84是经设计以评估在结合步骤之前室温下ProtK消化的研究的示意性表示。
图85和86是描绘在结合步骤之前室温下ProtK消化的结果的一系列图表。
图87是描绘加样容量在8mL血浆内的图表。
图88是描绘流出物不具有多达8mL血浆的突破点的图表。
图89是描绘对外泌体(exosome)和核小体而言不同结合容量的图表。
图90是经设计以评估加样容量的研究的示意性表示。
图91是描绘对外泌体和核小体而言不同结合容量的图表。
图92和93是描绘加样容量在8mL血浆内的一系列图表。
图94是描绘流出物不具有多达8mL血浆的突破点的图表。
图95、96和97是描绘改变血浆加样体积对DNA和RNA分离的影响的一系列图表。
图98是描绘流出物不具有多达8mL血浆的突破点的图表。
图99和100是描绘改变血浆加样体积对DNA和RNA分离的影响的一系列图表。
图101、102、103、104、105和106是描绘对外泌体和核小体而言不同结合容量的一系列图表。
图107和108是描绘使用包括本公开所述方法和可商购试剂盒的不同分离技术来分离游离DNA(cfDNA)的一系列图表。
图109是经设计以比较使用本公开的方法与可商购试剂盒分离的cfDNA的研究的示意性表示。
图110和111是经设计以比较使用包括本公开的方法和可商购试剂盒的不同分离技术来分离cfDNA的研究的示意性表示和概述。
图112、113、114、115、116、117、118、119、120、121、122和123是描绘使用包括本公开所述方法和可商购试剂盒的不同分离技术来分离cfDNA的一系列图表。
图124、125、126、127和128是描绘使用包括本公开的方法和可商购试剂盒的不同分离技术的cfDNA拷贝数的比较的一系列图和表。
图129、130和131是经设计以评估使用AllPrep微量试剂盒来对分离的DNA和RNA进行下游分析的研究的示意性表示和概述。
图132、133、134、135和136是描绘使用AllPrep微量试剂盒来对分离的DNA和RNA进行下游分析的一系列图表。
图137和138是描绘使用包括本公开所述方法和可商购试剂盒的不同分离技术来分离游离DNA(cfDNA)的一系列图表。
图139是经设计以比较使用本公开的方法和可商购试剂盒分离的cfDNA的研究的示意性表示。
图140、141、142、143、144、145和146是描绘使用包括本公开所述方法和可商购试剂盒的不同分离技术来分离游离DNA(cfDNA)的一系列图表。
图147、148和149是经设计以比较使用本公开的方法和可商购试剂盒分离的cfDNA的研究的示意性表示。
图150、151、152、153、154、155、156、157、158、159、160、161、162、163、164、165、166、167、168、169和170是描绘使用包括本公开所述方法和可商购试剂盒的不同分离技术来分离游离DNA(cfDNA)的一系列图表。
图171是描绘本公开所述方法始终胜过可商购cNA试剂盒的系列图表。
图172、173和174是经设计以比较使用本公开的方法和可商购试剂盒分离的cfDNA的研究的示意性表示。
图175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195和196是描绘使用包括本公开所述方法和可商购试剂盒的不同分离技术来分离游离DNA(cfDNA)的一系列图表。
图197是描绘多个单独的Qiazol洗脱步骤对DNA和RNA分离的影响的图表。
图198是经设计以评估使用多个Qiazol洗脱步骤来分离DNA和RNA的研究的示意性表示。
图199、200、201和202是描绘多个单独的Qiazol洗脱步骤对DNA和RNA分离的影响的一系列图表。
图203是经设计以评估使用多个Qiazol洗脱步骤来分离DNA和RNA的研究的示意性表示。
图204、205和206是描绘多个单独的Qiazol洗脱步骤对DNA和RNA分离的影响的一系列图表。
图207是描绘具有乙醇沉淀的双RNeasy加样步骤对DNA和RNA分离的影响的图表。
图208和209是经设计以评估使用具有乙醇沉淀的双RNeasy加样步骤来分离DNA和RNA的研究的示意性表示和概述。
图210和211是描绘具有乙醇沉淀的双RNeasy加样步骤对DNA和RNA分离的影响的一系列图表。
图212是描绘不同下游柱对DNA和RNA分离的影响的图表。
图213是经设计以评估使用不同下游柱来分离DNA和RNA的研究的示意性表示。
图214、215、216和217是描绘不同下游柱对DNA和RNA分离的影响的一系列图表。
图219是经设计以评估使用多个RNeasy洗脱步骤来分离DNA和RNA的研究的示意性表示。
图220、221、222和223是描绘多个RNeasy洗脱步骤对DNA和RNA分离的影响的一系列图表。
图224是描绘血浆中核酸尺寸分布的一系列图表。从1mL血浆中完整分离核酸经受RNase A消化(“cfDNA”)、DNase I消化(“exoRNA”)或空白(mock)处理(“EXO52”)。在反应提纯(cleanup)之后,分离物中存在核酸的尺寸分布通过生物分析仪Pico 6000分析来测定。
图225是描绘从2ml血浆中连续分离核酸的图表。来自正常健康供体的血浆经过EX052柱,并且留在流出物中的物质使用可商购的exoRNeasy试剂盒(RNA)或可商购的循环核酸试剂盒(DNA)来分离。针对BRAF、KRAS和18S基因,作为ΔCT的函数,将总产量相比于使用(RT)-qPCR的EXO52(RNA+DNA)。误差棒代表三个重复分离。
图226是描绘exoRNA和ciDNA均大量贡献从血浆中收获的总核酸的一系列图表。来自健康供体的1mL血浆使用可商购的exoRNeasy试剂盒(RNA)或具有逆转录步骤(RNA+DNA)或不具有(DNA)的EXO52分离来分离。通过RT-qPCR的绝对定量呈现为箱形图并且指示每毫升血浆的中值拷贝数,其中个别供体绘制为形状。
图227和228是描绘本文提供的EXO52方法捕获总循环核酸的能力的一系列图表。将EXO52方法与可商购的循环核酸DNA分离试剂盒相比。
发明详述
本发明提供分离游离DNA(cfDNA)和/或cfDNA和包括至少来自微泡的RNA的核酸的方法,所述方法通过将DNA和微泡捕获至表面,随后裂解微泡以释放其中含有的核酸、特别是RNA,并且从捕获表面洗脱DNA和/或DNA和包括至少RNA的核酸来进行。微泡由真核细胞脱落,或质膜出芽至细胞外部。这些膜囊泡尺寸不均,具有从约10nm变化至约5000nm的直径。由细胞脱落、直径<0.8μm的所有膜囊泡在本文中统称为“微泡”。这些微泡包括微泡、微泡样颗粒、前列腺小体(prostasome)、树突小体(dexosome)、肿瘤小体(texosome)、核外粒体(ectosome)、癌小体(oncosome)、凋亡小体、逆转录病毒样颗粒和人内源性逆转录病毒(HERV)颗粒。由细胞内多泡体的胞吐释放的小微泡(直径大约10nm至1000nm,和更通常30nm至200nm)在本领域被称为“微泡”。
分离DNA和/或DNA和包括至少来自微泡的RNA的核酸的当前方法包括超速离心,超滤、例如使用100KD过滤器,聚合物沉淀技术,和/或基于尺寸的过滤。然而,存在对替代方法的需要,所述方法对分离微泡和任选地提取其中含有的核酸、优选微泡RNA高效和有效,以用于各种应用中,包括诊断目的。
称为EXO52 DNA和/或DNA和RNA分离方法和/或试剂盒的本文所提供的分离和提取方法和/或试剂盒使用基于旋转柱的纯化过程,所述过程使用结合游离DNA和/或微泡的亲和膜。本公开的方法和试剂盒允许平行运行大量临床样品的能力,在单个柱上使用0.2mL至多达4mL的体积。使用EXO52程序分离的游离DNA是高纯的。分离的RNA高纯、受囊泡膜保护直至裂解,并且完整囊泡可从EXO52膜洗脱。EXO52程序能够从血浆输入中大致上耗尽所有游离DNA,并且当相比于可商购的循环DNA分离试剂盒时DNA产量相等或更好。EXO52程序能够从血浆输入中大致上耗尽所有mRNA,并且当相比于超速离心或直接裂解时mRNA/miRNA产量相等或更好。与可商购试剂盒和/或先前的分离方法对比,EXO52方法和/或试剂盒富集miRNA的微泡结合部分,并且可容易扩展至大量的输入材料。此放大能力允许对感性趣、低丰度转录物的研究。相比于市场上的其他可商购产品,本公开的方法和试剂盒提供由本文所提供实例所展现的独特能力。
使用以下通用程序,EXO52方法和试剂盒从生物样品中分离和提取核酸,例如DNA和/或DNA和包括至少RNA的核酸。首先,使包括cfDNA和微泡部分的样品结合至膜过滤器,并且洗涤过滤器。然后,使用苯酚基试剂来执行核酸、例如DNA和/或DNA和RNA的膜上裂解和释放。然后,使用PLG管执行氯仿提取,接着是乙醇调节。然后,使核酸、例如DNA和/或DNA和RNA结合至硅胶柱,洗涤并随后洗脱。然后,提取的核酸、例如DNA和/或DNA和RNA可受进一步分析,例如,使用各种下游分析法中的任何一种。
在一些实施方案中,所述方法包括以下步骤。旋转柱中含有过滤器。在添加裂解试剂之前,使样品结合至旋转柱中的膜过滤器,并且旋转柱随后以大约500×g旋转1min。然后,丢弃流出物,将缓冲液添加至旋转柱,并且旋转柱以大约5000×g再次旋转5min来从柱中移除残余体积。在此第二旋转之后丢弃流出物。然后,旋转柱与苯酚基裂解试剂接触,并且以大约5000×g旋转5min来收集含有裂解的微泡和捕获的cfDNA的匀浆。在一些实施方案中,裂解缓冲液是苯酚基裂解缓冲液。例如,裂解缓冲液是
Figure BDA0003155421910000121
裂解试剂(Qiagen)。然后,该匀浆经受核酸分离和提取。在一些实施方案中,在核酸分离和提取之前,将用于RNA分离效率的对照、诸如Q-β或本文所述的任何其他对照掺入匀浆。
在一些实施方案中,根据以下步骤来分离核酸。在添加裂解试剂之后,随后将氯仿添加至匀浆,并且剧烈混合溶液持续短暂时间段。在一些实施方案中,将350μl氯仿添加至匀浆。然后,溶液在4℃下以12,000×g离心5min。然后,将上部水相转移至新的收集管,并且将2体积的100%乙醇添加至上部水相,并且混合溶液。然后,可使用各种领域公认用于分离和/或提取核酸的方法中的任何一种来处理溶液。
然后,分离的核酸例如DNA和/或DNA和RNA可使用各种下游分析中的任何一种来进行进一步分析。在一些实施方案中,使用DNA和RNA的组合检测来提高可行动突变的灵敏度。在循环核酸中存在多个可检测突变的潜在来源。例如,活肿瘤细胞是分离自样品微泡部分的RNA和DNA的潜在来源,并且死肿瘤细胞是诸如凋亡囊泡DNA和来自坏死肿瘤细胞的游离DNA的游离DNA来源的潜在来源。因为突变核酸在循环中相对稀少,所以检测灵敏度的极大化变得非常重要。DNA和RNA的组合分离递送综合的临床信息来评价疾病进展和患者对疗法的响应。然而,与本文提供的方法和试剂盒对比,用于检测循环核酸的可商购试剂盒仅能够从血浆、即从死细胞中分离cfDNA。如图227-228中所示,EXO52捕获所有cfDNA,并且组合exoRNA和cfDNA比仅cfDNA,EXO52显著检测到更多拷贝。本领域普通技术人员将理解突变或其他生物标志的更多拷贝导致在鉴别突变和其他生物标志上增强的灵敏度和准确度。
如本文所使用,术语“核酸”指的是DNA和RNA。核酸可为单链或双链的。在一些情况下,核酸是DNA。在一些情况下,核酸是RNA。RNA包括但不限于:信使RNA,转移RNA,核糖体RNA,非编码RNA,微RNA和HERV元件。
如本文所使用,术语“生物样品”指的是含有诸如DNA、RNA和蛋白质的生物材料的样品。
在一些实施方案中,生物样品可适合地包含来自受试者的体液。体液可为分离自受试者身体中任何部位、诸如像外围位置的液体,包括但不限于:例如,血液,血浆,血清,尿液,痰,脊髓液,脑脊液,胸膜液,乳头抽吸液,淋巴液,呼吸道、肠道和生殖泌尿道液,泪液,唾液,母乳,来自淋巴系统的液体,精液,器官内系统液,腹水,肿瘤囊液,羊水和细胞培养上清液,以及它们的组合。生物样品还可包括粪便或盲肠样品,或从其中分离的上清液。
在一些实施方案中,生物样品可适合地包含细胞培养上清液。
在一些实施方案中,生物样品可适合地包含来自受试者的组织样品。组织样品可分离自受试者身体中的任何部位。
体液的适合样品体积在例如约0.1ml至约30ml液体的范围内。液体体积可取决于几个因素,例如,所使用液体的类型。例如,血清样品的体积可为约0.1ml至约4ml,优选约0.2ml至4ml。血浆样品的体积可为约0.1ml至约4ml,优选0.5ml至4ml。尿液样品的体积可为约10ml至约30ml,优选约20ml。
尽管本文提供的实例使用血浆样品,但技术人员将理解这些方法可应用于各种生物样品。
本公开的方法和试剂盒适合用于源自人受试者的样品。本公开的方法和试剂盒适合用于源自人受试者的样品。另外,本公开的方法和试剂盒还适合用于源自人受试者的样品。本公开的方法和试剂盒适合用于源自诸如啮齿动物、非人灵长类动物、宠物(例如,猫、狗、马)和/或农场动物(例如,鸡)的非人受试者的样品。
术语“受试者”意图包括显示或预期具有含核酸颗粒的所有动物。在具体实施方案中,受试者为哺乳动物、人或非人灵长类动物、狗、猫、马、奶牛、其他农场动物、或啮齿动物(例如小鼠、大鼠、豚鼠等)。人受试者可为不具有可观测异常、例如疾病的正常人类。人受试者可为具有可观测异常、例如疾病的人类。可观测异常可由人类自己或由医学专业人员观测。术语“受试者”、“患者”和“个体”在本文中可交换使用。
尽管本文提供的工作实例将膜用作捕获表面,但应理解捕获表面的规格、例如微珠或过滤器(本文还称为膜)不影响本文所提供方法从生物样品中高效捕获微泡的能力。
尽管本文提供的实例在提取步骤期间使用氯仿,但本领域普通技术人员将理解在核酸提取期间执行与氯仿相同任务的任何化学品均可在本文所提供方法中使用。通过非限制性实例,用于提取步骤中的合适的化学品包括二氯甲烷、甲苯、己烷、MTBE和乙酸乙酯(EtOAc)。
各式各样的表面能够根据本文所提供的方法来捕获微泡,但并非所有表面将捕获微泡(一些表面不捕获任何东西)。
本公开还描述了使用一次性塑料部件和离心设备来从生物或临床样品中分离和浓缩微泡的装置。例如,所述装置包括:柱,其包括捕获表面(即,膜过滤器);保持器,其将捕获表面固定在外部釉料和内部管之间;和收集管。外部釉料包含大的网结构以使液体穿过,并且优选处于柱的一端。内部管使捕获表面原位保持,并且优选为稍锥体状。收集管可为可商购的,即,50ml Falcon管。柱优选适合于旋转,即,尺寸与标准离心机和微离心机相容。
在其中捕获表面是膜的实施方案中,用于从生物样品中分离微泡部分的装置包含至少一个膜。在一些实施方案中,所述装置包括一个、两个、三个、四个、五个或六个膜。在一些实施方案中,所述装置包括三个膜。在其中装置包括多于一个膜的实施方案中,膜在柱的一端处全部直接彼此相邻。在其中装置包括多于一个膜的实施方案中,膜彼此全部相同,即,具有相同电荷和/或具有相同官能团。
应注意,通过过滤穿过小于微泡的孔径来捕获不是由本文所提供方法捕获的主要机制。然而,过滤器孔径仍然非常重要,例如,因为mRNA在20nm过滤器上卡住并且不能回收,而微RNA可容易地洗脱掉,并且例如因为过滤器孔径是可利用表面捕获区域中的重要参数。
本文所提供方法使用各种捕获表面中的任何一种。在一些实施方案中,捕获表面是膜,本文还称为过滤器或膜过滤器。在一些实施方案中,捕获表面是可商购的膜。在一些实施方案中,捕获表面是带电的可商购膜。在一些实施方案中,捕获表面是中性的。在一些实施方案中,捕获表面选自:PALL公司的
Figure BDA0003155421910000151
离子交换膜;Sartorius AG的
Figure BDA0003155421910000152
Q膜;Sartobind Q或
Figure BDA0003155421910000153
Q Maxi H;Sartorius AG的
Figure BDA0003155421910000154
D,Sartorius AG的Sartobind(S),Sartorius AG的
Figure BDA0003155421910000155
Q,Sartorius AG的
Figure BDA0003155421910000156
IDA,Sartorius AG的
Figure BDA0003155421910000157
醛,Sigma的
Figure BDA0003155421910000158
DE81,EMDMillipore的快捕(Fast Trap)病毒纯化柱;Thermo Scientific*Pierce强阳离子和阴离子交换旋转柱。
在其中捕获表面带电的实施方案中,捕获表面可为选自由以下组成的组的带电过滤器:0.65um带正电Q PES真空过滤(Millipore),3-5um带正电QRC旋转柱过滤(Sartorius),0.8um带正电Q PES国产旋转柱过滤(Pall),0.8um带正电Q PES注射器过滤(Pall),0.8um带负电S PES国产旋转柱过滤(Pall),0.8um带负电S PES注射器过滤(Pall),和50nm带负电尼龙注射器过滤(Sterlitech)。优选地,带电过滤器不收容在注射器过滤装置中,因为在这些实施方案中Qiazol/RNA更难从过滤器出来。优选地,带电过滤器收容在柱的一端。
在其中捕获表面是膜的实施方案中,膜可由各种适合的材料制成。在一些实施方案中,膜是聚醚砜(PES)(例如,来自Millipore或PALL公司)。在一些实施方案中,膜是再生纤维素(RC)(例如,来自Sartorius或Pierce)。
在一些实施方案中,捕获表面是带正电的膜。在一些实施方案中,捕获表面是Q膜,其为带正电膜和具有季胺的阴离子交换剂。例如,Q膜用季铵官能化,R-CH2-N+(CH3)3。在一些实施方案中,捕获表面是带负电的膜。在一些实施方案中,捕获表面是S膜,其为带负电膜和具有磺酸基的阳离子交换剂。例如,S膜用磺酸官能化,R-CH2-SO3 -。在一些实施方案中,捕获表面是D膜,其为具有二乙胺基的弱碱性阴离子交换剂,R-CH2-NH+(C2H5)2。在一些实施方案中,捕获表面是金属鳌合膜。例如,膜是IDA膜,用亚氨基二乙酸-N(CH2COOH-)2官能化。在一些实施方案中,捕获表面是多微孔膜,用醛基-CHO官能化。在其他实施方案中,膜是弱碱性阴离子交换剂,具有二乙氨基乙基(DEAE)纤维素。并非所有带电膜都适合用于本文所提供的方法中,例如,使用Sartorius Vivapure S膜旋转柱分离的RNA显示RT-qPCR抑制,并且因此不适合于PCR相关的下游测定法。
在其中捕获表面带电的实施方案中,微泡可用带正电过滤器分离。
在其中捕获表面带电的实施方案中,在微泡捕获期间的pH为pH≤7。在一些实施方案中,pH大于4并且小于或等于8。
在其中捕获表面是带正电Q过滤器的实施方案中,缓冲体系包括洗涤缓冲液,其包含250mM Bis Tris丙烷,pH 6.5-7.0。在其中捕获表面是带正电Q过滤器的实施方案中,裂解缓冲液是Qiazol。在其中捕获表面是带正电Q过滤器的实施方案中,裂解缓冲液以一体积存在。在其中捕获表面是带正电Q过滤器的实施方案中,裂解缓冲液以多于一体积存在。
取决于膜材料,膜孔径范围为3μm至20nm。
捕获表面的表面电荷可为正、负或中性。在一些实施方案中,捕获表面是一个或更多个带正电微珠。
本文所提供的方法包括裂解试剂。在一些实施方案中,用于膜上裂解的药剂是苯酚基试剂。在一些实施方案中,裂解试剂是胍盐(guanidinium)基试剂。在一些实施方案中,裂解试剂是高盐基缓冲液。在一些实施方案中,裂解试剂是QIAzol。
本文所提供的方法包括各种缓冲液,包括加样和洗涤缓冲液。加样和洗涤缓冲液可具有高或低离子强度。盐浓度、例如NaCl浓度可为0至2.4M。缓冲液可包括各种组分。在一些实施方案中,缓冲液包括以下组分中一者或多者:Tris,Bis-Tris,Bis-Tris-丙烷,咪唑,柠檬酸盐,甲基丙二酸,乙酸,乙醇胺,二乙醇胺,三乙醇胺(TEA)和磷酸钠。在本文所提供的方法中,加样和洗涤缓冲液的pH是重要的。当在加样之前血浆样品设定至pH≤5.5时,过滤器趋向于阻塞(血浆将完全不旋转经过柱);并且在更高pH下微泡RNA回收更低,由于微泡的不稳定性。在中性pH下,来自微泡的RNA回收是最佳的。在一些实施方案中,使用的缓冲液为1×浓度、2×浓度、3×浓度或4×浓度。例如,加样或结合缓冲液为2×浓度,而洗涤缓冲液为1×浓度。
在一些实施方案中,所述方法包括一个或更多个洗涤步骤,例如,在使生物样品与捕获表面接触之后。在一些实施方案中,将去污剂添加至洗涤缓冲液来促进移除非特异性结合(即,污染物、细胞碎片和循环蛋白复合体或核酸),以获得更纯的微泡部分。适合使用的去污剂包括但不限于:十二烷基硫酸钠(SDS),Tween-20,Tween-80,Triton X-100,Nonidet P-40(NP-40),,Brij-35,Brij-58,辛基葡糖苷,辛基葡糖硫苷,CHAPS或CHAPSO。
在一些实施方案中,捕获表面、例如膜收容在用于以下的装置内:用于离心,例如旋转柱,或用于真空系统,例如真空过滤器保持器,或用于具压过滤,例如注射器过滤器。在优选实施方案中,捕获表面收容在旋转柱或真空系统中。
在提取核酸之前从生物样品中分离微泡因以下理由而有利:1)从微泡中提取核酸提供选择性分析通过将疾病或肿瘤特异性微泡与液体样品内的其他微泡分离开所获得的疾病或肿瘤特异性核酸的机会;2)相比于通过不首先分离微泡而直接从液体样品中提取核酸所获得的产量/完整性,含核酸微泡产生核酸物种的显著更高的产量与更高的完整性;3)可扩展性,例如,检测以低水平表达的核酸,灵敏度可通过使用本文所述的方法从更大体积的样品浓缩微泡来提高;4)提取的核酸的更纯或更高质量/完整性,因为天然发现于生物样品内的蛋白质、脂质、细胞碎片、细胞和其他潜在污染物和PCR抑制剂在核酸提取步骤之前被排除;以及5)可利用核酸提取方法的更多选择,因为分离的微泡部分比起始样品体积可具有更小的体积,使得有可能使用小体积柱过滤器来从这些部分或小丸中提取核酸。
本领域中已描述了从生物样品中分离微泡的数种方法。例如,在Raposo等人的论文(Raposo等人,1996)、Skog等人的论文(Skog等人,2008)和Nilsson等人的论文(Nilsson等人,2009)中描述了差速离心的方法。在美国专利号6,899,863和6,812,023中描述了离子交换和/或凝胶渗透层析的方法。在美国专利号7,198,923中描述了蔗糖密度梯度或细胞器电泳的方法。在Taylor和Gercel Taylor的论文(Taylor和Gercel-Taylor,2008)中描述了磁激活细胞分选(MACS)的方法。在Cheruvanky等人的论文(Cheruvanky等人,2007)中描述了纳米膜超滤浓缩的方法。在Miranda等人的出版物(Miranda等人,2010)中描述了Percoll梯度分离的方法。此外,微泡可通过微流体装置从受试者的体液中鉴别和分离(Chen等人,2010)。在核酸生物标志的研究和开发以及商业应用中,期望以一致、可靠和实用的方式从生物样品中提取高质量核酸。
因此,本发明的目的是提供用于从诸如体液的生物样品中快速和容易地分离含核酸颗粒并且从分离的颗粒中提取高质量核酸的方法。本发明所述方法可适合于改装和合并入紧凑装置或仪器以用于实验室或临床环境、或在实战中。
在一些实施方案中,在从生物样品中分离和提取核酸、例如DNA和/或DNA和RNA之前,样品未经预处理。
在一些实施方案中,在执行微泡的分离、纯化或富集之前,样品经受预处理步骤来移除生物样品中存在的不需要的大颗粒、细胞和/或细胞碎片和其他污染物。预处理步骤可经过一个或更多个离心步骤(例如,差速离心)或一个或更多个过滤步骤(例如,超滤)、或它们的组合来实现。在执行多于一个离心预处理步骤的情况下,生物样品可首先以较低速度并随后以较高速度离心。需要时,可进行进一步适合的离心预处理步骤。替代地或除一个或更多个离心预处理步骤以外,生物样品可经过滤。例如,生物样品可首先以20,000g离心1小时来移除不需要的大颗粒;然后,样品可过滤,例如,经过0.8μm过滤器。
在一些实施方案中,样品经预过滤来排除大于0.8μm的颗粒。在一些实施方案中,样品包括添加剂,诸如EDTA、柠檬酸钠、和/或柠檬酸盐-磷酸盐-葡聚糖。优选地,样品不含有肝素,因为肝素可负面影响RT-qPCR和其他核酸分析。在一些实施方案中,在纯化以及/或者核酸分离和/或提取之前,样品与缓冲液混合。在一些实施方案中,缓冲液是XBP缓冲液。
在一些实施方案中,在使生物样品与捕获表面接触之前或之后,执行一个或更多个离心步骤来分离微泡并且浓缩分离自生物部分的微泡。例如,样品在4℃下以20,000g离心1小时。为了移除不需要的大颗粒、细胞和/或细胞碎片,可以约100-500g、优选约250-300g的低速离心样品。替代地或另外,可以更高速度离心样品。适合的离心速度高达约200,000g;例如约2,000g至低于约200,000g。优选高于约15,000g和低于约200,000g或者高于约15,000g和低于约100,000g或者高于约15,000g和低于约50,000g的速度。更优选约18,000g至约40,000g或约30,000g、和约18,000g至约25,000g的速度。特别优选约20,000g的离心速度。一般而言,离心的适合时间为约5分钟至约2小时,例如,约10分钟至约1.5小时,或更优选约15分钟至约1小时。约0.5小时的时间是优选的。有时优选生物样品以约20,000g经受离心约0.5小时。然而,上述速度和时间可适合地以任何组合来使用(例如,约18,000g至约25,000g,或约30,000g至约40,000g,持续约10分钟至约1.5小时,或持续约15分钟至约1小时,或持续约0.5小时,等等)。一个或更多个离心步骤可在低于环境温度下进行,例如在约0-10℃下,优选约1-5℃,例如约3℃或约4℃。
在一些实施方案中,在使生物样品与捕获表面接触之前或之后,执行一个或更多个过滤步骤。可采用具有约0.1至约1.0μm范围内的尺寸的过滤器,优选约0.8μm或0.22μm。还可使用具有减小孔隙度的过滤器、用连续过滤来执行过滤。
在一些实施方案中,在使生物样品与捕获表面接触之前或之后,执行一个或更多个浓缩步骤,以便减少层析阶段期间待处理样品的体积。可通过以高速,例如10,000g与100,000g之间离心样品来浓缩,以使微泡沉积。这可由一系列差速离心组成。所得小丸中的微泡可用较小体积和在适合缓冲液中重构以用于过程的后续步骤。浓缩步骤还可通过超滤来执行。实际上,这种超滤浓缩生物样品并且执行微泡部分的另外纯化。在另一个实施方案中,过滤是超滤,优选切向超滤。切向超滤由使溶液在两个隔室(滤出液和滞留物)之间浓缩和分级组成,两隔室通过具有确定截止阈的膜分开。该分离通过在滞留物隔室中施加流并且在此隔室与滤出液隔室之间施加跨膜压力来进行。可使用不同系统来执行超滤,诸如螺旋膜(Millipore,Amicon)、平板膜或空心纤维(Amicon,Millipore,Sartorius,Pall,GF,Sepracor)。在本发明的范围内,使用具有低于1000kDa、优选100kDa与1000kDa之间、或甚至更优选100kDa与600kDa之间的截止阈的膜是有利的。
在一些实施方案中,在使生物样品与捕获表面接触之前或之后,执行一个或更多个尺寸排阻层析步骤或凝胶渗透层析步骤。为了执行凝胶渗透层析步骤,优选使用选自以下的支撑物:二氧化硅,丙烯酰胺,琼脂糖,葡聚糖,乙二醇-甲基丙烯酸酯共聚物或者它们的混合物,例如琼脂糖-葡聚糖混合物。例如,此类支撑物包括但不限于:
Figure BDA0003155421910000191
200HR (Pharmacia),TSK G6000(TosoHaas)或
Figure BDA0003155421910000192
S(Pharmacia)。
在一些实施方案中,在使生物样品与捕获表面接触之前或之后,执行一个或更多个亲和层析步骤。一些微泡还可由某些表面分子来表征。因为微泡形成自细胞质膜的出芽,所以这些微泡通常共享其所来源细胞上发现的许多相同表面分子。如本文所使用,“表面分子”统指表面上或者微泡膜中或上发现的抗原、蛋白质、脂质、碳水化合物和标志。这些表面分子可包括例如,受体、肿瘤相关抗原、膜蛋白修饰(例如,糖基化结构)。例如,从肿瘤细胞中出芽的微泡经常在其细胞表面上展示肿瘤相关抗原。因而,亲和层析或亲和排阻层析还可与本文所提供方法组合使用以从特定供体细胞类型中分离、鉴定和或富集微泡的特定群体(Al-Nedawi等人,2008;Taylor和Gercel-Taylor,2008)。例如,肿瘤(恶性或非恶性)微泡携带肿瘤相关表面抗原,并且可经由这些特异性肿瘤相关表面抗原来检测、分离和/或富集。在一个实例中,表面抗原是上皮细胞粘附分子(EpCAM),其对来自具有长、结肠直肠、胸、前列腺、头和颈、和肝起源而非血液细胞起源的癌具有特异性(Balzar等人,1999;Went等人,2004)。另外,肿瘤特异性微泡还可由缺乏某些表面标志诸如CD80和CD86来表征。在这些情况下,具有这些标志的微泡可例如通过亲和排阻层析来排除以用于肿瘤特异性标志的进一步分析。亲和层析可例如通过使用不同的支撑物、树脂、微珠、抗体、适休、适休类似物、分子印记的聚合物、或本领域已知特异性靶向微泡上所需表面分子的其他分子来完成。
任选地,在微泡分离或核酸提取之前,对照颗粒可被添加至样品以充当评估微泡纯化和/或核酸提取的效率或质量的内部对照。本文所述的方法提供高效分离和对照颗粒连同微泡部分。这些对照颗粒包括Q-β噬菌体、病毒颗粒、或含有可天然存在或由重组DNA技术工程化的对照核酸(例如,至少一个对照靶基因)的任何其他颗粒。在一些实施方案中,对照颗粒的量在添加至样品之前是已知的。对照靶基因可使用实时PCR分析来定量。可使用对照靶基因的定量来确定微泡纯化或核酸提取过程的效率或质量。
优选地,对照颗粒是Q-β噬菌体,本文中称为“Q-β颗粒”。在本文所述方法中使用的Q-β颗粒可为天然存在的病毒颗粒或可为重组或工程病毒,其中病毒颗粒的至少一个组分(例如,基因组或外壳蛋白的部分)通过本领域已知的重组DNA或分子生物学技术来合成。Q-β是光滑病毒科家族的成员,特征为由编码以下四种病毒蛋白的3个基因组成的线性单链RNA基因组:外壳蛋白,成熟蛋白,裂解蛋白和RNA复制酶。由于其与平均微泡尺寸类似,可使用如本文所述相同的用来分离微泡的纯化方法从生物样品中容易地纯化Q-β。另外,Q-β病毒单链基因结构的低复杂度有利于其用作基于扩增的核酸分析中的对照。Q-β颗粒含有待检测或测量的对照靶基因或对照靶序列以对样品中Q-β颗粒的量进行定量。例如,对照靶基因是Q-β外壳蛋白基因。在将Q-β颗粒添加至生物样品之后,使用本文所述的提取方法,来自Q-β颗粒的核酸与来自生物样品的核酸一起被提取。Q-β对照靶基因的检测可由RT-PCR分析判定,例如,同时利用一个或更多个感兴趣的生物标志。可使用对照靶基因以10倍稀释的至少2、3或4个已知浓度的标准曲线来确定拷贝数。可比较检测的拷贝数和添加的Q-β颗粒的量来确定分离和/或提取过程的质量。
在优选实施方案中,在核提取之前将Q-β颗粒添加至尿液样品。例如,在超滤之前和/或在预过滤步骤之后,将Q-β颗粒添加至尿液样品。
在一些实施方案中,将50、100、150、200、250、300、350、400、450、500、1,000或5,000个拷贝的Q-β颗粒添加至体液样品。在优选实施方案中,将100个拷贝的Q-β颗粒添加至体液样品。可基于Q-β噬菌体感染靶细胞的能力来计算Q-β颗粒的拷贝数。因此,Q-β颗粒的拷贝数与Q-β噬菌体的菌落形成单位相关。
核酸提取
本发明涉及使用捕获表面以实现微泡的改进的分离、纯化或富集。本文所公开的方法提供高度富集的微泡部分以用于从所述微泡中提取高质量核酸。通过本文所述方法获得的核酸提取物可用于其中需要或优选高质量核酸提取物的各种应用,诸如用于疾病或医疗状况的诊断、预后或监测中。
最近的研究揭示了微泡内的核酸具有作为生物标志的作用。例如,WO 2009/100029尤其描述了使用提取自GBM患者血清中微泡的核酸以实现医学诊断、预后和疗法评估。WO 2009/100029还描述了使用提取自人尿液中微泡的核酸以实现相同目的。使用提取自微泡的核酸被认为潜在地规避对活检的需要,突出了微泡生物学的巨大诊断潜能(Skog等人,2008)。
分离的微泡的质量或纯度可直接影响提取的微泡核酸的质量,然后直接影响用于疾病诊断、预后和/或监测的生物标志分析的效率和灵敏度。考虑到临床领域中准确和灵敏诊断试验的重要性,需要从生物样品中分离高度富集的微泡部分的方法。为了解决此需要,本发明提供从生物样品中分离微泡的方法以用于从生物样品中提取高质量核酸。如本文所显示的,高度富集的微泡部分通过本文所述的方法从生物样品中分离,并且其中高质量核酸随后从高度富集的微泡部分中提取。这些高质量提取核酸可用于测量或评价生物标志的存在或缺少,以辅助疾病或其他医疗状况的诊断、预后和/或监测。
如本文所使用,关于核酸提取的术语“高质量”意指其中能够优选以大约1∶1至大约1∶2、并且更优选大约1∶2的比率检测到18S和28S rRNA的提取。理想地,通过本文所述方法获得的高质量核酸提取物还将具有对于低蛋白生物样品(例如,尿液)而言大于或等于5、或者对于高蛋白生物样品(例如,血清)而言大于或等于3的RNA完整数,和来自20ml低蛋白生物样品或1ml高蛋白生物样品的大于或等于50pg/ml的核酸产量。
期望高质量RNA提取,因为RNA降解可不利地影响提取的RNA的下游评价,诸如在基因表达和mRNA分析中、以及诸如小RNA和微RNA的非编码RNA的分析中。本文所述的新方法允许从分离自生物样品的微泡中提取高质量核酸以使得可执行微泡内核酸的准确分析。
在从生物样品中分离微泡之后,可从分离或富集的微泡部分中提取核酸。为了实现此,在一些实施方案中,微泡可首先被裂解。微泡的裂解和核酸的提取可利用本领域已知的各种方法来实现。在一些实施方案中,可根据本领域已知的标准程序和技术使用苯酚:氯仿来实现核酸提取。此类方法还可利用核酸结合柱来捕获微泡内含有的核酸。一旦结合,核酸可随后使用适合破坏核酸与结合柱之间相互作用的缓冲液或溶液来洗脱,从而成功洗脱核酸。
在一些实施方案中,核酸提取方法还包括去除或减轻阻止从生物样品中提取高质量核酸的不利因素的步骤。此类不利因素是各种各样的,因为不同生物样品可含有各种类的不利因素。在一些生物样品中,诸如过多DNA的因素可影响从此类样品中提取核酸的质量。在其他样品中,诸如过多内源性RNase的因素可影响从此类样品中提取核酸的质量。可使用许多试剂和方法来去除这些不利因素。这些方法和试剂在本文中统称为“提取增强操作”。在一些情况下,提取增强操作可涉及向生物样品添加核酸提取增强剂。为了去除诸如内源性RNase的不利因素,如本文所定义的此类提取增强剂可包括但不限于:RNase抑制剂,诸如Superase-In(可商购自Ambion公司)或RNaseINplus(可商购自Promega公司),或以类似方式起作用的其他试剂;蛋白酶(可充当RNase抑制剂);DNase;还原剂;诱饵底物诸如合成RNA和/或载体RNA;可结合RNase的可溶受体;小干扰RNA(siRNA);RNA结合分子,诸如抗RNA抗体、碱性蛋白或伴侣蛋白;RNase变性物质,诸如高克分子渗透压浓度溶液、去污剂,或它们的组合。
例如,提取增强操作可包括在提取核酸之前向生物样品和/或分离的微泡部分添加RNase抑制剂;优选RNase抑制剂具有以下浓度:对于体积等于或大于1μl的样品而言大于0.027AU(1×);或者,对于等于或大于1μl的样品而言大于或等于0.135AU(5×);或者,对于等于或大于1μl的样品而言大于或等于0.27AU(10×);或者,对于等于或多于1μl的样品而言大于或等于0.675AU(25×);以及或者,对于等于或大于1μ1的样品而言大于或等于1.35AU(50×);其中,1×浓度指的是其中使用0.027AU或更多RNase抑制剂来处理分离自1μl或更多体液的微泡的酶促条件,5×浓度指的是其中使用0.135AU或更多RNase抑制剂来处理分离自1μl或更多体液的微泡的酶促条件,10×蛋白酶浓度指的是其中使用0.27AU或更多RNase抑制剂来处理分离自1μl或更多体液的颗粒的酶促条件,25×浓度指的是其中使用0.675AU或更多RNase抑制剂来处理分离自1μl或更多休液的微泡的酶促条件,以及50×蛋白酶浓度指的是其中使用1.35AU或更多RNase抑制剂来处理分离自1μl或更多体液的颗粒的酶促条件。优选地,RNase抑制剂是蛋白酶,在该情况下,1AU是释放对应于每分钟1μmol酪氨酸的福林阳性氨基酸和肽的蛋白酶活性。
这些增强剂可以各种方式行使其功能,例如通过抑制RNase活性(例如,RNase抑制剂),通过蛋白质的遍在降解(例如,蛋白酶),或通过结合和保护RNA的伴侣蛋白(例如,RNA结合蛋白)。在所有情况下,此类提取增强剂去除或至少减轻生物样品中或与分离的颗粒相关联的一些或所有不利因素,否则它们将阻止或干扰从分离的颗粒中高质量提取核酸。
在一些实施方案中,可使用所提取18S和28S rRNA的定量来确定核酸提取的质量。
核酸生物标志的检测
在一些实施方案中,提取的核酸包含DNA和/或DNA和RNA。在其中提取的核酸包含DNA和RNA的实施方案中,RNA在进一步扩增之前优选逆转录成互补DNA(cDNA)。此类逆转录可单独或与扩增步骤组合执行。组合逆转录和扩增步骤的方法的一个实例是逆转录聚合酶链式反应(RT-PCR),其可进一步修饰为定量的,例如如美国专利号5,639,606中所描述的定量RT-PCR,所述专利通过引用并入本文以对此示教。所述方法的另一个实例包括两个单独的步骤:逆转录以使RNA转换成cDNA的第一步和使用定量PCR量化cDNA量的第二步骤。如随后的实施例中所展现的,使用本文所公开的方法提取自含核酸颗粒的RNA包括许多种转录物,包括但不限于:核糖体18S和28S rRNA,微RNA,转移RNA,与疾病或医疗状况相关联的转录物,和对于医疗状况的诊断、预后和监测而言重要的生物标志。
例如,RT-PCR分析确定对每个反应的Ct(循环阈)值。在RT-PCR中,通过荧光信号的积累来检测阳性反应。Ct值定义为荧光信号跨越阈(即,超过背景水平)所需的循环数。Ct水平与样品中靶核酸或对照核酸的量成反比(即,Ct水平越低,样品中对照核酸的量越大)。
在另一个实施方案中,可使用各种领域公认技术中的任何者,包括但不限于RT-PCR来测量对照核酸的拷贝数。对照核酸的拷贝数可使用本领域已知的方法来确定,诸如通过生成和利用校准或标准曲线。
在一些实施方案中,一个或更多个生物标志可为一种遗传畸变或遗传畸变的集合,本文中用来指含核酸颗粒内的核酸量以及核酸变体。具体地,遗传畸变包括但不限于:一个基因(例如,癌基因)或一组基因的过表达,一个基因(例如,肿瘤抑制子基因,诸如p53或RB)或一组基因的低表达,替代地产生一个或一组基因的剪接变体,基因拷贝数变体(CNV)(例如,DNA双微小体)(Hahn,1993),核酸修饰(例如,甲基化、乙酰化和磷酸化),单核苷酸多态性(SNP),染色体重排(例如,倒位、缺失和重复),和一个或一组基因的突变(插入、缺失、重复、错义、无义、同义或任何其他核苷酸变化),所述突变在许多情况下最终影响基因产物的活性和功能,导致替代的转录剪接变体和/或基因表达水平的变化,或者前述任何情况的组合。
分离的颗粒中存在核酸的分析是定量和/或定性的。对于定量分析而言,用本领域已知的方法(下文中描述)测量分离的颗粒内感兴趣的特定核酸的相对或绝对量(表达水平)。对于定性分析而言,用本领域已知的方法鉴定分离的微泡内感兴趣的特定核酸的物种是野生型还是变体。
本发明还包括从生物样品中分离微泡以实现高质量核酸提取的新方法的各种用途:(i)辅助受试者的诊断,(ii)监测受试者中疾病或其他医疗状况的进展或复发,或(iii)辅助对于经受或考虑对疾病或其他医疗状况治疗的受试者而言治疗功效的评估;其中确定了得自所述方法的核酸提取物中一种或更多种生物标志的存在或缺少,并且所述一种或更多种生物标志分别与疾病或其他医疗状况的诊断、进展或复发、或治疗功效相关联。
用于从生物样品中分离微泡的试剂盒
本发明的一个方面进一步涉及用于本文所公开方法中的试剂盒。所述试剂盒包含捕获表面装置,所述装置足够使来自生物样品的微泡与也存在于生物样品中的不需要的颗粒、碎片和小分子分离。本发明还任选地包括用于在分离和任选后续核酸提取过程中使用前述试剂的说明书。
实施例
尽管本文提供的实施例使用各种膜和装置以用于离心和/或过滤目的,但要理解的是这些方法可与允许高效捕获微泡和释放其中含有的核酸、特别是RNA的任何捕获表面和/或收容装置一起使用。
实施例1:DNA的EXO52分离,以及RNA和DNA的共分离
此实施例展现EXO52方法从血浆样品中分离所有DNA的能力。应注意,在本文中呈现的一些附图中,已使用各种术语来鉴别前驱方法与本文中称为EXO52的分离方法。例如,一些附图包括诸如旧EXO52、EXO52.1和它们的变化形式的术语。这些较早版本仅仅提供为比较并且用来展现使用本公开的EXO52方法实现了更好的分离。术语EXO52.2的使用是其中RNA和DNA提取在单个管中执行的EXO52方法。
还可使用EXO52柱来从血浆样品中分离所有DNA。利用EXO52柱进行除RNA之外的DNA分离的两种方法描绘于图1和图2中。具体来说,两种方法之间的差异在于在EXO52中RNA和DNA提取组合于一个管中,以实现可用性的简易、规程的流线化和提高可再现性。图3显示出EXO50 RNA+DNA中1.5Ct的增加(EXO52)。EXO50是用于从生物样品诸如像血浆中的微泡中分离RNA的方法。此方法描述于PCT公开号WO2014/107571中。图4显示出在相分离期间增加氯仿的量增加了回到水相的DNA,以使得利用正常EXO50程序来共分离DNA。在相分离期间进一步优化pH水平也向制备物增加DNA,如图5中所示。
因此,可使用本公开的方法来从血浆样品中分离所有DNA。DNA回收自相分离后QIAzol裂解的较低疏水相。本公开的方法(例如,如EXO52中的两个管或单个管)对于相同样品体积而言以类似水平分离RNA和DNA,并且RNA和DNA可彼此分离。本公开的这些方法比例如Qiagen的可商购分离试剂盒捕获相同或更多mRNA和多得多的miRNA。
EXO52还可用于RNA和DNA的共纯化。如本文所使用,除非另外指定,否则EXO52指的是以下规程。
样品制备:EXO52程序可用来使用0.2-4mL血浆或血清从外泌体和其他微泡中分离RNA和DNA。建议仅使用预过滤的血浆或血清,以排除大于0.8μm的颗粒。相容血浆管的清单包括具有添加剂EDTA、柠檬酸钠和柠檬酸盐-磷酸盐-葡聚糖的血浆。含有肝素的血浆可抑制RT-qPCR。
然后,将样品(单独地或用结合缓冲液稀释的)加样于EXO52旋转柱上,并且以500×g旋转1min。丢弃流出物并且将柱放回同一收集管中。然后,添加洗涤缓冲液,并且EXO52柱以5000×g旋转5min来从柱中移除残余体积。注意:在离心之后,从收集管中移除EXO52旋转柱以使得柱不接触流出物。然后,将旋转柱转移至全新收集管,并且将700μL Qiazol添加至膜。然后,旋转柱以5000×g旋转5min来收集含有裂解的外泌体的匀浆。然后,将匀浆转移至PLG管。
然后,将350μl氯仿添加至含有匀浆的管,并且剧烈摇晃15s。然后,将含有匀浆的管在室温下保持2-3min,接着在4℃下以12,000×g离心5min。在离心之后,如果同一离心机将用于下一离心步骤,则将离心机加热至室温(15-25℃)。
将上部水相转移至新收集管,避免转移任何中间相物质。然后,添加2体积的100%乙醇,并且通过来回吸液数次并且不使用离心机来充分混合。然后,将700μl样品,包括可能已形成的任何沉淀,吸上来至2ml收集管中的RNeasy MinElute旋转柱(Cat.#1026497)中,接着在室温下(15-25℃)以≥8000×g(≥10,000rpm)离心15s。丢弃流出物。对样品的剩余部分重复这些步骤,并且丢弃流出物。
EXO52用于从生物样品中分离和检测DNA。囊泡RNA被认为来源于例如病变组织中的活细胞。游离DNA(cfDNA)被认为来源于例如病变组织中坏死细胞的死细胞。因此,cfDNA可用作治疗响应的指示物,而RNA是抗性突变在上升的指示物。
EXO52用于检测血液中的罕见突变,因为EXO52提供了可应用于足够量核酸的足够灵敏的方法。生物液体中实际DNA和RNA分子的量非常有限,并且EXO52提供提取血液中所有与突变检测有关的分子的分离方法,所述突变检测以对有效下游处理和/或分析足够小的体积进行。
图13-223(在仅此实施例中称为“附图”)展现出EXO52方法的特异性和灵敏度。
研究已表明EXO50/52柱结合血浆中的所有DNA,但使DNA离开苯酚相的程序不产生令人满意的结果,因为分离程序会变化很大。本文所提供的方法允许从EXO50/52柱的膜中可再现和高效地分离和/或提取DNA。
利用PLG管的Exo52分离的三个重复中的两个显示出与可商购cfDNA试剂盒几乎相同的CT值。不用PLG管的EXO52分离的三个重复中的一个显示出与cfDNA试剂盒几乎相同的CT值。贫化的血浆(不用2×结合缓冲液的血浆Exo50流出物)不含有大量DNA(18S与正常分离有约9CT差异)。几乎所有DNA结合至Exo50柱。
如附图中所示,向EXO52方法添加氯仿允许RNA和DNA两者的共分离,并且添加氯仿不损害RNA的检测或分离。
关于RNA分离,确定了如果使用RNA特异性分析,添加更多氯仿不影响RNA分离。当添加更多氯仿时,DNA特异性分析将产生较低CT,因为DNA在水相中。
关于DNA分离,在添加更多氯仿的情况下DNA检测分析的CT在水相分离中升高并且在EXO52苯酚相DNA分离中降低。
自苯酚相的EXO50分离产生最低CT值(=最高DNA产量)。90μl氯仿产生来自苯酚的相最佳的DNA产量。
此外,不用PLG管,未观测到DNA污染时的氯仿比率大约为0.13×。
如附图中所示,在PC提取期间,350μL氯仿足够将所有DNA从EXO52柱添加至水相。更高的氯仿量可能干扰RNA分离。
如附图中所示,在添加更多氯仿的情况下水相中DNA产量升高,而在苯酚相中DNA产量降低(EXO52DNA分离)。相比于自苯酚相的EXO52 DNA分离,自水相分离DNA产生更多DNA。在移除上部相之后,很少DNA呈现为保持在苯酚相中或剩余水相中,因为在不使用PLG管的情况下难以移除整个相。在RT反应(最终20μl RT混合物中10μl EXO50洗脱物)和1∶2稀释的EXO50洗脱物中DNA产量类似。DNA似乎不与逆转录混合物反应。
使用仅RNA GAPDH分析重复研究来看是否仅RNA GAPDH分析受增加的氯仿添加的影响。增加氯仿添加,RNA未受影响。还使用GAPDH_RNA_DNA分析进行了研究,其显示出无RNA信号被DNA替换(约2CT差异)。
BRAF分析显示出通过水相中存在DNA,EXO50 RNA部分中信号2×提高。GAPDH分析并不显示EXO50 RNA成分中DNA的明显累加效应,因为所增加的拷贝与RNA拷贝相比是微小的。在此RNA与DNA拷贝之间差异明显的情况下,可表明无RNA信号的替换。
进行研究来确定相分离中pH变化的影响(如果存在的话)。pH的调整提供用于向水相添加DNA的替代工具。发现pH过高干扰RNA分离。
高pH似乎扰乱BA。例如,来自10N NaOH样品的BA图谱显示出最高DNA峰但极低FU([FU]=2相比于[FU]=40)。高pH似乎扰乱RT反应。水相pH升高在Exo50 DNA分离中产生更低CT值,而在EXO52 DNA分离中产生更高值,但相比于氯仿滴定而言苯酚相中留下更高的DNA量。
降低pH能够从EXO52苯酚相中移除DNA并且富集在水相中。在RT中DNA未受损。在最高pH下RNA受损。在三个最高pH步骤处BA受影响。
如附图中所示,氯仿添加是确定水相DNA含量的主导因素。高pH的正面效应仅在低氯仿水平下可见。通过将DNA添加至水相,RNA信号不受影响。
如附图中所示,不存在pH溶液对DNA拷贝数的累加效应,并且此外所需氯仿量无需变动以将DNA带入水相。样品相比于不用pH溶液处理的样品甚至产生更低拷贝数。只有用90μl处理的样品产生较高拷贝数。pH溶液和较高氯仿量不影响RNA分离(mRNA)。在整个滴定期间,相比于不用pH溶液处理的样品,用pH溶液处理的样品产生稍低的拷贝数(除了90μl氯仿样品)。
如附图中所示,在室温下QIAzol旋转提高水相中DNA物质的百分率。当在EXO52程序中使用较高量氯仿时情况并非如此。
Qiazol离心步骤造成水相中的DNA污染,但仅在不用PLG管的样品中。具有在室温下的离心步骤的PLG管样品还显示出稍多DNA,但拷贝数低于LOQ=32拷贝。离心步骤的温度不影响mRNA和miRNA分离。
在室温下Qiazol旋转不向正常EXO52 DNA分离累加DNA。就旋转温度而言不存在CT值的差异。离心步骤的温度不影响mRNA和miRNA分离。
如附图中所示,从EXO52至RNeasy旋转柱的DNA的结合和洗脱并不取决于1.5×体积至2.6×体积范围内的乙醇浓度。
如附图中所示,当使用更高乙醇浓度时,EXO52的性能不提高。在整个乙醇滴定期间,所有三种分析的CT值保持恒定。RNA分离的预调节步骤中的乙醇浓度不影响cfDNA的回收。
如附图中所示,血浆样品的蛋白酶K(ProtK)消化特定导致RNA信号损失,但ProtK处理不影响DNA产量,因为对于所有样品而言获得了相同CT。
如附图中所示,EXO52的DNA加样容量未达到8ml血浆,因为DNA的产量仍线性升高并且流出物中不存在可检测的DNA。这与达到4mL的囊泡线性加样容量形成对比。流出物(FT)中未检测到cfDNA,但看到RNA从2mL向上积累。对于DNA而非RNA而言,样品输出是线性的。RNA与DNA相比具有不同的饱和点。向程序添加PLG盆被发现略微提高产量。当相比于可商购CNA试剂盒时,EXO52方法增加RNA拷贝。
在一些实施方案中,所述方法使用仅基于硫氰酸胍的提取缓冲液来从EXO52柱中提取RNA和DNA。
如针对RNA分离的附图中所示,RLT+高DTT 56℃的2重复中的1个产生预期CT值。重复之间的变化可能已由添加加样混合物后阻塞了RNeasy膜造成。对于RLT+高DTT 56℃而言,BA图谱显示出对留在柱上的数据点极低的RNA浓度,但仅一个RNA分离产生预期CT值。
如针对DNA分离的附图中所示,对于DNA检测分析而言,AllPrep DNA柱产生非常高的拷贝数。留在柱上的数据点也显示出非常高的CT值。DNA似乎通过AllPrep DNA旋转柱由高截止(15-30kb)引起丢失。cfDNA的尺寸通常在35bp-10kb范围内。
所述附图还展现使用各种DNA或DNA/RNA分离程序来分离微RNA。与可商购CNA试剂盒相比,EXO52分离更多mRNA和多得多的miRNA,并且EXO52和CNA试剂盒分离相同量的DNA。EXO52方法似乎从血浆中分离所有DNA。
如附图中所示,EXO52始终胜过可商购的循环核酸(CAN)试剂盒。在三个不同血浆池、不同CNA试剂批、不同操作员和不同样品来源上,EXO52比CNA试剂盒具有更好的产量。
EXO52方法用于分析来自黑素瘤组群(cohort)的样品中的cfDNA。将使用EXO52方法所得的结果与使用可商购CNA试剂盒所得的结果比较。CNA试剂盒的分析内变化(基于分离相同血浆样品的不同时间点)高于使用EXO52方法观测到的变化。如附图中所示,EXO52方法的性能等于或优于使用可商购试剂盒获得的性能。
如附图中所示,在用350μl氯仿的相分离之后,大约15%DNA留在有机相中。双重提取使DNA产量提高约15%点。用90μl氯仿相分离(RNA)接着利用额外260μl第二提取(总和:350μl氯仿)相比于正常EXO52 DNA提取仅产生约50%DNA产量。向相同柱上再加样经调节的EXO52物质不改进产量。
实施例2.开发从癌症血浆中一步分离外泌体RNA和游离DNA的平台
癌症患者血流中的循环核酸引起医学研究的极大兴趣,因为所述循环核酸具有在不需要组织活检的情况下产生关于患者疾病状态和治疗选择的信息的潜能。试图将生物液体用于突变分析的任何诊断试验都需要能最大化循环中肿瘤来源的突变的捕获的平台。血浆含有至少两个核酸的无细胞源:循环游离DNA(cfDNA),生成自凋亡或坏死细胞;以及包括外泌体的胞外囊泡中封装的RNA(exoRNA),所述囊泡由身体中的细胞活跃分泌。因为生物液体中核酸的总量非常有限并且肿瘤突变反映在RNA和DNA两者,所以设计方法以从血浆样品中将所有exoRNA和cfDNA共分离至一定体积,所述体积对通过RT-qPCR的有效下游处理和通过NGS的靶向再测序来说足够小。
图224-226示出本文中呈现的研究,其展现了以下事实:(i)血浆除游离DNA之外还含有游离RNA;(ii)EXO52是对于从高体积的生物液体中共分离所有exoRNA和cfDNA而言快速、可再现和便利的程序;以及(iii)使用两者,exoRNA和cfDNA通常使可用于通过qPCR和NGS进行的罕见突变体检测的分子加倍。
图227和228是描绘本文提供的EXO52方法捕获总循环核酸的能力的一系列图表。将EXO52方法与可商购的循环核酸DNA分离试剂盒比较。如图227-228中所示,EXO52捕获所有cfDNA,并且组合exoRNA和cfDNA比仅cfDNA,EXO52显著检测到更多拷贝。图228还展现了只基于cfDNA的分析,患者针对生物标志鉴别为阴性,但利用组合的DNA和RNA分析,这些患者针对生物标志鉴别为阳性。本领域普通技术人员将理解突变或其他生物标志的更多拷贝导致在鉴别突变和其他生物标记上增强的灵敏度和准确度。
其他实施方案
尽管已结合详述描述了本发明,但前面的描述意图说明而非限制本发明的范围,本发明的范围由随附权利要求书的范围来定义。其他方面、优点和修改在以下内容的范围内。

Claims (19)

1.一种用于从生物样品中提取游离DNA和微泡RNA的方法,所述方法包括:
(a) 在足够使来自所述生物样品的游离DNA和微泡保留于捕获表面之上或其中的条件下,使所述生物样品与所述捕获表面接触,其中所述捕获表面包含带正电并用季铵R-CH2-N+(CH3)3官能化的膜或一种或多种珠;
(b) 在游离DNA和所述微泡处于所述捕获表面之上或其中的同时,使所述捕获表面与硫氰酸胍基裂解试剂接触,从而从所述样品中释放所述游离DNA和微泡RNA并且产生匀浆;以及
(c) 从所述匀浆中提取所述游离DNA和所述微泡RNA。
2.如权利要求1所述的方法,其中所述膜或一种或多种珠为用季铵R-CH2-N+(CH3)3官能化的阴离子交换剂。
3.如权利要求1所述的方法,其中所述膜具有至少3 μm的孔径。
4.如权利要求1所述的方法,其中所述捕获表面包含三个膜,其中所述三个膜直接彼此相邻。
5.如权利要求4所述的方法,其中所述三个膜彼此相同。
6.如权利要求5所述的方法,其中每个膜为用季铵R-CH2-N+(CH3)3官能化的阴离子交换剂。
7.如权利要求1所述的方法,其中所述生物样品是血浆或血清。
8.如权利要求7所述的方法,其中所述生物样品具有在0.2 mL至4 mL之间的体积。
9.如权利要求1所述的方法,其中所述生物样品是尿液、脑脊液或细胞培养上清液。
10.如权利要求1所述的方法,其中步骤(a)进一步包括在使所述生物样品与所述捕获表面接触之前和之后,通过过滤所述生物样品来处理所述生物样品。
11.如权利要求10所述的方法,其中所述过滤使用0.8 μm过滤器来执行。
12.如权利要求1所述的方法,其中步骤(a)进一步包括在使所述生物样品与所述捕获表面接触之后的离心步骤。
13.如权利要求1或权利要求12所述的方法,其中步骤(a)进一步包括在使所述生物样品与所述捕获表面接触之后洗涤所述捕获表面。
14.如权利要求1所述的方法,其中步骤(b)进一步包括在使所述捕获表面与所述硫氰酸胍基裂解试剂接触之后的离心步骤。
15.如权利要求1所述的方法,其中步骤(c)进一步包括向所述匀浆添加氯仿。
16.如权利要求15所述的方法,其中步骤(c)进一步包括在向所述匀浆添加氯仿之前向所述匀浆添加对照。
17.如权利要求1所述的方法,其中所述方法进一步包括步骤(d)乙醇调节来自步骤(c)的提取物;步骤(e)使乙醇调节的提取物结合至硅胶柱;以及步骤(f)从所述硅胶柱洗脱所述提取物。
18.一种监测受试者中疾病或其他医疗状况的进展或复发的方法,所述方法包括:
(a) 从来自受试者的生物样品中分离一种或多种微泡;以及
(b) 确定一种或多种生物标志的存在或缺少,其中所述一种或多种生物标志与所述疾病或其他医疗状况的进展或复发相关联。
19.一种试剂盒,包含:
捕获表面装置,其中所述捕获表面装置足够从生物样品中分离微泡和/或游离DNA。
CN202110781733.3A 2014-07-09 2015-07-09 从生物样品中分离微泡和提取核酸的方法 Pending CN113699143A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201462022538P 2014-07-09 2014-07-09
US62/022538 2014-07-09
US201462079763P 2014-11-14 2014-11-14
US62/079763 2014-11-14
US201562166890P 2015-05-27 2015-05-27
US62/166890 2015-05-27
CN201580049375.XA CN107002075B (zh) 2014-07-09 2015-07-09 从生物样品中分离微泡和提取核酸的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201580049375.XA Division CN107002075B (zh) 2014-07-09 2015-07-09 从生物样品中分离微泡和提取核酸的方法

Publications (1)

Publication Number Publication Date
CN113699143A true CN113699143A (zh) 2021-11-26

Family

ID=55064901

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110781733.3A Pending CN113699143A (zh) 2014-07-09 2015-07-09 从生物样品中分离微泡和提取核酸的方法
CN201580049375.XA Active CN107002075B (zh) 2014-07-09 2015-07-09 从生物样品中分离微泡和提取核酸的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201580049375.XA Active CN107002075B (zh) 2014-07-09 2015-07-09 从生物样品中分离微泡和提取核酸的方法

Country Status (11)

Country Link
US (1) US10465183B2 (zh)
EP (2) EP3623792B1 (zh)
JP (2) JP6759182B2 (zh)
KR (2) KR102421185B1 (zh)
CN (2) CN113699143A (zh)
AU (2) AU2015287763B2 (zh)
CA (2) CA3084920C (zh)
ES (2) ES2898254T3 (zh)
IL (2) IL250000B (zh)
SG (1) SG11201700146QA (zh)
WO (1) WO2016007755A1 (zh)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012253366A1 (en) * 2011-05-11 2014-01-09 Exosome Diagnostics, Inc. Nucleic acid extraction from heterogeneous biological materials
US11268085B2 (en) 2014-05-27 2022-03-08 Exosome Diagnostics, Inc. Methods for isolating microvesicles and extracting nucleic acids from biological samples
EP3623792B1 (en) 2014-07-09 2021-09-01 Exosome Diagnostics, Inc. Methods for isolating microvesicles and extracting nucleic acids from biological samples
CN105821031A (zh) * 2016-01-18 2016-08-03 昆明医科大学 一种二氯甲烷法提取dna的原理
EP3443117A1 (en) 2016-04-15 2019-02-20 Exosome Diagnostics, Inc. Plasma-based detection of anaplastic lymphoma kinase (alk) nucleic acids and alk fusion transcripts and uses thereof in diagnosis and treatment of cancer
WO2017185086A1 (en) 2016-04-22 2017-10-26 Exosome Diagnostics, Inc. Devices and methods for in vivo capture of biological samples and nucleic acids therein
AU2017259794B2 (en) 2016-05-02 2023-04-13 Encodia, Inc. Macromolecule analysis employing nucleic acid encoding
DK3452613T3 (da) 2016-05-05 2022-03-21 Exosome Diagnostics Inc Profilering af mikrovesikel-nukleinsyrer og anvendelse heraf som signaturer til diagnostisering af nyretransplantatafstødning
CN109642229A (zh) * 2016-05-13 2019-04-16 外来体诊断公司 从生物液体分离细胞外囊泡和共分离无细胞dna的自动和手动方法
EP3845665A1 (en) 2016-08-17 2021-07-07 The Regents Of The University Of California A novel immunoprobe-based method to assess organ injury status through a biofluid-based cell-free dna (cfdna) assay
EP3514233B1 (en) 2016-09-14 2022-03-02 Toray Industries, Inc. Method for recovering cell-free dna
EP3529374B1 (en) 2016-10-21 2024-04-03 Exosome Diagnostics, Inc. Sequencing and analysis of exosome associated nucleic acids
CN110446790B (zh) 2016-11-30 2023-03-31 外来体诊断公司 使用外来体rna和无细胞dna检测血浆中的突变的方法和组合物
WO2018112557A1 (en) * 2016-12-23 2018-06-28 Altnia Operations Pty Ltd Methods and compositions for purification or isolation of microvesicles and exosomes
US20200149036A1 (en) 2017-01-02 2020-05-14 Exosome Diagnostics, Inc. Methods to distinguish rna and dna in a combined preparation
WO2018129481A2 (en) * 2017-01-06 2018-07-12 Mantra Bio, Inc. Systems and methods for algorithmic extracellular vesicle population discovery and characterization
KR101875594B1 (ko) * 2017-01-13 2018-07-06 ㈜로제타엑소좀 금속을 이용한 세포밖 소포체의 분리 방법
GB201706680D0 (en) * 2017-04-27 2017-06-14 Ge Healthcare Uk Ltd Device and method for sample isolation
JP7225121B2 (ja) 2017-05-17 2023-02-20 エクソサム ダイアグノスティクス,インコーポレイティド 微小胞核酸および/またはタンパク質、並びに腎移植拒絶反応マーカーとしてのその使用
CN107267440A (zh) * 2017-06-09 2017-10-20 李刚 适用于外泌体提取的提取试剂及应用及其提取方法
EP3652315A4 (en) 2017-07-12 2021-09-01 Exosome Diagnostics, Inc. METHOD OF ISOLATION AND ENRICHMENT OF POPULATIONS OF EXTRACELLULAR VESICULES FROM A BIOFLUID AND METHOD OF USING THEREOF
EP3652314B1 (en) 2017-07-12 2023-08-23 Illumina, Inc. Nucleic acid extraction materials and methods
US11345957B2 (en) 2017-07-18 2022-05-31 Exosome Diagnostics, Inc. Methods of treating glioblastoma in a subject informed by exosomal RNA signatures
JP2020528766A (ja) * 2017-07-26 2020-10-01 ロゼッタ エクソソーム 陽イオンを利用した細胞外小胞体の分離方法
CN111386122A (zh) * 2017-09-20 2020-07-07 分子听诊器公司 用于检测组织状况的方法和系统
KR102556494B1 (ko) 2017-10-31 2023-07-18 엔코디아, 인코포레이티드 핵산 암호화 및/또는 표지를 이용한 분석용 키트
US11260347B2 (en) * 2017-12-26 2022-03-01 Limited Liability Company “Prostagnost” Method and device for separating extracellular vesicles from biological liquids with the aid of cascade ultrafiltration
WO2019164227A1 (ko) * 2018-02-20 2019-08-29 고려대학교 산학협력단 엑소좀을 분리하기 위한 다중 컬럼 및 엑소좀 분리 방법
US20210230701A1 (en) 2018-06-06 2021-07-29 Exosome Diagnostics, Inc. Methods for developing urine biomarkers and for detecting bladder cancer
CN108841777A (zh) * 2018-06-22 2018-11-20 北京恩泽康泰生物科技有限公司 基于静电吸附的胞外囊泡及其内含物的提取方法及装置
CN113039262B (zh) * 2018-10-30 2024-02-06 科莱鹤株式会社 用于捕捉细胞外囊泡的器件、细胞外囊泡的保存方法和转送方法
EP3884045B1 (en) 2018-11-20 2023-01-11 Exosome Diagnostics, Inc. Methods for internal controls of microvesicle isolations
CN114072499A (zh) 2019-04-30 2022-02-18 Encodia 公司 用于制备分析物的方法和相关试剂盒
US20220412971A1 (en) 2019-09-18 2022-12-29 Exosome Diagnostics, Inc. Compositions, methods, and kits for the isolation of extracellular vesicles
EP4055186A1 (en) * 2019-11-04 2022-09-14 Nasasbiotech, S.L. Method for isolating nucleic acids
EP4077660A1 (en) * 2019-12-16 2022-10-26 QIAGEN GmbH Method for enriching vesicular rna
WO2021215878A1 (ko) * 2020-04-24 2021-10-28 고려대학교 산학협력단 미세소포체 분리방법 및 미세소포체 분리장치
TWI790602B (zh) * 2020-04-24 2023-01-21 日商東洋紡股份有限公司 纖維素系離子交換膜及其製造方法、用於胞外體純化之器件以及胞外體之純化方法
US20230203587A1 (en) 2020-05-29 2023-06-29 Exosome Diagnostics, Inc. Use of microvesicle signature for the diagnosis and treatment of kidney transplant rejection
EP4355873A1 (en) * 2021-06-17 2024-04-24 QIAGEN GmbH Method for isolating non-vesicular mirna
WO2023288130A1 (en) 2021-07-16 2023-01-19 Exosome Diagnostics, Inc. Methods of detecting sjögren's syndrome using salivary exosomes
DE102021208893B3 (de) 2021-08-13 2022-11-17 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Isolieren von Analyten unterschiedlicher Analyt-Klassen
WO2023158869A1 (en) 2022-02-18 2023-08-24 Exosome Diagnostics, Inc. Use of microvesicle signatures in the identification and treatment of renal disorders
WO2024054572A1 (en) 2022-09-07 2024-03-14 Exosome Diagnostics, Inc. Methods of detecting sjögren's syndrome using salivary exosomes
CN115960885B (zh) * 2022-10-09 2023-12-12 南京诺唯赞生物科技股份有限公司 一种提取肝素钠样品中核酸的方法及组合物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438128A (en) * 1992-02-07 1995-08-01 Millipore Corporation Method for rapid purifiction of nucleic acids using layered ion-exchange membranes
US6899863B1 (en) * 1999-01-27 2005-05-31 Anosys, Inc., Institute Curie Method for preparing membrane vesicles
WO2008045505A2 (en) * 2006-10-10 2008-04-17 Xenomics, Inc. Compositions, methods and kits for isolating nucleic acids from body fluids using anion exchange media

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935342A (en) 1986-12-01 1990-06-19 Syngene, Inc. Method of isolating and purifying nucleic acids from biological samples
US5639606A (en) 1993-04-06 1997-06-17 The University Of Rochester Method for quantitative measurement of gene expression using multiplex competitive reverse transcriptase-polymerase chain reaction
CA2170604C (en) * 1993-08-30 2007-03-13 Vikas V. Padhye Nucleic acid purification compositions and methods
GB9927320D0 (en) 1999-11-18 2000-01-12 Chiron Spa Exosome separation
US6812023B1 (en) 2000-04-27 2004-11-02 Anosys, Inc. Methods of producing membrane vesicles
EP4219762A1 (en) 2008-02-01 2023-08-02 The General Hospital Corporation Use of microvesicles in diagnosis and prognosis of medical diseases and conditions
WO2010065765A2 (en) * 2008-12-04 2010-06-10 Aethlon Medical, Inc. Affinity capture of circulating biomarkers
US20120077263A1 (en) * 2009-06-05 2012-03-29 Mayo Foundation For Medical Education And Research Methods and materials for isolating exosomes
US20130158247A1 (en) 2010-06-01 2013-06-20 Qiagen Gmbh Method for isolating and/or purifying nucleic acid(s)
ES2624284T3 (es) * 2010-07-07 2017-07-13 Aethlon Medical Inc Métodos para cuantificar exosomas
WO2012024695A1 (en) * 2010-08-20 2012-02-23 Life Technologies Corporation Magnetic beads having surface glycoconjugates and use thereof
US20130295574A1 (en) * 2010-11-10 2013-11-07 Exosome Diagnostics, Inc. Method for Isolation of Nucleic Acid Containing Particles and Extraction of Nucleic Acids Therefrom
US20140004601A1 (en) * 2010-12-20 2014-01-02 Agency For Science, Technology And Research Method of purifying exosomes
AU2012253366A1 (en) * 2011-05-11 2014-01-09 Exosome Diagnostics, Inc. Nucleic acid extraction from heterogeneous biological materials
CN103797131A (zh) * 2011-06-16 2014-05-14 卡里斯生命科学卢森堡控股有限责任公司 生物标志物组合物和方法
KR20140005688A (ko) * 2012-07-06 2014-01-15 삼성전자주식회사 사용자 인터페이스 방법 및 장치
EP2890783A4 (en) * 2012-08-30 2016-03-02 Exosome Diagnostics Inc CONTROLS FOR NUCLEIC ACID TESTS
KR101933621B1 (ko) 2012-09-28 2018-12-28 삼성전자주식회사 소포를 분리하기 위한 조성물, 키트 및 이를 이용하여 소포를 분리하는 방법
CN105026911B (zh) 2013-01-03 2019-01-22 外来体诊断公司 用于分离微囊泡的方法
EP3623792B1 (en) 2014-07-09 2021-09-01 Exosome Diagnostics, Inc. Methods for isolating microvesicles and extracting nucleic acids from biological samples

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438128A (en) * 1992-02-07 1995-08-01 Millipore Corporation Method for rapid purifiction of nucleic acids using layered ion-exchange membranes
US6899863B1 (en) * 1999-01-27 2005-05-31 Anosys, Inc., Institute Curie Method for preparing membrane vesicles
WO2008045505A2 (en) * 2006-10-10 2008-04-17 Xenomics, Inc. Compositions, methods and kits for isolating nucleic acids from body fluids using anion exchange media

Also Published As

Publication number Publication date
IL280307B (en) 2022-02-01
AU2019250221A1 (en) 2019-11-07
IL250000A0 (en) 2017-03-30
CA2954576A1 (en) 2016-01-14
CA2954576C (en) 2020-08-11
EP3167062B1 (en) 2019-10-09
US20170198280A1 (en) 2017-07-13
CN107002075B (zh) 2021-07-30
CN107002075A (zh) 2017-08-01
KR102596577B1 (ko) 2023-10-30
AU2015287763B2 (en) 2019-08-08
JP7128866B2 (ja) 2022-08-31
EP3167062A1 (en) 2017-05-17
SG11201700146QA (en) 2017-02-27
AU2015287763A1 (en) 2017-02-23
IL250000B (en) 2021-02-28
CA3084920A1 (en) 2016-01-14
ES2898254T3 (es) 2022-03-04
WO2016007755A1 (en) 2016-01-14
JP2020202860A (ja) 2020-12-24
EP3167062A4 (en) 2017-12-06
ES2762677T3 (es) 2020-05-25
AU2019250221B2 (en) 2021-05-06
KR20170028432A (ko) 2017-03-13
US10465183B2 (en) 2019-11-05
EP3623792A1 (en) 2020-03-18
JP6759182B2 (ja) 2020-09-23
EP3623792B1 (en) 2021-09-01
IL280307A (en) 2021-03-01
KR102421185B1 (ko) 2022-07-14
CA3084920C (en) 2023-02-28
KR20220105172A (ko) 2022-07-26
JP2017520264A (ja) 2017-07-27

Similar Documents

Publication Publication Date Title
CN107002075B (zh) 从生物样品中分离微泡和提取核酸的方法
JP7354327B2 (ja) 生体液からの細胞外小胞の単離及びセルフリーdnaの同時単離のための自動及び手動方法
US20210171934A1 (en) Methods for isolating microvesicles
JP2022115972A (ja) エキソソーム結合型核酸の配列決定および分析
US11268085B2 (en) Methods for isolating microvesicles and extracting nucleic acids from biological samples

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination