CN113683712B - 甜菊醇糖苷 - Google Patents

甜菊醇糖苷 Download PDF

Info

Publication number
CN113683712B
CN113683712B CN202110909254.5A CN202110909254A CN113683712B CN 113683712 B CN113683712 B CN 113683712B CN 202110909254 A CN202110909254 A CN 202110909254A CN 113683712 B CN113683712 B CN 113683712B
Authority
CN
China
Prior art keywords
steviol
rebaudioside
seq
steviol glycosides
steviol glycoside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110909254.5A
Other languages
English (en)
Other versions
CN113683712A (zh
Inventor
罗伯托·安东尼厄斯·米恩德尔·范·德·霍文
彼得·菲利普·兰克豪斯特
西尔维亚·戈斯维茨卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DSM IP Assets BV
Original Assignee
DSM IP Assets BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DSM IP Assets BV filed Critical DSM IP Assets BV
Publication of CN113683712A publication Critical patent/CN113683712A/zh
Application granted granted Critical
Publication of CN113683712B publication Critical patent/CN113683712B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • A23L27/36Terpene glycosides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/60Sweeteners
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/56Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical directly bound to a condensed ring system having three or more carbocyclic rings, e.g. daunomycin, adriamycin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/15Flavour affecting agent
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/24Non-sugar sweeteners
    • A23V2250/258Rebaudioside
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/24Non-sugar sweeteners
    • A23V2250/262Stevioside

Abstract

本发明涉及甜菊醇糖苷。本发明涉及一种具有式(I)的甜菊醇糖苷,
Figure DDA0003202864090000011
其中在位置R1上存在至少三个糖部分且在位置R2上存在至少三个糖部分,且其中所述甜菊醇糖苷包括至少七个糖部分,其全部均直接或间接地通过β键联接到甜菊醇糖苷配基。

Description

甜菊醇糖苷
本发明是申请人于2016年4月4日提交的申请号为201680020186.4、题为“甜菊醇糖苷”的中国专利申请的分案申请。
技术领域
本发明涉及甜菊醇糖苷,制备其的方法,包括甜菊醇糖苷的甜味剂组合物、风味组合物、食品、饲料和饮料以及甜菊醇糖苷在甜味剂组合物、风味组合物、食品、饲料和饮料中的用途。
背景技术
多年生草本植物甜叶菊(Stevia rebaudiana Bert.)的叶子积聚大量被称为甜菊醇糖苷的具有强烈甜味的化合物。虽然这些化合物的生物功能尚不清楚,但它们作为替代性高效甜味剂具有商业意义。
这些甜的甜菊醇糖苷的功能和感官特性表现为优于许多高效甜味剂的功能和感官特性。此外,研究表明甜菊苷能够降低II型糖尿病患者的血糖水平,并且能够降低轻度高血压患者的血压。
甜菊醇糖苷积聚在甜叶菊叶中,其中它们可占叶干重的10%至20%。甜菊苷和莱鲍迪甙A均是热和pH稳定的,并且适用于碳酸饮料和许多其他食物。甜菊苷比蔗糖甜110与270倍之间,莱鲍迪甙A比蔗糖甜150与320倍之间。此外,莱鲍迪甙D也是在甜叶菊叶中积聚的高效二萜糖苷甜味剂。它可比蔗糖甜约200倍。莱鲍迪甙M是另一种高效二萜糖苷甜味剂。它在某些甜叶菊品种叶中以痕量存在,但已表明其具有优异的味道特征。
传统上已从甜叶菊植物中提取了甜菊醇糖苷。在甜叶菊中,(-)-贝壳杉烯酸(赤霉酸(GA)生物合成中的中间体)被转化成四环二萜甜菊醇,其然后通过多步糖基化途径进行以形成各种甜菊醇糖苷。然而,产率可以是可变的,并且受到农业和环境条件的影响。此外,甜叶菊种植需要大量的土地面积、在收获前的很长时间、密集劳动以及用于提取和纯化糖苷的额外成本。
但是,仍需要具有替代和/或改善的味道谱的额外的甜菊醇糖苷,这是因为不同的甜菊醇糖苷可更适合于不同的应用。
发明内容
本发明基于从已进行修饰以制备包括rebA的甜菊醇糖苷的微生物获得的发酵液中鉴定新的甜菊醇糖苷。与已知的甜菊醇糖苷相比,新的甜菊醇糖苷将具有不同的感官特性。其可以单独使用或与其他甜菊醇糖苷组合使用,特别是作为甜味剂或用于甜味剂组合物中。
因此,本发明涉及:
-一种具有式(I)的甜菊醇糖苷,
Figure BDA0003202864070000021
其中在位置R1上存在至少三个糖部分且在位置R2上存在至少三个糖部分,且其中甜菊醇糖苷包括至少七个糖部分,其全部均直接或间接地通过β键联接到甜菊醇糖苷配基。
-一种具有式(I)的甜菊醇糖苷,
Figure BDA0003202864070000022
其中在位置R1上存在至少四个糖部分且在位置R2上存在至少三个糖部分。
-一种具有式(I)的甜菊醇糖苷,
Figure BDA0003202864070000031
其中在位置R1上存在至少三个糖部分且在位置R2上存在至少三个糖部分,其中甜菊醇糖苷包括至少七个糖部分,且其中存在于位置R1的糖中的至少一个通过α键被联接到甜菊醇糖苷配基或糖分子。
-一种具有式(I)的甜菊醇糖苷,
Figure BDA0003202864070000032
其中在位置R1上存在至少三个糖部分且在位置R2上存在至少四个糖部分,其中存在于位置R2上的糖部分中的至少四个为葡萄糖部分。
-一种具有式(II)的甜菊醇糖苷
Figure BDA0003202864070000033
-一种具有式(III)的甜菊醇糖苷
Figure BDA0003202864070000041
-一种具有式(IV)的甜菊醇糖苷
Figure BDA0003202864070000042
-一种发酵制备的具有式(I)的甜菊醇糖苷,
Figure BDA0003202864070000043
其中在位置R1上存在至少三个糖部分且在位置R2上存在至少三个糖部分,且其中甜菊醇糖苷包括至少七个糖部分;
-一种用于制备根据前述权利要求中任一项所述的甜菊醇糖苷的方法,该方法包括:
提供重组酵母细胞,其包括编码多肽的重组核酸序列,所述多肽包括由下列编码的氨基酸序列:SEQ ID NO:61、SEQ ID NO:65、SEQ ID NO:23、SEQ ID NO:33、SEQ ID NO:77、SEQ ID NO:71、SEQ ID NO:87、SEQ ID NO:73和SEQ ID NO:75;
在合适的发酵培养基中使重组酵母细胞发酵;以及,可选地,
回收根据前述权利要求中任一项所述的甜菊醇糖苷。
-一种组合物,其包括本发明的甜菊醇糖苷以及一种或多种不同的甜菊醇糖苷(其中不同的甜菊醇糖苷可以是或可以不是本发明的甜菊醇糖苷);
-一种甜味剂组合物、风味组合物、食品、饲料或饮料,其包括本发明的甜菊醇糖苷或组合物;
-本发明的甜菊醇糖苷或组合物在甜味剂组合物或风味组合物中的用途;以及
-本发明的甜菊醇糖苷或组合物在食品、饲料或饮料中的用途。
附图说明
图1显示了质粒pUG7-EcoRV的示意图。
图2显示了将ERG20、tHMG1和BTS1过表达盒设计(A)和整合(B)至酵母基因组中的方法的示意图。(C)示出在通过Cre重组酶移除KANMX标记后的最终情况。
图3示出了ERG9敲低构建体的示意性图示。所述构建体由ERG9的500bp长的3'部分、TRP1启动子的98bp、TRP1开放阅读框和终止子、随后ERG9的400bp长的下游序列组成。由于在ERG9开放阅读框末端处引入Xbal位点,所以最后一个氨基酸变成Ser,并且终止密码子变成Arg。新的终止密码子位于TPR1启动子中,从而导致18个氨基酸的延伸。
图4示出了UGT2如何整合到基因组中的示意性图示。A.在转化中使用的不同片段;B.整合后的情况;C.在Cre重组酶表达后的情况)。
图5示出了从GGPP至RebA的途径如何整合到基因组中的示意性图示。A.在转化中使用的不同片段;B.在整合后的情况。
图6a示出使用高分辨率质谱法,在乙醇提取物(用于纯化的起始物料)中的含有7个葡萄糖(7.1、7.2和7.3)的甜菊醇糖苷混合物的m/z 1451.5820的提取的离子色谱图;且图6b为使用LC-MS的含有7个葡萄糖(7.1、7.2和7.3)的纯化甜菊醇糖苷的m/z 1451.5的提取的离子色谱图。
图7示出莱鲍迪甙7.1的结构。
图8示出莱鲍迪甙7.2的结构。
图9示出莱鲍迪甙7.3的结构。
图10示出莱鲍迪甙M的结构。
图11示出(a)甜菊醇的原子编号以及(b)葡萄糖的原子编号。
图12示出a)Reb M(cdcl3/pyr 1∶1,300K的2滴cdood),b)Reb 7.1(cdcl3/pyr 1∶3,320K的2滴cdood),c)Reb 7.2(cdcl3/pyr 1∶1,300K的2滴cdood)和d)Reb 7.3(cdcl3/pyr 1∶2,300K的3滴cdood)的1H NMR谱的选定区域。
序列表的说明
在表15中显示了对序列的描述。本文所述的序列可以参考序列表或参考也显示在表15中的数据库登录号来进行限定。
具体实施方式
在本说明书和所附权利要求书中,词语“包含”、“包括”和“具有”以及变化形式应被解释为包含性的。也就是说,这些词语意图表达在上下文允许的情况下可包含未具体叙述的其他要素或整数。
不使用数量词修饰时在本文中用于指代一个或一个以上(即一个或至少一个)的语法对象。举例来说,“要素”可意指一个要素或多于一个要素。
本发明涉及甜菊醇糖苷。为了本发明的目的,甜菊醇糖苷是甜菊醇的糖苷,特别是其羧基氢原子被葡萄糖分子取代以形成酯以及具有葡萄糖以形成乙缩醛的羟基氢的甜菊醇分子。
可以以分离的形式提供本发明的甜菊醇糖苷。“分离的甜菊醇糖苷”是从可与其天然相关联的其他物料,诸如其他甜菊醇糖苷移出的物质。因此,分离的甜菊醇糖苷可以含有按重量计的至多10%,至多8%,更优选为至多6%,更优选为至多5%,更优选为至多4%,更优选为至多3%,甚至更优选为至多2%,甚至更优选为至多1%,且最优选为至多0.5%的与其天然相关联的其他物料,例如其他甜菊醇糖苷。分离的甜菊醇糖苷可以不含任何其它杂质。本发明的分离的甜菊醇糖苷可以是按重量计的至少50%纯,例如至少60%纯,至少70%纯,至少75%纯,至少80%纯,至少85%纯,至少90%纯,或至少95%、96%、97%、98%、99%、99.5%、99.9%纯。
本发明提供了一种具有式(I)的甜菊醇糖苷,
Figure BDA0003202864070000071
其中在位置R1上存在至少三个糖部分且在位置R2上存在至少三个糖部分,且其中甜菊醇糖苷包括至少七个糖部分,其全部均直接或间接地通过β键联接到甜菊醇糖苷配基,或
其中在位置R1上存在至少四个糖部分且在位置R2上存在至少三个糖部分,或
其中在位置R1上存在至少三个糖部分且在位置R2上存在至少三个糖部分,其中甜菊醇糖苷包括至少七个糖部分,且其中存在于位置R1的糖中的至少一个通过α键被联接到甜菊醇糖苷配基或糖分子,或
其中在位置R1上存在至少三个糖部分且在位置R2上存在至少四个糖部分,其中存在于位置R2上的糖部分中的至少四个为葡萄糖部分。
本发明还提供了具有式(II)、(III)或(IV)的甜菊醇糖苷:
Figure BDA0003202864070000081
Figure BDA0003202864070000091
本发明的甜菊醇糖苷可以从植物物料获得,但更典型地,将通过发酵制备获得,例如,经对重组宿主细胞诸如酵母细胞的发酵获得。
因此,本发明提供了一种发酵制备的具有式(I)的甜菊醇糖苷,
Figure BDA0003202864070000092
其中在位置R1上存在至少三个糖部分且在位置R2上存在至少三个糖部分,且其中甜菊醇糖苷包括至少七个糖部分。
可以基于糖中的端基异构位置和距离C1最远的立体中心的相对立体化学(R或S)来区分α-和β-糖苷键。通常,当两个碳具有相同的立体化学时,形成α-糖苷键,而当两个碳具有不同的立体化学时,出现β-糖苷键。
这种发酵制备的甜菊醇糖苷可以具有本文所述的甜菊醇糖苷中的任一个的结构。
本发明还涉及一种用于制备甜菊醇糖苷的方法。在这种方法中,在合适的发酵培养基中发酵合适的重组宿主细胞诸如酵母细胞以制备甜菊醇糖苷。可选地,可以回收甜菊醇糖苷。
例如,一种用于制备如本文所述的甜菊醇糖苷的方法可以包括:
提供重组酵母细胞,其包括编码多肽的重组核酸序列,所述多肽包括由下列编码的氨基酸序列:SEQ ID NO:61、SEQ ID NO:65、SEQ ID NO:23、SEQ ID NO:33、SEQ ID NO:77、SEQ ID NO:71、SEQ ID NO:87、SEQ ID NO:73和SEQ ID NO:75;
在合适的发酵培养基中使重组酵母细胞发酵;以及,可选地,
回收如本文所述的甜菊醇糖苷。
在涉及细胞、核酸、蛋白质或载体使用时,术语“重组”指示细胞、核酸、蛋白质或载体已通过引入异源核酸或蛋白质或改变天然核酸或蛋白质来进行修饰,或者指示细胞源自如此修饰的细胞。因此,例如,重组细胞表达在细胞的天然(非重组)形式中未发现的基因或者表达以其他形式异常表达、低表达或完全未表达的天然基因。术语“重组的”与“遗传修饰的”同义。
用于本发明的方法中的重组酵母细胞可以是任何合适的酵母细胞。优选的重组酵母细胞可以选自下列各属:酵母属(Saccharomyces)(例如,酿酒酵母(S.cerevisiae)、贝酵母(S.bayanus)、巴斯德酵母(S.pastorianus)、卡尔斯伯酵母(S.carlsbergensis))、酒香酵母属(Brettanomyces)、克鲁维酵母属(Kluyveromyces)、假丝酵母属(Candida)(例如,克鲁斯假丝酵母(C.krusei)、拉考夫假丝酵母(C.revkaufi)、铁红假丝酵母(C.pulcherrima)、热带假丝酵母(C.tropicalis)、产朊假丝酵母(C.utilis))、伊萨酵母属(Issatchenkia)(例如,东方伊萨酵母(I.orientalis))、毕赤酵母属(Pichia)(例如,巴斯德毕赤酵母(P.pastoris))、裂殖酵母属(Schizosaccharomyces)、汉逊酵母属(Hansenula)、克勒克酵母属(Kloeckera)、管囊酵母属(Pachysolen)、许旺酵母属(Schwanniomyces)、毛孢子菌属(Trichosporon)、耶氏酵母属(Yarrowia)(例如,解脂耶氏酵母(Y.lipolytica)(先前分类为解脂假丝酵母(Candida lipolytica)))、Yamadazyma。优选地,重组酵母细胞是酿酒酵母、解脂耶氏酵母或东方伊萨酵母细胞。
用于根据本发明所述方法中的重组酵母细胞可以包括一个或多个重组核苷酸序列,其对下列中的一个或多个进行编码:
具有对映-柯巴基焦磷酸合酶活性的多肽;
具有对映-贝壳杉烯合酶活性的多肽;
具有对映-贝壳杉烯氧化酶活性的多肽;以及
具有贝壳杉烯酸-13-羟化酶活性的多肽。
出于本发明的目的,具有对映-柯巴基焦磷酸合酶(EC 5.5.1.13)的多肽能够催化化学反应:
Figure BDA0003202864070000111
所述酶具有一种底物,香叶基香叶基焦磷酸;以及一种产物,对映-柯巴基焦磷酸。所述酶参与赤霉素生物的合成。所述酶属于异构酶家族,特别是分子内裂解酶的类别。所述酶类别的系统名称是对映-柯巴基-二磷酸裂解酶(脱环)。通常使用的其他名称包括具有对映-柯巴基焦磷酸合酶、对映-贝壳杉烯合酶A和对映-贝壳杉烯合成酶A。
编码对映-柯巴基焦磷酸合酶的合适核酸序列可例如包含在SEQ ID.NO:1、3、5、7、17、19、59、61、141、142、151、152、153、154、159、160、182或184中列出的序列。
出于本发明的目的,具有对映-贝壳杉烯合酶活性(EC 4.2.3.19)的多肽是能够催化以下化学反应的多肽:
对映-柯巴基二磷酸
Figure BDA0003202864070000112
对映-贝壳杉烯+二磷酸
因此,所述酶具有一种底物,对映-柯巴基二磷酸;以及两种产物,对映-贝壳杉烯和二磷酸。
所述酶属于裂解酶家族,特别是作用于磷酸盐/酯的碳-氧裂解酶。所述酶类别的系统名称是对映-柯巴基二磷酸二磷酸-裂解酶(环化,对映-贝壳杉烯形成)。常用的其它名称包括对映-贝壳杉烯合酶B、对映-贝壳杉烯合成酶B、对映-柯巴基-二磷酸二磷酸-裂解酶和(环化)。所述酶参与双萜类生物合成。
编码对映-贝壳杉烯合酶的合适核酸序列可例如包含在SEQ ID.NO:9、11、13、15、17、19、63、65、143、144、155、156、157、158、159、160、183或184中列出的序列。
对映-柯巴基二磷酸合酶还可具有与相同蛋白质分子相关联的不同对映-贝壳杉烯合酶活性。由对映-贝壳杉烯合酶催化的反应是赤霉素的生物合成途径中的下一步骤。两种类型的酶活性是不同的,并且定点诱变以抑制蛋白质的对映-贝壳杉烯合酶活性导致对映-柯巴基焦磷酸的积累。
因此,在适用于本发明方法的重组酵母中使用的单个核苷酸序列可编码具有对映-柯巴基焦磷酸合酶活性和对映-贝壳杉烯合酶活性的多肽。或者,两种活性可被两个不同的分离的核苷酸序列编码。
出于本发明的目的,具有对映-贝壳杉烯氧化酶活性(EC 1.14.13.78)的多肽是能够催化对映-贝壳杉烯的4-甲基的三次连续氧化以产生贝壳杉烯酸的多肽。这种活性通常需要细胞色素P450的存在。
编码对映-贝壳杉烯氧化酶的合适核酸序列可例如包含在SEQ ID.NO:21、23、25、67、85、145、161、162、163、180或186中列出的序列。
出于本发明的目的,具有贝壳杉烯酸13-羟化酶活性(EC 1.14.13)的多肽是能够催化使用NADPH和O2形成甜菊醇(对映-贝壳杉-16-烯-13-醇-19-酸)的多肽。这种活性也可称为对映-贝壳杉烯酸13-羟化酶活性。
编码贝壳杉烯酸13-羟化酶的合适核酸序列可例如包含在SEQ ID.NO:27、29、31、33、69、89、91、93、95、97、146、164、165、166、167或185中列出的序列。
适用于本发明方法的重组酵母细胞可包含编码具有NADPH-细胞色素p450还原酶活性的多肽的重组核酸序列。也就是说,适用于本发明方法的重组酵母可能够表达编码具有NADPH-细胞色素p450还原酶活性的多肽的核苷酸序列。出于本发明的目的,具有NADPH-细胞色素P450还原酶活性(EC 1.6.2.4;也称为NADPH:高铁血红蛋白氧化还原酶、NADPH:血红素蛋白氧化还原酶、NADPH:P450氧化还原酶、P450还原酶、POR、CPR、CYPOR)的多肽通常是一种这样的多肽,其为膜结合酶,从而允许电子从含有FAD和FMN的酶NADPH:细胞色素P450还原酶(POR;EC 1.6.2.4)转移至真核细胞的微粒体中的细胞色素P450。
编码NADPH-细胞色素p450还原酶的合适的核酸序列可以例如包括在SEQ ID.NO:53、55、57或77中显示的序列。
适合用于本发明的方法中的重组酵母细胞还可以包括一个或多个重组核酸序列,其对下列中的一个或多个进行编码:
(i)具有UGT74G1活性的多肽;
(ii)具有UGT2活性的多肽;
(iii)具有UGT85C2活性的多肽;以及
(iv)具有UGT76G1活性的多肽。
适合用于本发明中的重组酵母可以包括编码能够催化将C-13-葡萄糖添加至甜菊醇的多肽的核苷酸序列。也就是说,适合用于本发明的方法中的重组酵母可以包括UGT,其能够催化其中将甜菊醇转化成甜菊单糖苷的反应。
这种适合用于本发明方法中的重组酵母可包含编码具有由UDP-糖基转移酶(UGT)UGT85C2所示的活性的多肽的核苷酸序列,由此酵母转化后的核苷酸序列赋予所述酵母将甜菊醇转化为甜菊醇单糖苷的能力。
UGT85C2活性是将葡萄糖单元转移至甜菊醇的13-OH。因此,合适的UGT85C2可充当尿苷5'-二磷酸葡糖基∶甜菊醇13-OH转移酶和尿苷5'-二磷酸葡糖基∶甜菊醇-19-O-糖苷13-OH转移酶。功能性UGT85C2多肽还可催化葡糖基转移酶反应,所述反应利用除甜菊醇和甜菊醇-19-O-糖苷以外的甜菊醇糖苷底物。此类序列可在本文中称为UGT1序列。
适合用于本发明中的重组酵母可以包括编码具有UGT2活性的多肽的核苷酸序列。
具有UGT2活性的多肽是用作尿苷5’-二磷酸葡糖基:甜菊醇-13-O-葡萄糖苷转移酶(也称为甜菊醇-13-单葡萄糖苷1,2-转葡糖基酶)的多肽,其将葡萄糖部分转移至受体分子甜菊醇-13-O-葡萄糖苷的13-O-葡萄糖的C-2’。通常,合适的UGT2多肽也用作尿苷5’-二磷酸葡糖基:甜茶苷转移酶,其将葡萄糖部分转移到受体分子甜茶苷的13-O-葡萄糖的C-2’。
具有UGT2活性的多肽还可以催化利用除了甜菊醇-13-O-葡萄糖苷和甜茶苷以外的甜菊醇糖苷底物的反应,例如,功能性UGT2多肽可以利用甜菊苷作为底物,将葡萄糖部分转移到19-O-葡萄糖残基的C-2’以制备莱鲍迪甙E。功能性UGT2多肽还可以利用莱鲍迪甙A作为底物,将葡萄糖部分转移到19-O-葡萄糖残基的C-2’以制备莱鲍迪甙D。然而,功能性UGT2多肽通常不将葡萄糖部分转移到在C-13位置具有1,3-结合葡萄糖的甜菊醇化合物,即通常不发生葡萄糖部分至甜菊醇1,3-双糖苷和1,3-甜菊苷的转移。
具有UGT2活性的多肽也可以将糖部分从除了尿苷二磷酸葡萄糖以外的供体进行转移。例如,具有UGT2活性的多肽充当尿苷5’-二磷酸D-木糖基:甜菊醇-13-O-葡萄糖苷转移酶,其将木糖部分转移到受体分子甜菊醇-13-O-葡萄糖苷的13-O-葡萄糖的C-2’。作为另一个实例,具有UGT2活性的多肽可以充当尿苷5’-二磷酸L-鼠李糖基:甜菊醇-13-O-葡萄糖苷转移酶,其将鼠李糖部分转移到受体分子甜菊醇的13-O-葡萄糖的C-2’。
适合用于本发明的方法中的重组酵母可以包括编码具有UGT活性的核苷酸序列,可以包括编码能够催化将C-19-葡萄糖添加至甜菊双糖苷的多肽的核苷酸序列。也就是说,本发明的重组酵母可以包括UGT,其能够催化其中将甜菊双糖苷转化成甜菊苷的反应。因此,这样的重组酵母可能够将甜菊双糖苷转化成甜菊苷。这种核苷酸序列的表达可以赋予重组酵母制备至少甜菊苷的能力。
适合用于本发明的方法中的重组酵母因此还可以包括编码具有由UDP-糖基转移酶(UGT)UGT74G1所示活性的多肽的核苷酸序列,由此在进行酵母转化后核苷酸序列赋予该细胞将甜菊双糖苷转化成甜菊苷的能力。
合适的UGT74G1多肽可能够将葡萄糖单元分别转移至甜菊醇的13-OH或19-COOH。合适的UGT74G1多肽可充当尿苷5'-二磷酸葡糖基∶甜菊醇19-COOH转移酶和尿苷5'-二磷酸葡糖基∶甜菊醇-13-O-糖苷19-COOH转移酶。功能性UGT74G1多肽还可催化使用除甜菊醇和甜菊醇-13-O-糖苷以外的甜菊醇糖苷底物或者从除尿苷二磷酸葡萄糖以外的供体转移糖部分的糖基转移酶反应。此类序列可在本文中称为UGT3序列。
适合用于本发明的方法中的重组酵母可包含编码能够催化甜菊苷的C-13位置处的葡萄糖的C-3'的葡糖基化的多肽的核苷酸序列。也就是说,适合用于本发明的方法中的重组酵母可包含UGT,所述UGT能够催化甜菊苷至莱鲍迪甙A的反应。因此,这种重组酵母可能够将甜菊苷转化为莱鲍迪甙A。这种核苷酸序列的表达可赋予酵母产生至少莱鲍迪甙A的能力。
因此,适合用于本发明的方法中的重组酵母还可包含编码具有由UDP-糖基转移酶(UGT)UGT76G1所示的活性的多肽的核苷酸序列,由此酵母转化后的核苷酸序列赋予酵母将甜菊苷转化为莱鲍迪甙A的能力。
合适的UGT76G1向受体分子甜菊醇1,2糖苷的C-13-O-葡萄糖的C-3'添加葡萄糖部分。因此,UGT76G1例如充当尿苷5'-二磷酸葡糖基∶甜菊醇13-O-1,2葡糖苷C-3'葡糖基转移酶和尿苷5'-二磷酸葡糖基∶甜菊醇-19-O-葡萄糖、13-O-1,2双糖苷C-3'葡糖基转移酶。功能性UGT76G1多肽还可催化葡糖基转移酶反应,所述反应使用含有除葡萄糖以外的糖的甜菊醇糖苷底物,例如甜菊醇鼠李糖苷和甜菊醇木糖苷。此类序列可在本文中称为UGT4序列。UGT4可以替代地或额外地能够将RebD转化成RebM。
适合用于本发明的方法中的重组酵母通常包括编码至少一种具有UGT1活性的多肽,至少一种具有UGT2活性的多肽,至少一种具有UGT3活性的多肽和至少一种具有UGT4活性的多肽的核苷酸序列。这些核酸序列中的一种或多种可以是重组的。给定的核酸可以编码具有上述活性中的一组或多种的多肽。例如,核酸编码具有上述活性中的两种、三种或四种的多肽。优选地,用于本发明的方法中的重组酵母包括UGT1、UGT2、UGT3和UGT4活性。在本文的表15中描述了合适的UGT1、UGT2、UGT3和UGT4序列。编码UGT1、2、3和4活性的序列的优选组合为SEQ ID NO:71、87、73和75。
在本发明的方法中,重组宿主例如酵母可以能够在本领域中已知的任何合适的碳源上生长,并且将其转化为一种或更多种甜菊醇糖苷。重组宿主可能够直接转化植物生物质、纤维素、半纤维素、果胶、鼠李糖、半乳糖、岩藻糖、麦芽糖、麦芽糖糊精、核糖、核酮糖或淀粉、淀粉衍生物、蔗糖、乳糖和甘油。因此,优选的宿主表达酶如用于将纤维素转化成葡萄糖单体和将半纤维素转化成木糖和阿拉伯糖单体所需的纤维素酶(内切纤维素酶和外切纤维素酶)和半纤维素酶(例如内切和外切木聚糖酶、阿拉伯糖酶),能够将果胶转化成葡萄糖醛酸和半乳糖醛酸的果胶酶或将淀粉转化成葡萄糖单体的淀粉酶。优选地,宿主能够转化选自由以下各项组成的组的碳源:葡萄糖、木糖、阿拉伯糖、蔗糖、乳糖和甘油。宿主细胞可例如是WO03/062430、WO06/009434、EP1499708B1、WO2006096130或WO04/099381中所描述的真核宿主细胞。
在用于产生本发明的甜菊醇糖苷的方法中使用的发酵培养基可以是允许特定真核宿主细胞生长的任何合适的发酵培养基。发酵培养基的基本要素是本领域的技术人员已知的,并且可适用于所选择的宿主细胞。
优选地,发酵培养基包含选自由以下各项组成的组的碳源:植物生物质、纤维素、半纤维素、果胶、鼠李糖、半乳糖、岩藻糖、果糖、麦芽糖、麦芽糖糊精、核糖、核酮糖或淀粉、淀粉衍生物、蔗糖、乳糖、脂肪酸、甘油三酯和甘油。优选地,发酵培养基还包含氮源,如尿素;或铵盐,如硫酸铵、氯化铵、硝酸铵或磷酸铵。
根据本发明的发酵方法可以分批、分批补料或连续模式进行。也可应用单独的水解和发酵(SHF)方法或同时糖化和发酵(SSF)方法。这些发酵方法模式的组合对于最佳生产率来说也可以是可行的。如果在发酵方法中使用淀粉、纤维素、半纤维素或果胶作为碳源,则SSF方法可以是特别有吸引力的,其中可需要添加水解酶如纤维素酶、半纤维素酶或果胶酶以水解底物。
用于产生根据本发明的甜菊醇糖苷的发酵方法可以是需氧或厌氧发酵方法。
厌氧发酵方法可在本文中定义为在不存在氧的情况下运行或者基本上不消耗氧(优选小于5、2.5或1mmol/L/h),并且其中有机分子充当电子供体和电子受体两者的发酵方法。根据本发明的发酵方法也可首先在需氧条件下运行,且随后在厌氧条件下运行。
发酵方法也可在限氧或微需氧条件下进行。或者,发酵方法可首先在需氧条件下运行,且随后在限氧条件下运行。限氧发酵方法是其中氧消耗受到从气体到液体的氧传递的限制的过程。氧限制的程度由进入气流的量和组成以及所用发酵设备的实际混合/传质特性决定。
在根据本发明的方法中产生甜菊醇糖苷可在宿主细胞的生长阶段期间、固定(稳定状态)阶段期间或在两个阶段期间发生。在不同的温度下运行发酵方法可以是可行的。
用于产生甜菊醇糖苷的方法可在对于重组宿主来说最佳的温度下进行。对于每种转化的重组宿主而言,最佳生长温度可不同并且是本领域的技术人员已知的。最佳温度可高于野生型生物的最适温度以在非无菌条件下在最低感染敏感性和最低冷却成本的条件下有效生长生物体。或者,所述方法可在对于重组宿主的生长来说不是最佳的温度下进行。
用于产生根据本发明的甜菊醇糖苷的方法可在任何合适的pH值下进行。如果重组宿主是酵母,则发酵培养基中的pH优选具有低于6、优选低于5.5、优选低于5、优选低于4.5、优选低于4、优选低于pH 3.5或低于pH3.0或低于pH 2.5、优选高于pH 2的值。在这些低pH值下进行发酵的优点是可防止发酵培养基中污染细菌的生长。
这种方法可以以工业规模进行。这种方法的产物是根据本发明所述的一种或多种甜菊醇糖苷。
从发酵培养基回收本发明的甜菊醇糖苷可以通过本领域中已知的方法,例如通过蒸馏、真空提取、溶剂提取或蒸发来执行。
在根据本发明所述的用于制备甜菊醇糖苷的方法中,可以实现高于0.5mg/l,优选为高于约1mg/l的浓度。
在重组宿主中表达本发明的一种或多种甜菊醇糖苷的情况下,这种细胞可需要进行处理以将其释放。
本发明还提供了一种组合物,其包括与一种或多种不同的甜菊醇糖苷相组合的本发明的甜菊醇糖苷。一种或多种不同的甜菊醇糖苷中的一种或多种可以是本发明的甜菊醇糖苷。一种或多种不同的甜菊醇糖苷中的一种或多种可以是糖基化二萜(即,二萜糖苷),诸如甜菊单糖苷、甜菊双糖苷、甜菊苷、莱鲍迪甙A、莱鲍迪甙B、莱鲍迪甙C、莱鲍迪甙D、莱鲍迪甙E、莱鲍迪甙F、莱鲍迪甙M、甜茶苷、杜尔可苷A、甜菊醇-13-单糖苷、甜菊醇-19-单糖苷或13-[(β-D-吡喃葡萄糖基)氧基)贝壳杉-16-烯-18-酸2-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基酯。
本发明的组合物可以包括与更大量的不同的甜菊醇糖苷相组合的相对少量的本发明的甜菊醇糖苷。
例如,本发明的组合物可以包括与本发明的甜菊醇糖苷相组合的至少约80%、至少约90%、至少约95%的莱鲍迪甙A。本发明的组合物可以包括与本发明的甜菊醇糖苷相组合的至少约80%、至少约90%、至少约95%的莱鲍迪甙D。本发明的组合物可以包括与本发明的甜菊醇糖苷相组合的至少约80%、至少约90%、至少约95%的莱鲍迪甙M。本发明的组合物可以包括与本发明的甜菊醇糖苷和莱鲍迪甙D相组合的至少约80%、至少约90%、至少约95%的莱鲍迪甙A。本发明的组合物可以包括与本发明的甜菊醇糖苷和莱鲍迪甙M相组合的至少约80%、至少约90%、至少约95%的莱鲍迪甙A。所提及的百分比是以干重计的。
根据本发明所述的甜菊醇糖苷可以用于已知的用于这种化合物的任何应用中。特别地,其可以例如用作甜味剂或风味剂,例如在食品、饲料或饮料中。例如,甜菊醇糖苷可以被配制在软饮料诸如碳酸饮料、桌面甜味剂、口香糖、乳制品诸如酸奶(例如,原味酸奶)、蛋糕、谷物或基于谷物的食品、营养食品、药物、食用凝胶、糖食、化妆品、牙膏或其他口腔组合物等中。此外,甜菊醇糖苷可以用作甜味剂,其不仅可用于饮料、食品和其他专用于人类消费的制品中,还可用于具有改善的特性的动物饲料和草料中。
因此,本发明尤其提供了一种甜味剂组合物、风味剂组合物、食品、饲料或饮料,其包括根据本发明的方法所制备的甜菊醇糖苷。
本发明的组合物可以包括一种或多种非天然存在的组分。
而且,本发明提供了:
-本发明的甜菊醇糖苷或组合物在甜味剂组合物或风味组合物中的用途;以及
-本发明的甜菊醇糖苷或组合物在食品、饲料或饮料中的用途。
在制造食品、饮料、药物、化妆品、桌面制品、口香糖期间,可以使用传统的方法,诸如混合、捏合、溶解、浸酸、渗透、渗滤、喷洒、雾化、注入以及其他方法。
在本发明中获得的甜菊醇糖苷能够以干或液体形式使用。其能够在对食品进行热处理前或后进行添加。甜味剂的量取决于使用目的。其能够单独地或与其他化合物相组合地进行添加。
根据本发明的方法制备的化合物可以与一种或多种另外的非热量或热量甜味剂相混合。这种混合可以用于改善风味或时间特性或稳定性。本发明的甜菊醇糖苷可以用于改善第二种甜菊醇糖苷,诸如莱鲍迪甙A、D或M的风味或时间特性或稳定性。
大范围的非热量或热量甜味剂可以适合于与本发明的甜菊醇糖苷,包括根据本发明所述的一种或多种其他甜菊醇糖苷或一种或多种其他已知的甜菊醇糖苷,诸如甜菊单糖苷、甜菊双糖苷、甜菊苷、莱鲍迪甙A、莱鲍迪甙B、莱鲍迪甙C、莱鲍迪甙D、莱鲍迪甙E、莱鲍迪甙F、莱鲍迪甙M、甜茶苷、杜尔可苷A、甜菊醇-13-单糖苷、甜菊醇-19-单糖苷或13-[(β-D-吡喃葡萄糖基)氧基)贝壳杉-16-烯-18-酸2-O-β-D-吡喃葡萄糖基-β-D-吡喃葡萄糖基酯相混合。替代地或额外地,非热量甜味剂为诸如罗汉果苷、莫纳甜、阿斯巴甜、安赛蜜盐、甜蜜素、三氯蔗糖、糖精盐或赤藓糖醇。适合与甜菊醇糖苷相混合的热量甜味剂包括糖醇和碳水化合物,诸如蔗糖、葡萄糖、果糖和HFCS。还可以使用甜味氨基酸,诸如甘氨酸、丙氨酸或丝氨酸。
甜菊醇糖苷可与甜味剂抑制剂如天然甜味剂抑制剂组合使用。它可与鲜味增强剂如氨基酸或其盐组合。
甜菊醇糖苷可与多元醇或糖醇、碳水化合物、生理活性物质或功能成分(例如类胡萝卜素、膳食纤维、脂肪酸、皂苷、抗氧化剂、营养食品、类黄酮、异硫氰酸酯、苯酚、植物甾醇或甾烷醇(植物甾醇和植物甾烷醇)、多元醇、益生元、益生菌、植物雌激素、大豆蛋白、硫化物/硫醇、氨基酸、蛋白质、维生素、矿物质和/或基于健康益处如心血管、降胆固醇或抗炎分类的物质组合。
具有甜菊醇糖苷的组合物可包括调味剂、芳香组分、核苷酸、有机酸、有机酸盐、无机酸、苦味化合物、蛋白质或蛋白质水解产物、表面活性剂、类黄酮、收敛剂化合物、维生素、膳食纤维、抗氧化剂、脂肪酸和/或盐。
本发明的甜菊醇糖苷可作为高强度甜味剂应用,以产生具有改进的味道特征的零卡路里、低卡路里或糖尿病人用饮料和食品。它也可用于不能使用糖的饮料、食品、药物和其他产品中。
此外,本发明的甜菊醇糖苷可用作甜味剂,不仅用于饮料、食品和其它专门用于人消费的产品,而且用于具有改进的特性的动物饲料和草料中。
本发明组合物的甜菊醇糖苷可用作甜味化合物的产品的实例可以是酒精饮料,如伏特加酒、葡萄酒、啤酒、烈酒、清酒等;天然果汁、提神饮料、碳酸软饮料、减肥饮料、零卡路里饮料、低卡路里饮料和食物、酸奶饮料、速溶果汁、速溶咖啡、粉末型速溶饮料、罐装产品、糖浆、发酵大豆酱、酱油、醋、调味品、蛋黄酱、番茄酱、咖喱、汤、速食肉汤、酱油粉、醋粉、多种类型的饼干、香米饼、咸饼干、面包、巧克力、焦糖、糖果、口香糖、果冻、布丁、蜜饯和腌菜、鲜奶油、果酱、橘子酱、糖花膏、奶粉、冰淇淋、冰糕、包装在瓶中的蔬菜和水果、罐装和煮熟的豆类、在甜味酱中煮熟的肉和食物、农业蔬菜食品、海鲜、火腿、香肠、鱼火腿、鱼香肠、鱼酱、油炸鱼制品、干制海产品、冷冻食品、腌渍海带、腊肉、烟草、医药产品等。原则上它可具有无限应用。
甜味组合物包含饮料,其非限制性实例包括非碳酸化和碳酸饮料,如可乐、姜汁汽水、根汁汽水、苹果汁、水果味软饮料(例如柑橘味软饮料,如柠檬莱姆或橙汁)、软饮料粉等;来自水果或蔬菜的果汁、包括榨汁等的果汁、含有果粒的果汁、水果饮料、果汁饮料、含果汁的饮料、具有水果调味料的饮料、蔬菜汁、含蔬菜的汁以及含水果和蔬菜的混合果汁;运动饮料、能量饮料、接近水的饮料等(例如具有天然或合成调味剂的水);茶类或喜欢型饮料如咖啡、可可、红茶、绿茶、乌龙茶等;含乳成分饮料如乳饮料、含乳成分咖啡、牛奶咖啡、奶茶、果奶饮料、饮用酸奶、乳酸菌饮料等;以及乳制品。
通常,甜味组合物中存在的甜味剂的量取决于甜味组合物的具体类型及其所需的甜度而广泛变化。本领域的普通技术人员可容易确定加入到甜味组合物中的甜味剂的适当量。
本发明的甜菊醇糖苷可以干或液体形式使用。它可在食品热处理之前或之后加入。甜味剂的量取决于使用目的。它可单独添加或与其它化合物组合添加。
在食品、饮料、药物、化妆品、桌面产品、口香糖的制造过程中,可使用诸如混合、捏合、溶解、酸洗、渗透、渗滤、喷洒、雾化、灌注和其它方法的常规方法。
因此,本发明的组合物可通过本领域的技术人员已知的提供成分的均匀或均质混合物的任何方法来制备。这些方法包括干混、喷雾干燥、团聚、湿法制粒、压实、共结晶等。
呈固体形式时,本发明的甜菊醇糖苷可以适于递送到待甜化的食物中的任何形式提供给消费者,所述形式包括小袋、小包、散装袋或盒、方块、片剂、喷雾或可溶解的条。所述组合物可以单位剂量或散装形式递送。
对于液体甜味剂体系和组合物而言,应开发方便范围的流体、半流体、糊状和膏状形式、使用任何形状或形式的适当包装材料的适当包装,其便于携带或分配或储存或运输含有任何上述甜味剂产品或上述产品的组合的任何组合。
所述组合物可包含多种填充剂、功能成分、着色剂、调味剂。
标准遗传技术,诸如在宿主细胞中的酶的过表达、宿主细胞的遗传修饰或杂交技术是本领域中的已知方法,诸如在Sambrook和Russel(2001)的“分子克隆:实验室手册(第3版)”,冷泉港实验室,冷泉港实验室出版社,或F.Ausubel等人编辑,“最新分子生物学实验方法汇编”,Green Publishing and Wiley Interscience,纽约(1987)中所述的。根据例如EP-A-0635574、WO 98/46772、WO 99/60102和WO 00/37671、WO90/14423、EP-A-0481008、EP-A-0635574和US 6265186,已知用于真菌宿主细胞的转化、遗传修饰等的方法。
本发明的一些实施方案:
1.一种具有式(I)的甜菊醇糖苷,
Figure BDA0003202864070000211
其中在位置R1上存在至少三个糖部分且在位置R2上存在至少三个糖部分,且其中甜菊醇糖苷包括至少七个糖部分,其全部均直接或间接地通过β键联接到甜菊醇糖苷配基。
2.一种具有式(I)的甜菊醇糖苷,
Figure BDA0003202864070000221
其中在位置R1上存在至少四个糖部分且在位置R2上存在至少三个糖部分。
3.一种具有式(I)的甜菊醇糖苷,
Figure BDA0003202864070000222
其中在位置R1上存在至少三个糖部分且在位置R2上存在至少三个糖部分,其中甜菊醇糖苷包括至少七个糖部分,且其中存在于位置R1的糖中的至少一个通过α键被联接到甜菊醇糖苷配基或糖分子。
4.一种具有式(I)的甜菊醇糖苷,
Figure BDA0003202864070000223
其中在位置R1上存在至少三个糖部分且在位置R2上存在至少四个糖部分,其中存在于位置R2上的糖部分中的至少四个为葡萄糖部分。
5.一种具有式(II)的甜菊醇糖苷
Figure BDA0003202864070000231
6.一种具有式(III)的甜菊醇糖苷
Figure BDA0003202864070000232
7.一种具有式(IV)的甜菊醇糖苷
Figure BDA0003202864070000241
8.根据前述实施方案中任一项所述的甜菊醇糖苷,其为发酵制备的。
9.发酵制备的具有式(I)的甜菊醇糖苷,
Figure BDA0003202864070000242
其中在位置R1上存在至少三个糖部分且在位置R2上存在至少三个糖部分,且其中甜菊醇糖苷包括至少七个糖部分。
10.根据实施方案9所述的甜菊醇糖苷,其具有根据实施方案1至7中的任一项的结构。
11.一种用于制备根据前述实施方案中任一项所述的甜菊醇糖苷的方法,所述方法包括:
提供重组酵母细胞,其包括编码多肽的重组核酸序列,所述多肽包括由下列编码的氨基酸序列:SEQ ID NO:61、SEQ ID NO:65、SEQ ID NO:23、SEQ ID NO:33、SEQ ID NO:59、SEQ ID NO:71、SEQ ID NO:87、SEQ ID NO:73和SEQ ID NO:75;
在合适的发酵培养基中发酵重组酵母细胞;以及,可选地,
回收根据前述实施方案中任一项所述的甜菊醇糖苷。
12.一种组合物,其包括根据实施方案1至11中的任一项所述的甜菊醇糖苷以及一种或多种不同的甜菊醇糖苷。
13.一种食品、饲料或饮料,其包括根据实施方案1至10中的任一项所述的甜菊醇糖苷或根据实施方案12所述的组合物。
14.根据实施方案1至10中的任一项所述的甜菊醇糖苷或根据实施方案12所述的组合物在甜味剂组合物或风味组合物中的用途。
15.根据实施方案1至10中的任一项所述的甜菊醇糖苷或根据实施方案12所述的组合物在食品、饲料或饮料中的用途。
本文中对作为现有技术而给出的专利文件或其他事项的参考不应被视为承认该文件或事项是已知的或其含有的信息是在权利要求中的任一项的优先权日的公知常识的一部分。
本文阐明的每个参考文献的公开内容均通过引用整体并入本文。
本发明还通过下列实施例进一步进行了说明。
实施例
实施例1:STV016的构建
构建酿酒酵母菌株STV016以用于甜菊醇糖苷的发酵制备。
1.1 ERG20、BTS1和tHMG在酿酒酵母中的过表达
对于ERG20、BTS1 tHMG1的过度表达而言,使用W02013/076280中描述的技术将表达盒设计为整合在一个基因座中。为了扩增整合基因座的5'和3'整合侧翼,使用了来自CEN.PK酵母菌株(van Dijken等人.Enzyme and Microbial Technology 26(2000)706-714)的合适的引物和基因组DNA。不同的基因在DNA2.0作为盒(含有同源序列、启动子、基因、终止子、同源序列)订购。这些盒中的基因侧接组成型启动子和终止子。参见表1。将来自DNA2.0的含有ERG20、tHMG1和BTS1盒的质粒DNA溶解至100ng/μl的浓度。在50μl PCR混合物中,20ng模板与20pmol的引物一起使用。将材料溶解至0.5μg/μl的浓度。
表1过表达构建体的组成
Figure BDA0003202864070000251
Figure BDA0003202864070000261
为了扩增选择标记,使用了pUG7-EcoRV构建体(图1)和合适的引物。使用Zymoclean凝胶DNA回收试剂盒(ZymoResearch)从凝胶中纯化KanMX片段。将酵母菌株Cen.PK113-3C用表2中所列的片段转化。
表2用于ERG20、tHMG1和BTS1转化的DNA片段
片段
5’YPRcTau3
ERG20盒
tHMG1盒
KanMX盒
BTS1盒
3’YPRcTau3
在30℃下在YEPhD(酵母提取物植物蛋白胨葡萄糖;来自BD的BBL植物蛋白胨)中转化和恢复2.5小时后,将细胞与200μg/ml G418(Sigma)一起接种在YEPhD琼脂上。将板在30℃下孵育4天。通过诊断PCR和测序确定正确的整合。用蛋白质上LC/MS证实过度表达。图2中示出了ERG20、tHMG1和BTS1的组装示意图。此菌株被命名为STV002。
此菌株中CRE-重组酶的表达导致KanMX标记的外重组。用诊断PCR确定ERG20、tHMG和BTS1的存在和正确外重组。
1.2 Erg9的敲低
为了降低Erg9的表达,设计并使用了Erg9敲低构建体,所述构建体含有修饰的3'端,其继续进入驱动TRP1表达的TRP1启动子。
将含有Erg9-KD片段的构建体转化到到大肠杆菌TOP10细胞中。将转化体在2PY(2次植物蛋白胨酵母提取物)、sAMP培养基中生长。将质粒DNA用QIAprep旋转小量制备试剂盒(Qiagen)分离并用SalI-HF(New England Biolabs)消化。为了浓缩,将DNA用乙醇沉淀。将所述片段转化到酿酒酵母中,并将菌落接种在无色氨酸的无机培养基(Verduyn等人,1992.Yeast 8:501-517)琼脂板上。通过诊断PCR和测序证实Erg9-KD构建体的正确整合。进行的Erg9-KD构建体的转化的示意图在图3中示出。所述菌株被命名为STV003。
1.3 UGT2_1a的过表达
对于UGT2_1a的过度表达,使用如共同待决专利申请号W02013/076280和WO2013/144257中所描述的技术。将UGT2a在DNA2.0作为盒(含有同源序列、启动子、基因、终止子、同源序列)订购。关于细节,参见表3。为了获得含有标记和Cre-重组酶的片段,使用如共同待决专利申请号WO2013/135728中所描述的技术。使用赋予对诺尔丝菌素的抗性的NAT标记用于选择。
表3过表达构建体的组成
Figure BDA0003202864070000271
合适的引物用于扩增。为了扩增整合基因座的5'和3'整合侧翼,使用了来自CEN.PK酵母菌株的合适的引物和基因组DNA。
用表4中列出的片段转化酿酒酵母酵母菌株STV003,并将转化混合物接种在含有50μg/ml诺尔丝菌素(来自Jena Bioscience的Lexy NTC)的YEPhD琼脂板上。
表4用于UGT2a转化的DNA片段
Figure BDA0003202864070000272
Figure BDA0003202864070000281
CRE重组酶的表达通过半乳糖的存在活化。为了诱导CRE重组酶的表达,将转化体在YEPh半乳糖培养基上重新划线。这导致位于lox位点之间的标记的外重组。通过诊断PCR证实了UGT2a的正确整合和NAT标记的外重组。所得菌株被命名为STV004。进行的UGT2a构建体的转化的示意图在图4中示出。
1.4至RebA的制备路径:CPS、KS、KO、KAH、CPR、UGT1、UGT3和UGT4的过表达
引起RebA制备的所有路径基因被设计成整合在STV004菌株背景中的一个基因座中。为了扩增用于整合基因座(位点3)的5’和3’整合侧翼,使用了合适的引物和源于CEN.PK酵母菌株的基因组DNA。将不同的基因在DNA2.0定制为盒(包含同源序列、启动子、基因、终止子、同源序列)(参见表5以了解概况)。将源于DNA2.0的DNA溶解至100ng/μl。将该储备溶液进一步稀释至5ng/μl,其中的1μl用于50μl-PCR的混合物中。该反应含有25pmol的各引物。在扩增后,用NucleoSpin 96PCR清除试剂盒(Macherey-Nagel)纯化DNA,或替代地使用乙醇沉淀来浓缩DNA。
表5用于CPS、KS、KO、KAH、CPR、UGT1、UGT3和UGT4的过表达构建体的组成
启动子 开放阅读框 终止子
Kl prom 12.pro(SEQ ID NO:205) CPS(SEQ ID NO:61) Sc Adh2.ter(SEQ ID NO:213)
Sc Pgk1.pro(SEQ ID NO:204) KS(SEQ ID NO:65) Sc Tal1.ter(SEQ ID NO:215)
Sc Eno2.pro(SEQ ID NO:201) KO(SEQ ID NO:23) Sc Tpi1.ter(SEQ ID NO:216)
Ag lox_Tef1.pro(SEQ ID NO:206) KANMX(SEQ ID NO:211) Ag Tef1_lox.ter(SEQ ID NO:217)
Sc Tef1.pro(SEQ ID NO:203) KAH(SEQ ID NO:33) Sc Gpm1.ter(SEQ ID NO:214)
Kl prom 6.pro(SEQ ID NO:207) CPR(SEQ ID NO:77) Sc Pdc1.ter(SEQ ID NO:218)
Sc Pma1.pro(SEQ ID NO:208) UGT1(SEQ ID NO:71) Sc Tdh1.ter(SEQ ID NO:219)
Sc Vps68.pro(SEQ ID NO:209) UGT3(SEQ ID NO:73) Sc Adh1.ter(SEQ ID NO:212)
Sc Oye2.pro(SEQ ID NO:210) UGT4(SEQ ID NO:75) Sc Eno1.ter(SEQ ID NO:220)
将到RebA的途径的所有片段(标记和侧翼)(参见表6总述)转化到酿酒酵母菌株STV004中。在20℃下在YEPhD中过夜恢复后,将转化混合物接种在含有200μg/ml G418的YEPhD琼脂上。将这些在30℃下孵育3天。
表6.用于CPS、KS、KO、KanMX、KAH、CPR、UGT1、UGT3和UGT4的转化的DNA片段
片段
5’INT1
CPS盒
KS盒
KO盒
KanMX盒
KAH盒
CPR盒
UGT1盒
UGT3盒
UGT4盒
3’INT1
通过诊断PCR和序列分析(3500基因分析仪,Applied Biosystems)证实了正确的整合。序列反应用BigDye终止子v3.1循环测序试剂盒(Life Technologies)进行。每个反应(10μl)均含有50ng模板和3.2pmol引物。将产物通过乙醇/EDTA沉淀纯化,溶解在10μl HiDi甲酰胺中并施加到装置上。所述菌株被命名为STV016。从GGPP到RebA的途径如何整合到基因组中的示意图在图5中示出。表7列出了本实施例1中使用的菌株。
表7菌株表
Figure BDA0003202864070000291
Figure BDA0003202864070000301
1.5STV016的发酵
如上所述构建的酿酒酵母菌株STV016在摇瓶(2升,具有200ml的培养基)中于30℃和220rpm下培养32小时。该培养基是基于Verduyn等人(Verduyn C、Postma E、ScheffersWA、Van Dijken JP.酵母,1992年7月;8(7):501-517),其改变了碳和氮源,如在表8中所示。
表8预培养基组成
原料 浓度(g/kg)
半乳糖 C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> 20.0
尿素 (NH<sub>2</sub>)<sub>2</sub>CO 2.3
磷酸二氢钾 KH<sub>2</sub>PO<sub>4</sub> 3.0
硫酸镁 MgSO<sub>4</sub>.7H<sub>2</sub>O 0.5
微量元素溶液 1
维生素溶液 1
a微量元素溶液
Figure BDA0003202864070000302
Figure BDA0003202864070000311
b维生素溶液
组分 浓度(g/kg)
生物素(D-) C<sub>10</sub>H<sub>16</sub>N<sub>2</sub>O<sub>3</sub>S 0.05
泛酸钙D(+) C<sub>18</sub>H<sub>32</sub>CaN<sub>2</sub>O<sub>10</sub> 1.00
烟酸 C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub> 1.00
肌醇 C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> 25.00
盐酸氯化硫胺素 C<sub>12</sub>H<sub>18</sub>Cl<sub>2</sub>N<sub>4</sub>OS.xH<sub>2</sub>O 1.00
盐酸吡哆醇 C<sub>8</sub>H<sub>12</sub>ClNO<sub>3</sub> 1.00
对氨基苯甲酸 C<sub>7</sub>H<sub>7</sub>NO<sub>2</sub> 0.20
随后,将摇瓶中200ml内容物转移至发酵罐(起始体积5L)中,其含有在表9中显示的培养基。
表9.组合发酵培养基
原料 最终浓度(g/kg)
一水葡萄糖 C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>.1H<sub>2</sub>O 4.4
硫酸铵 (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> 1
磷酸二氢钾 KH<sub>2</sub>PO<sub>4</sub> 10
硫酸镁 MgSO<sub>4</sub>.7H<sub>2</sub>O 5
微量元素溶液 - 8
维生素溶液 - 8
通过添加氨(25wt%)将pH控制在5.0。将温度控制在27℃。通过调整搅拌器速度来将pO2控制在40%。葡萄糖浓度通过受限于至发酵罐的受控进料保持,如在表10中所显示的。
表10发酵进料培养基的组成
原料 最终浓度(g/kg)
一水葡萄糖 C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>.1H<sub>2</sub>O 550
磷酸二氢钾 KH<sub>2</sub>PO<sub>4</sub> 15.1
七水硫酸镁 MgSO<sub>4</sub>.7H<sub>2</sub>O 7.5
Verduyn微量元素溶液 12
Verduyn维生素溶液 12
实施例2:使用LC-MS观察7.1、7.2和7.3
在水/乙醇混合物(菌株STV016)中结晶莱鲍迪甙A之后在母液中用下述的LC-MS系统来观察含有七个葡萄糖分子的甜菊醇糖苷(其还被称为7.1、7.2和7.3)。在纯化之前,通过蒸发来浓缩样品。
在被耦合至配备有以负离子模式操作的电喷雾电离源的XEVO-TQ质谱仪(Waters)的Acquity UPLC(Waters)上分析7.1、7.2和7.3,这是在MRM模式下在用于所研究的所有甜菊醇糖苷的去质子化分子上进行的,在这些m/z 1451.5中,表示含有七个葡萄糖分子的甜菊醇糖苷的去质子化分子。
使用具有作为移动相的(A)在LC-MS级水中的50mM乙酸铵和(B)LC-MS级乙腈的梯度洗脱,以2.1×100mm 1.8μm粒度的Acquity
Figure BDA0003202864070000321
T3柱实现了色谱分离。4分钟梯度从30%B开始,在0.5分钟内线性增加到35%B且在35%B保持0.8分钟,随后在0.7分钟内线性增加到95%B并在该处保持0.5分钟,然后用30%B进行1.5分钟的再平衡。使用5μl的注射体积将流速保持在0.6ml/min,并将柱温度设置成50℃。为m/z 1451.5观察的各个化合物7.1、7.2和7.3在0.59、0.71和0.74分钟的保留时间上进行洗脱。
对于7.1、7.2和7.3的元素组成的分析而言,用配备有以负离子模式操作的电喷雾电离源的LTQ-轨道阱傅里叶变换质谱仪(Thermo Electron)执行HRMS(高分辨率质谱)分析,这从m/z 300-2000进行扫描。使用Acella LC系统(Thermo Fisher)实现了色谱分离,该系统具有与上述的相同的柱和梯度系统。
使用该色谱系统,各个化合物在0.84、1.20和1.30分钟的保持时间上进行洗脱,其分别如在图6a中所示,且7.1、7.2和7.3被分别在m/z 1451.5786、1451.5793和1451.5793处进行表征,这与1451.5820的理论m/z值具有良好的一致性(分别为-1.8和-2.3ppm)。这些组分的相应化学式为C62H100O38,其用于不带电物质。
实施例3:使用制备型LC-UV进行的7.1、7.2和7.3的纯化
从含有最少量的感兴趣的化合物的酵母菌属培养液(菌株STV016)的乙醇提取物执行7.1、7.2和7.3的纯化。使用反相色谱(Waters Atlantis T3,30*150mm,5μm)进行制备分离,用LC-MS级水和乙腈作为洗脱液来进行梯度洗脱。使用40ml/min的流速和300μl的注射体积。
执行大约100次的注射,并且通过在210nm处的UV检测来触发感兴趣的化合物。在LC-MS和NMR分析之前,将7.1、7.2和7.3的所有级分合并且冷冻干燥。
使用LC-MS的在制备纯化后进行的用于质量确认和纯度测定的7.1、7.2和7.3的 LC-MS
在被耦合至配备有以负离子模式操作的电喷雾电离源的XEVO-TQ质谱仪(Waters)的Acquity UPLC(Waters)上分析7.1、7.2和7.3的纯度,这是在MRM模式下在用于所研究的所有甜菊醇糖苷的去质子化分子上进行的,在这些m/z 1451.5中,表示含有七个葡萄糖分子的甜菊醇糖苷的去质子化分子。在0.59分钟的保留时间处进行洗脱的7.1可被估计为超过80%纯,而在0.71和0.74分钟的保留时间处进行洗脱的7.2和7.3可被估计为超过90%纯且7.3仍含有约5%的7.2,如在图6b中所示。
用配备有以负离子模式操作的电喷雾电离源的LTQ-轨道阱傅里叶变换质谱仪(Thermo Electron)执行HRMS(高分辨率质谱)分析,检查各个化合物的元素组成且发现其与用于不带电物质的化学式C62H100O38相对应的理论质量具有良好的一致性。
实施例4:莱鲍迪甙7.1的分析
将如在实施例3中所述获得的1.1mg的级分7.1溶解于1.3ml的CDCl3/吡啶-d5 1/3(w/w)和2滴DCOOD中。
一系列具有小混合时间增量的COZY和TOCSY 2D NMR谱为所有三种莱鲍迪甙以及对映贝壳杉烷二萜核心提供(七个糖单位的)每个旋转系统的几乎所有质子的分配。HSQC实验允许分配相应的C-H耦合。
基于其在HMBC中与对映贝壳杉烷二萜核心的质子的长程相关性来识别glcI和glcII的端基异构H。
在相应的ROESY谱中观察到的H2I-H1V和H3I-H1VI以及H2II-H1III和H3II-H1IIII的长程相关性允许进行glcI和glcII的取代位点的分配。还通过在HMBC实验中glcIII至glcVI的端基异构质子与glcI和glcII13C原子,即H1III-C2II、H1IIII-C3II、H1V-C2I和H1VI-C3I的长程相关性来证实该分配。糖glcIII、glcIV、glcV和glcVI的位置与在莱鲍迪甙M的结构中的相同(图10)。
端基异构H1VII(5.86ppm对4.5至4.6ppm)和小耦合常数(3.8Hz对7.8Hz)的低场位移指示第七个糖残基具有α构型。
莱鲍迪甙7.1中第七个糖的位置可以根据在ROESY实验中的H1VII和C3III的长程HMBC耦合,H1VII-H3III的长程质子耦合以及C3III的低场位移(与约78-79ppm的未取代C3原子相比,其为83.8ppm)来进行识别。在图7中描绘了莱鲍迪甙7.1的结构。用于莱鲍迪甙7.1的所有1H和13C NMR化学位移均列于表11中。为了进行比较,莱鲍迪甙M的数据也包括在内。
表11在320K记录的在CDCl3/吡啶1/3和3滴DCOOD中的莱鲍迪甙7.1以及在300K, δTMS=0记录的在CDCl3/吡啶1/1和3滴DCOOD中的莱鲍迪甙M的1H和13C NMR化学位移
Figure BDA0003202864070000341
Figure BDA0003202864070000351
Figure BDA0003202864070000361
实施例5:莱鲍迪甙7.2的分析
将2.5mg的样品溶解于1ml的CDCl3/吡啶-d5 1/1(w/w)和2滴DCOOD中。
一系列具有小混合时间增量的COSY和TOCSY 2D NMR为所有三种莱鲍迪甙以及对映贝壳杉烷二萜核心提供(七个糖单位的)每个旋转系统的几乎所有质子的分配。HSQC实验允许分配相应的C-H耦合。
基于其在HMBC中与对映贝壳杉烷二萜核心的质子的长程相关性来识别glcI和glcII的端基异构H。
糖glcIII、glcIV、glcV和glcVI的位置与在莱鲍迪甙M的结构中的相同,且在专门用于莱鲍迪甙7.1的结构的分配的部分中更详细地描述了该分配。
莱鲍迪甙7.2中第七个糖的位置可以根据在ROESY实验中的H6IV和C1VII的长程HMBC耦合,H1VII-H6IV的长程质子耦合以及C6IV的低场位移(与62-64ppm的剩余的C6原子相比,其为69.4ppm)来进行识别。第七个糖经β-糖苷键被附接至GlcIV。在图8中描绘了莱鲍迪甙7.2的结构。莱鲍迪甙7.2的所有1H和13C NMR化学位移均列于表12中。为了进行比较,莱鲍迪甙M的数据也包括在内。
表12在300K,δTMS=0记录的在CDCl3/吡啶1/1和2滴DCOOD中的莱鲍迪甙7.2以及在 CDCl3/吡啶1/1和3滴DCOOD中的莱鲍迪甙M的1H和13C NMR化学位移
Figure BDA0003202864070000362
Figure BDA0003202864070000371
Figure BDA0003202864070000381
实施例6:莱鲍迪甙7.3的分析
将2.3mg的样品溶解于1ml的CDCl3/吡啶-d5 1/2(w/w)和3滴DCOOD中。
一系列具有小混合时间增量的COSY和TOCSY 2D NMR为所有三种莱鲍迪甙以及对映贝壳杉烷二萜核心提供(七个糖单位的)每个旋转系统的几乎所有质子的分配。HSQC实验允许分配相应的C-H耦合。
基于其在HMBC中与对映贝壳杉烷二萜核心的质子的长程相关性来识别glcI和glcII的端基异构H。
糖glcIII、glcIV、glcV和glcVI的位置与在莱鲍迪甙M的结构中的相同,且在专门用于莱鲍迪甙7.1的结构的分配的部分中更详细地描述了该分配。
莱鲍迪甙7.3中第七个糖的位置可以根据在ROESY实验中的H1VII和C6VI的长程HMBC耦合,H1VII-H6VI的长程质子耦合以及C6VI的低场位移(与61-63ppm的剩余的C6原子相比,其为69.5ppm)来进行识别。第七个糖经β-糖苷键被附接至GlcVI。在图9中描绘了莱鲍迪甙7.3的结构。莱鲍迪甙7.3的所有1H和13C NMR化学位移均列于表13中。为了进行比较,莱鲍迪甙M的数据也包括在内。
表13在300K,δTMS=0记录的在CDCl3/吡啶1/2和3滴DCOOD中的莱鲍迪甙7.3以及在 CDCl3/吡啶1/1和3滴DCOOD中的莱鲍迪甙M的1H和13C NMR化学位移
Figure BDA0003202864070000391
Figure BDA0003202864070000401
总之,如在表14中所显示的,确定了三种新的莱鲍迪甙。
表14新的莱鲍迪甙的概况
Figure BDA0003202864070000402
一般物料和方法(NMR分析)
为莱鲍迪甙样品中的每一个优化溶剂混合物以获得端基异构质子的信号的最佳可能分辨率。样品的量和溶剂量对于峰的分辨率来说是至关重要的,这是因为峰,特别是端基异构的峰的位移是依赖于浓度和pH的(图12)。
在300K记录莱鲍迪甙7.2和7.3的谱,而在莱鲍迪甙7.1的情况下,则必须使用更高的温度。在300K时,在莱鲍迪甙7.1谱中的共振相当得宽,这指示溶解性差或构象过程缓慢。因此,在320K的样品温度下实现了所有信号的最终分配。
对于每个样品而言,进行了各种2D NMR实验:在Bruker Avance III600和700MHz谱仪上于320K下记录COSY、TOCSY(具有40、50、60、70、80、90和100ms的混合时间)、HSQC、HMBC和ROESY(225、400ms的混合时间)的谱。在样品部分中指定了用于每个样品的详细分配。
在实施例4、5和6中,分别在图11a和图11b中显示出甜菊醇和葡萄糖的原子编号。
表15:序列表的描述
Figure BDA0003202864070000411
Figure BDA0003202864070000421
Figure BDA0003202864070000431
Figure BDA0003202864070000441
截去变灰的标识符且因此为所提及的UniProt标识符的片段

Claims (7)

1.一种具有式(II)的甜菊醇糖苷
Figure FDA0003542006140000011
2.根据权利要求1所述的甜菊醇糖苷,其为发酵制备的。
3.一种用于制备根据权利要求1或2所述的甜菊醇糖苷的方法,所述方法包括:
提供包含编码多肽的重组核酸序列的重组酵母细胞,所述多肽包含由下列编码的氨基酸序列:SEQ ID NO:61、SEQ ID NO:65、SEQ ID NO:23、SEQ ID NO:33、SEQ ID NO:77、SEQID NO:71、SEQ ID NO:87、SEQ ID NO:73和SEQ ID NO:75;
在合适的发酵培养基中发酵所述重组酵母细胞;以及,可选地,
回收根据权利要求1或2所述的甜菊醇糖苷。
4.一种组合物,其包括根据权利要求1或2所述的甜菊醇糖苷以及一种或更多种不同的甜菊醇糖苷。
5.一种食品、饲料或饮料,其包括根据权利要求1或2所述的甜菊醇糖苷或根据权利要求4所述的组合物。
6.根据权利要求1或2所述的甜菊醇糖苷或根据权利要求4所述的组合物在甜味剂组合物或风味组合物中的用途。
7.根据权利要求1或2所述的甜菊醇糖苷或根据权利要求4所述的组合物在食品、饲料或饮料中的用途。
CN202110909254.5A 2015-04-03 2016-04-04 甜菊醇糖苷 Active CN113683712B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562142631P 2015-04-03 2015-04-03
US62/142,631 2015-04-03
CN201680020186.4A CN107666834B (zh) 2015-04-03 2016-04-04 甜菊醇糖苷
PCT/EP2016/057360 WO2016156616A1 (en) 2015-04-03 2016-04-04 Steviol glycosides

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201680020186.4A Division CN107666834B (zh) 2015-04-03 2016-04-04 甜菊醇糖苷

Publications (2)

Publication Number Publication Date
CN113683712A CN113683712A (zh) 2021-11-23
CN113683712B true CN113683712B (zh) 2022-10-21

Family

ID=55646619

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201680020186.4A Active CN107666834B (zh) 2015-04-03 2016-04-04 甜菊醇糖苷
CN202110909254.5A Active CN113683712B (zh) 2015-04-03 2016-04-04 甜菊醇糖苷

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201680020186.4A Active CN107666834B (zh) 2015-04-03 2016-04-04 甜菊醇糖苷

Country Status (6)

Country Link
US (2) US11344051B2 (zh)
EP (2) EP3718417A1 (zh)
CN (2) CN107666834B (zh)
BR (1) BR112017021066B1 (zh)
CA (1) CA2980090A1 (zh)
WO (1) WO2016156616A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3232817A4 (en) 2014-12-17 2018-10-10 Cargill, Incorporated Steviol glycoside compounds, compositions for oral ingestion or use, and method for enhancing steviol glycoside solubility
EP4148137A1 (en) 2015-01-30 2023-03-15 Evolva SA Production of steviol glycosides in recombinant hosts
BR112017021066B1 (pt) 2015-04-03 2022-02-08 Dsm Ip Assets B.V. Glicosídeos de esteviol, método para a produção de um glicosídeo de esteviol, composição, usos relacionados, gênero alimentício, alimento para animais e bebida
MY190181A (en) * 2016-06-17 2022-03-31 Cargill Inc Steviol glycoside compositions for oral ingestion or use
EP3764815A4 (en) * 2018-03-16 2022-01-26 PureCircle USA Inc. HIGH PURITY STEVIOL GLYCOSIDES
CN108795897B (zh) * 2018-05-29 2019-06-07 首都医科大学 一种糖基转移酶ugte1、其编码基因和应用
KR20210125474A (ko) * 2018-11-27 2021-10-18 퓨어써클 유에스에이 잉크. 고순도 스테비올 글리코사이드
CN109628421B (zh) * 2019-01-11 2022-11-01 安徽农业大学 一种特异合成呋喃酮葡萄糖苷的糖基转移酶及其应用
KR20210129679A (ko) * 2019-02-15 2021-10-28 퓨어써클 유에스에이 잉크. 고순도 스테비올 글리코사이드
CN110846305B (zh) * 2019-11-11 2023-11-28 中化健康产业发展有限公司 一种固定化糖基转移酶催化莱鲍迪苷a生成莱鲍迪苷m的方法
CA3164769A1 (en) * 2019-12-16 2021-06-24 Manus Bio, Inc. Microbial production of mogrol and mogrosides

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103404833A (zh) * 2013-08-20 2013-11-27 济南汉定生物工程有限公司 甜菊糖甙复配甜味剂

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58149697A (ja) 1982-02-27 1983-09-06 Dainippon Ink & Chem Inc β−1,3グリコシルステビオシドの製造方法
WO1990014423A1 (en) 1989-05-18 1990-11-29 The Infergene Company Microorganism transformation
EP0481008B1 (en) 1989-07-07 1997-11-12 Unilever Plc Process for preparing a protein by a fungus transformed by multicopy integration of an expression vector
DE69432543T2 (de) 1993-07-23 2003-12-24 Dsm Nv Selektionmarker-genfreie rekombinante Stämme: Verfahren zur ihrer Herstellung und die Verwendung dieser Stämme
US6265186B1 (en) 1997-04-11 2001-07-24 Dsm N.V. Yeast cells comprising at least two copies of a desired gene integrated into the chromosomal genome at more than one non-ribosomal RNA encoding domain, particularly with Kluyveromyces
AU7642298A (en) 1997-04-11 1998-11-11 Gist-Brocades B.V. Gene conversion as a tool for the construction of recombinant industrial filamentous fungi
MXPA00011223A (es) 1998-05-19 2002-04-17 Dsm Nv Produccion mejorada in vivo de cefalosporinas.
KR20010089672A (ko) 1998-12-22 2001-10-08 윌리암 로엘프 드 보에르 개선된 생체내 세팔로스포린 생산
US6180157B1 (en) 1999-02-18 2001-01-30 The Nutrasweet Company Process for preparing an N-[N-(3,3-dimethylbutyl)-L-α-aspartyl]-L-phenylalanine 1-methyl ester agglomerate
WO2000057725A1 (en) 1999-03-26 2000-10-05 The Nutrasweet Company PARTICLES OF N-[N-(3,3-DIMETHYLBUTYL)-L-α-ASPARTYL]-L-PHENYLALANINE 1-METHYL ESTER
JP2001048727A (ja) 1999-08-10 2001-02-20 Nonogawa Shoji Kk 可溶化剤及びこれを含有する可溶化組成物
AU2001238482A1 (en) 2000-02-16 2001-08-27 The Nutrasweet Company Process for making granulated n-(n-(3,3-dimethylbutyl)-l-alpha-aspartyl)-l-phenylalanine 1-methyl ester
ES2319757T5 (es) 2002-01-23 2018-05-22 Dsm Ip Assets B.V. Fermentación de azúcares de pentosa
SE0202090D0 (sv) 2002-05-08 2002-07-04 Forskarpatent I Syd Ab A modifierd yeast consuming L-arabinose
DK2301949T3 (en) 2003-05-02 2015-07-20 Cargill Inc Genetically modified yeast species and fermentation methods using genetically modified yeast
CN101914462B (zh) 2004-07-16 2013-04-24 Dsm知识产权资产有限公司 发酵木糖的真核细胞的代谢工程
US7923552B2 (en) 2004-10-18 2011-04-12 SGF Holdings, LLC High yield method of producing pure rebaudioside A
WO2006096130A1 (en) 2005-03-11 2006-09-14 Forskarpatent I Syd Ab Arabinose- and xylose-fermenting saccharomyces cerevisiae strains
US9386797B2 (en) 2011-02-17 2016-07-12 Purecircle Sdn Bhd Glucosyl stevia composition
US9107436B2 (en) * 2011-02-17 2015-08-18 Purecircle Sdn Bhd Glucosylated steviol glycoside as a flavor modifier
US20090162500A1 (en) * 2007-12-21 2009-06-25 The Quaker Oats Company Grain products having a potent natural sweetener
US20110033525A1 (en) 2008-04-11 2011-02-10 Zhijun Liu Diterpene Glycosides as Natural Solubilizers
ES2959686T3 (es) 2008-10-03 2024-02-27 Morita Kagaku Kogyo Nuevos glucósidos de esteviol
US8551507B2 (en) 2009-06-24 2013-10-08 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Terpene glycosides and their combinations as solubilizing agents
US20110027446A1 (en) * 2009-07-28 2011-02-03 Heartland Sweeteners, LLC No-calorie sweetener compositions
US9205268B2 (en) 2009-10-30 2015-12-08 Medtronic, Inc. Configuring operating parameters of a medical device based on a type of source of a disruptive energy field
CA3094765A1 (en) 2010-12-13 2012-06-21 Cargill, Incorporated Glycoside blends
CA3128532A1 (en) 2011-08-08 2013-02-14 Evolva Sa Recombinant production of steviol glycosides
CA2848514C (en) 2011-09-06 2019-03-05 Pepsico, Inc. Rebaudioside d sweeteners and food products sweetened with rebaudioside d
WO2013076280A1 (en) 2011-11-23 2013-05-30 Dsm Ip Assets B.V. Nucleic acid assembly system
CN103159808B (zh) 2011-12-09 2017-03-29 上海泓博智源医药股份有限公司 一种制备天然甜味剂的工艺方法
EP3735841A1 (en) 2011-12-19 2020-11-11 PureCircle SDN BHD Methods for purifying steviol glycosides and uses of the same
US20150031868A1 (en) 2012-01-23 2015-01-29 Dsm Ip Assets B.V. Diterpene production
US10292412B2 (en) 2012-02-15 2019-05-21 Kraft Foods Global Brands Llc High solubility natural sweetener compositions
DK2825650T3 (da) 2012-03-12 2019-05-13 Dsm Ip Assets Bv Rekombinationssystem
US9060537B2 (en) 2012-03-26 2015-06-23 Pepsico, Inc. Method for enhancing rebaudioside D solubility in water
DK2831238T3 (en) 2012-03-27 2018-04-03 Dsm Ip Assets Bv CLONING PROCEDURE
US9752174B2 (en) 2013-05-28 2017-09-05 Purecircle Sdn Bhd High-purity steviol glycosides
MX2015003684A (es) 2012-09-25 2015-06-15 Cargill Inc Mezclas de esteviosidos.
WO2014086890A1 (en) 2012-12-05 2014-06-12 Evolva Sa Steviol glycoside compositions sensory properties
US20140171519A1 (en) 2012-12-19 2014-06-19 Indra Prakash Compositions and methods for improving rebaudioside x solubility
CA3171770A1 (en) 2013-02-06 2014-08-14 Evolva Sa Methods for improved production of rebaudioside d and rebaudioside m
US10017804B2 (en) 2013-02-11 2018-07-10 Evolva Sa Efficient production of steviol glycosides in recombinant hosts
MX358413B (es) 2013-03-15 2018-08-20 Coca Cola Co Glicosidos de esteviol, sus composiciones y su purificacion.
EP2986149B1 (en) 2013-03-15 2019-08-21 The Coca-Cola Company Novel glucosyl steviol glycosides, their compositions and their purification
US20140342043A1 (en) 2013-05-14 2014-11-20 Pepsico, Inc. Rebaudioside Sweetener Compositions and Food Products Sweetened with Same
WO2014193889A1 (en) 2013-05-31 2014-12-04 Shell Oil Company Glycol recovery with solvent extraction
CN105247064A (zh) 2013-05-31 2016-01-13 帝斯曼知识产权资产管理有限公司 细胞外的二萜生产
US10689681B2 (en) 2013-05-31 2020-06-23 Dsm Ip Assets B.V. Microorganisms for diterpene production
US10905146B2 (en) 2013-07-12 2021-02-02 The Coca-Cola Company Compositions for improving rebaudioside M solubility
CN115211549A (zh) 2013-08-15 2022-10-21 嘉吉公司 掺入了莱苞迪苷n的甜味剂组合物和经甜化的组合物
WO2015051454A1 (en) 2013-10-07 2015-04-16 Vineland Research And Innovation Centre Compositions and methods for producing steviol and steviol glycosides
JP6530760B2 (ja) 2013-11-01 2019-06-12 コナゲン インコーポレーテッド ステビオール配糖体の組換え製造
AU2015219212B2 (en) 2014-02-18 2019-03-14 Heartland Consumer Products Llc Process for separation, isolation and characterization of steviol glycosides
US9522929B2 (en) 2014-05-05 2016-12-20 Conagen Inc. Non-caloric sweetener
EP2954785B1 (de) * 2014-06-13 2018-06-06 Symrise AG Neue Stoffmischung zur Verbesserung des Süssgeschmacks enthaltend Rubusosid oder alpha-Glycosylrubusosid
BR112017002783A2 (pt) 2014-08-11 2017-12-19 Evolva Sa produção de glicosídeos de esteviol em hospedeiros recombinantes
CN106795523B (zh) 2014-08-19 2021-11-26 谱赛科有限责任公司 制备莱鲍迪苷i的方法以及用途
MY191735A (en) 2014-09-09 2022-07-13 Evolva Sa Production of steviol glycosides in recombinant hosts
BR112017005656A2 (pt) 2014-09-19 2018-07-31 Purecircle Sdn Bhd glicosídeos de esteviol de alta pureza
EP3201212B1 (en) 2014-10-03 2018-09-19 Conagen Inc. Non-caloric sweeteners and methods for synthesizing
US11584769B2 (en) 2014-11-29 2023-02-21 The Coca-Cola Company Diterpene glycosides, compositions and purification methods
EP3232817A4 (en) * 2014-12-17 2018-10-10 Cargill, Incorporated Steviol glycoside compounds, compositions for oral ingestion or use, and method for enhancing steviol glycoside solubility
EP4148137A1 (en) * 2015-01-30 2023-03-15 Evolva SA Production of steviol glycosides in recombinant hosts
BR112017021066B1 (pt) 2015-04-03 2022-02-08 Dsm Ip Assets B.V. Glicosídeos de esteviol, método para a produção de um glicosídeo de esteviol, composição, usos relacionados, gênero alimentício, alimento para animais e bebida
CA3005993A1 (en) 2015-11-30 2017-06-08 Cargill, Incorporated Steviol glycoside compositions for oral ingestion or use
RU2764803C2 (ru) 2017-03-06 2022-01-21 Конаджен Инк. Биосинтетическое получение стевиолового гликозида ребаудиозида d4 из ребаудиозида e

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103404833A (zh) * 2013-08-20 2013-11-27 济南汉定生物工程有限公司 甜菊糖甙复配甜味剂

Also Published As

Publication number Publication date
BR112017021066A2 (pt) 2018-08-14
CN113683712A (zh) 2021-11-23
EP3718417A1 (en) 2020-10-07
US11540544B2 (en) 2023-01-03
CN107666834B (zh) 2021-08-24
CA2980090A1 (en) 2016-10-06
US11344051B2 (en) 2022-05-31
US20220256903A1 (en) 2022-08-18
EP3277829B1 (en) 2020-07-08
BR112017021066B1 (pt) 2022-02-08
CN107666834A (zh) 2018-02-06
EP3277829A1 (en) 2018-02-07
US20180070622A1 (en) 2018-03-15
WO2016156616A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
CN113683712B (zh) 甜菊醇糖苷
US11117916B2 (en) Recovery of steviol glycosides
US10273519B2 (en) Diterpene production in Yarrowia
EP3021689B1 (en) Diterpene production
EP2806754B1 (en) Diterpene production
US20180073050A1 (en) Extracellular diterpene production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant