CN113680221A - 一种光催化-光热膜蒸馏用复合膜的制备方法 - Google Patents

一种光催化-光热膜蒸馏用复合膜的制备方法 Download PDF

Info

Publication number
CN113680221A
CN113680221A CN202110993266.0A CN202110993266A CN113680221A CN 113680221 A CN113680221 A CN 113680221A CN 202110993266 A CN202110993266 A CN 202110993266A CN 113680221 A CN113680221 A CN 113680221A
Authority
CN
China
Prior art keywords
membrane
composite
photothermal
photo
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110993266.0A
Other languages
English (en)
Other versions
CN113680221B (zh
Inventor
康卫民
刘梦瑶
王春艳
鞠敬鸽
黄宇婷
胡伟
史佳丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jinmeida New Materials Co ltd
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN202110993266.0A priority Critical patent/CN113680221B/zh
Publication of CN113680221A publication Critical patent/CN113680221A/zh
Application granted granted Critical
Publication of CN113680221B publication Critical patent/CN113680221B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/447Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by membrane distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种光催化‑光热膜蒸馏用复合膜的制备方法,所述制备方法包括以下步骤:(1)复合光热光催化剂的制备;(2)疏水纳米纤维膜的制备;(3)喷涂法制备光催化‑光热层。制备氧化石墨烯/银/氧化铈复合光热光催化剂,将其通过喷涂法固定在纳米纤维膜表面,膜作为催化剂载体,集成了膜的选择透过性、光热转化性能和催化剂的催化活性,使复合膜兼具分离、光热和反应三重功能,同时解决了粉体催化剂难回收的问题。复合膜在光催化‑光热膜蒸馏测试中表现出良好的稳定性、较高的可见光催化活性和高效优异的分离效果。本发明所述的制备光催化‑光热膜蒸馏用复合膜的方法,所需装置简单、可重复性高,在水处理领域具有广阔的应有前景。

Description

一种光催化-光热膜蒸馏用复合膜的制备方法
技术领域
本发明属于光催化-光热膜蒸馏系统应用技术领域,具体涉及一种光催化-光热膜蒸馏用复合膜的制备方法。
背景技术
染料制造和纺织业的迅速发展,使大量有机染料排放到水中,严重危害着水生环境和人类健康。印染废水具有色度大、温度高、化学需氧量高、可生化性差等特点,染料的去除是废水处理设施面临的挑战。光催化法是近年来高效处理印染废水的新方法,利用光源对污染物进行降解,在光催化过程反应条件温和、无二次污染物,且无毒、能耗低、运行成本低。但是光催化降解产生的中间产物以及一些离子无法根本去除,仍存在一些危害性。光催化剂的发展限制着光催化技术的发展,常见的光催化剂大多数为半导体,包括氧化物,硫化物,磷化物,以及无金属的光催化剂。其中氧化铈(CeO2)作为较为廉价且用途极其广泛的稀土氧化物,由于其优异的储氧和放氧能力,无毒,没有二次污染等优点,成为一种重要的光催化材料。但是CeO2存在带隙较宽,对可见光利用率低,只能吸收紫外光部分的波段,和光生电子空穴对易复合等问题。为了提高材料的光催化效率,通常采用贵金属、离子元素掺杂或与其他半导体材料复合的手段,以扩大材料的光吸收范围,并有效抑制光生电子与空穴的复合。由于光催化纳米颗粒难回收,导致在催化剂的容量损失和难循环利用也是迫切需要解决的问题。
水处理中的另一种技术是膜分离技术。膜分离技术在水处理过程中具有简单性、可模块化设计、易于维护和良好的截留率。其中膜蒸馏技术是以高孔隙率疏水膜为分离介质、以膜两侧温度差为驱动力,将清洁水自热污染侧经过“蒸发-传递-冷凝”三步进入冷侧,从而实现净化废水、产出清洁水的一种膜分离工艺,因出水水质高、运行压力低和运行温度低等优点备受关注。近年来报道的光热膜蒸馏过程,通过表面光热转化层在光辅助下提高膜表面温度,以提供热源传质推动力,进一步降低了膜蒸馏过程能耗。光热膜蒸馏是一个完全的物理过程,并不涉及污染物的降解。
将光热膜蒸馏与光催化结合,二者的协同作用便能够显现出来。光催化剂能够有效地降解膜表面沉积的污染物,有效缓解膜污染,而膜能够固定住光催化剂,使光催化剂可以与污染物充分接触,达到降解污染物的效果,实现清洁水与污染物的高效分离,这一技术有效拓宽了水处理技术的研究领域。
针对上述问题,本发明将光催化-光热膜蒸馏技术联用,开发光催化-光热膜蒸馏用复合膜,通过制备氧化石墨烯/银/氧化铈制备复合光热光催化剂,贵金属表面等离子共振效应和氧化石墨烯全光谱吸收特性,扩大了CeO2催化剂的光吸收范围,并有效抑制光生电子与空穴的复合,使CeO2光催化活性得到提高。将复合光热光催化剂通过简单的喷涂方法固定在纳米纤维膜表面,利用分离膜作为催化剂固定化的载体,集成了膜的选择透过性、光热转化性能和催化剂的催化活性,使膜兼具光热、反应和分离三重功能,同时利用太阳能使膜两侧产生温度差为驱动力,使产物得以从反应体系中分离。膜能实现连续化运行,提高了催化剂的分散性、稳定性和重复使用性,光催化剂能够有效地降解膜表面沉积的污染物,有效缓解膜污染,实现反应-分离耦合过程的强化,在水处理领域具有十分广阔的应用前景。
发明内容
本发明提供了一种光催化-光热膜蒸馏用复合膜的制备方法,制备氧化石墨烯/银/氧化铈复合光热光催化剂,将其通过简单的喷涂方法固定在纳米纤维膜表面,开发光催化-光热膜蒸馏用复合膜,用于水处理。
一种光催化-光热膜蒸馏用复合膜的制备方法,包括以下步骤:
(1)复合光热光催化剂的制备:将硝酸铈和尿素按照一定比例溶解在蒸馏水中,倒入反应釜内,在一定温度下进行水热反应,用乙醇将产物洗涤、真空干燥后,获得氧化铈(CeO2)纳米颗粒。称取一定量的氧化石墨烯(GO)分散到蒸馏水中,加入一定量的硝酸银,混合物在室温下搅拌1~2h,再加入柠檬酸钠粉末,置于80~100℃水浴中反应3~6h,冷却至室温,将产物进行离心、蒸馏水洗涤、冷冻干燥,即可得到GO@Ag纳米复合材料;将CeO2纳米颗粒和GO@Ag纳米复合材料按照一定比例混合,制备出复合光热光催化剂。
(2)疏水纳米纤维膜的制备:将一定量的聚偏氟乙烯(PVDF)粉末加入到N,N-二甲基甲酰胺溶剂中,加热至温度为50~60℃,连续搅拌溶解2~6h,得到PVDF纺丝液,利用静电纺丝技术对纺丝液进行静电纺丝,制得到PVDF疏水纳米纤维膜。
(3)喷涂法制备光催化-光热层:将步骤(1)得到的复合光热光催化剂分散在聚乙烯醇PVA溶液在中,超声处理3~6h,将混合液倒入喷枪中,喷涂在步骤(1)制备的疏水纳米纤维膜上,通过鼓风机干燥,然后再涂覆,根据喷涂次数来调整涂层的厚度,最后将膜在150~180℃下加热1~2h以使PVA交联,制得光催化-光热膜蒸馏用复合膜。
优选的,步骤(1)中所述硝酸铈和尿素的摩尔比为1∶(18~22)。
优选的,步骤(1)中所述水热反应温度为140~180℃,反应时间为2~18h。
优选的,步骤(1)中所述氧化石墨烯含量为0.2~0.8mg/ml,硝酸银含量为2.3~2.8mg/ml,柠檬酸钠含量为2~5mg/ml。
优选的,步骤(1)中所述CeO2纳米颗粒和GO@Ag纳米复合材料混合质量比为(1~3)∶1。
优选的,步骤(2)中所述聚偏氟乙烯PVDF的质量分数为10~22%。
优选的,步骤(2)中所述静电纺丝参数电压为15~25kV,接收距离为15~20cm,纺丝速度0.5~1.0mL/h。
优选的,步骤(3)中所述PVA溶液的质量分数为0.75%~2%,复合光热光催化剂的含量为10~30mg/ml。
优选的,步骤(3)中所述在喷涂过程中,喷涂距离在10~20cm,气压保持在0.2Mpa~0.6Mpa,喷涂时间2~4s,喷涂次数1~4次。
本发明与现有的技术相比,具有以下优点及突出效果:(1)将光催化-光热膜蒸馏联用,集成了膜的选择透过性、光热转化性能和催化剂的催化活性,使膜兼具光热、反应和分离三重功能,同时利用太阳能使膜两侧产生温度差为驱动力,使产物得以从反应体系中分离,并进一步解决了水处理的能耗问题。(2)采用喷涂法将光催化剂固定在膜表面,光催化剂能够有效地降解膜表面沉积的污染物,有效缓解膜污染,使光催化剂可以与污染物充分接触,达到降解污染物的效果,实现清洁水与污染物的高效分离,此过程具有固有的简单性、易于操作。(3)本发明中复合光热光催化剂制备简单可行,安全高效,扩大了CeO2催化剂的光吸收范围,并有效抑制光生电子与空穴的复合,使光催化活性得到提高。复合膜具有良好的光催化性能和光热转化性能、疏水性、稳定性好、可重复利用,解决了粉体催化剂难回收的问题。本发明所述的制备光催化-光热膜蒸馏用复合膜的方法,所需装置简单、可重复性高,在水处理方面具有广阔的应用前景。
附图说明
图1是本发明光催化-光热膜蒸馏用复合膜的制备流程图。
图2是利用本发明实施例1制备的CeO2纳米颗粒的电镜图。
图3是利用本发明实施例1制备的GO@Ag纳米复合材料的电镜图。
图4为利用本发明实施例1制备的PVDF纳米纤维膜的电镜图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
实施例1
(1)复合光热光催化剂的制备:将硝酸铈和尿素以摩尔比为1∶18溶解在蒸馏水中,倒入反应釜内,在160℃下水热反应10h,用乙醇将产物洗涤、真空干燥后,获得氧化铈(CeO2)纳米颗粒。称取0.5g氧化石墨烯(GO)分散到1L蒸馏水中,加入2.5g的硝酸银,混合物在室温下搅拌1h,再加入3g柠檬酸钠粉末,置于90℃水浴中反应4h,冷却至室温,将产物进行离心、蒸馏水洗涤、冷冻干燥,即可得到GO@Ag纳米复合材料;将CeO2纳米颗粒和GO@Ag纳米复合材料按照1∶1比例混合,制备出复合光热光催化剂。图2是利用本发明实施例1制备的CeO2纳米颗粒的电镜图,图3是利用本发明实施例1制备的GO@Ag纳米复合材料的电镜图。
(2)疏水纳米纤维膜的制备:称取1g聚偏氟乙烯(PVDF)粉末缓慢加入到9gN,N-二甲基甲酰胺溶剂中,加热至温度为50℃,连续搅拌溶解3h,至溶液澄清透明,得到10%PVDF纺丝液,利用静电纺丝技术对纺丝液进行静电纺丝,制得到PVDF疏水纳米纤维膜。图4为利用本发明实施例1制备的PVDF纳米纤维膜的电镜图。
(3)喷涂法制备光催化-光热层:称取2g步骤(1)得到的复合光热光催化剂分散在100ml的1%PVA溶液在中,超声直至分散均匀,将混合液倒入喷枪中,喷涂在步骤(1)制备的疏水纳米纤维膜上,通过鼓风机干燥,然后再涂覆,喷涂距离在15cm,气压保持在0.4Mpa,喷涂时间3s,喷涂次数3次,最后将膜在180℃下加热2小时以使PVA交联,制得光催化-光热膜蒸馏用复合膜。
(4)光催化-光热膜蒸馏测试:由太阳模拟器、玻璃模具、电子天平、电导率仪、蠕动泵与恒温水箱组成的直接接触式膜蒸馏系统测试所制备膜的光热膜蒸馏性能。渗透液和进料液的温度始终由恒温水箱保持在20℃。进料液和渗透液均由蠕动泵循环,恒定流量为0.25L/min,进料液为质量分数3.5wt%NaCl,10mg/L的罗丹明B组成的混合液。设定光照强度为1kW/m2,测试面积2×2cm2。。由电导率仪与天平测量,膜蒸馏软件记录渗透液的电导率变化以及渗透通量变化。采用紫外-可见分光光度计测定初始进料液与光催化降解后进料液的吸光度,采用红外热成像仪测量膜表面的温度变化。渗透通量J通过渗透液的重量变化计算,由以下公式计算得到:
J=ΔM/(ΔT×S)
式中:J为通量(kg/m2h),ΔM渗透液增重(kg),ΔT运行时间(h),S膜有效面积(cm2)
截盐率R通过渗透液的电导率计算,由以下公式计算得到:
R=[(Cf-Cp)/Cf]×100%
式中:R截留率,Cf进料液的浓度(g/L),Cp渗透液的浓度(g/L)。可根据电导率和浓度的线性关系,由电导率计算出溶液浓度。
降解率D通过吸光度计算,由以下公式计算得到:
D=(1-A0/A)×100%
式中:A0为降解前进料液的吸光度,A为光催化降解一定时间后进料液的吸光度。
所制备的光催化-光热膜蒸馏用复合膜,在模拟一个太阳光照条件下,膜经100s光照后表面温度可达到59.4℃,在光催化-光热膜蒸馏测试8h后,渗透通量可达到0.96kg/m2h,截留率稳定在99.9%以上,对含罗丹明B染料的盐水降解率可达95.1%,经重复使用5次后,仍保持良好的结构以及光催化性能。
实施例2
(1)复合光热光催化剂的制备:将硝酸铈和尿素以摩尔比为1∶18溶解在蒸馏水中,倒入反应釜内,在160℃下水热反应10h,用乙醇将产物洗涤、真空干燥后,获得氧化铈(CeO2)纳米颗粒。称取0.5g氧化石墨烯(GO)分散到1L蒸馏水中,加入2.5g的硝酸银,混合物在室温下搅拌1h,再加入3g柠檬酸钠粉末,置于90℃水浴中反应4h,冷却至室温,将产物进行离心、蒸馏水洗涤、冷冻干燥,即可得到GO@Ag纳米复合材料;将CeO2纳米颗粒和GO@Ag纳米复合材料按照2∶1比例混合,制备出复合光热光催化剂。
(2)同实施例1。
(3)同实施例1。
(4)同实施例1。
所制备的光催化-光热膜蒸馏用复合膜,在模拟一个太阳光照条件下,膜经100s光照后表面温度可达到58.3℃,在光催化-光热膜蒸馏测试8h后,渗透通量可达到0.88kg/m2h,截留率稳定在99.9%以上,对含罗丹明B染料的盐水降解率可达97.3%,经重复使用5次后,仍保持良好的结构以及光催化性能。
实施例3
(1)复合光热光催化剂的制备:将硝酸铈和尿素以摩尔比为1∶18溶解在蒸馏水中,倒入反应釜内,在160℃下水热反应10h,用乙醇将产物洗涤、真空干燥后,获得氧化铈(CeO2)纳米颗粒。称取0.5g氧化石墨烯(GO)分散到1L蒸馏水中,加入2.5g的硝酸银,混合物在室温下搅拌1h,再加入3g柠檬酸钠粉末,置于90℃水浴中反应4h,冷却至室温,将产物进行离心、蒸馏水洗涤、冷冻干燥,即可得到GO@Ag纳米复合材料;将CeO2纳米颗粒和GO@Ag纳米复合材料按照3∶1比例混合,制备出复合光热光催化剂。
(2)同实施例1。
(3)同实施例1。
(4)同实施例1。
所制备的光催化-光热膜蒸馏用复合膜,在模拟一个太阳光照条件下,膜经100s光照后表面温度可达到55.8℃,在光催化-光热膜蒸馏测试8h后,渗透通量可达到0.63kg/m2h,截留率稳定在99.9%以上,对含罗丹明B染料的盐水降解率可达98%,经重复使用5次后,仍保持良好的结构以及光催化性能。

Claims (4)

1.一种光催化-光热膜蒸馏用复合膜的制备方法,其特征在于,包括以下步骤:
(1)复合光热光催化剂的制备:将硝酸铈和尿素按照一定比例溶解在蒸馏水中,倒入反应釜内,在一定温度下进行水热反应,用乙醇将产物洗涤、真空干燥后,获得氧化铈(CeO2)纳米颗粒。称取一定量的氧化石墨烯(GO)分散到蒸馏水中,加入一定量的硝酸银,混合物在室温下搅拌1~2h,再加入柠檬酸钠粉末,置于80~100℃水浴中反应3~6h,冷却至室温,将产物进行离心、蒸馏水洗涤、冷冻干燥,即可得到GO@Ag纳米复合材料;将CeO2纳米颗粒和GO@Ag纳米复合材料按照一定比例混合,制备出复合光热光催化剂。
(2)疏水纳米纤维膜的制备:将一定量的聚偏氟乙烯(PVDF)粉末加入到N,N-二甲基甲酰胺溶剂中,加热至温度为50~60℃,连续搅拌溶解2~6h,得到PVDF纺丝液,利用静电纺丝技术对纺丝液进行静电纺丝,制得到PVDF疏水纳米纤维膜。
(3)喷涂法制备光催化-光热层:将步骤(1)得到的复合光热光催化剂分散在聚乙烯醇PVA溶液在中,超声处理3~6h,将混合液倒入喷枪中,喷涂在步骤(1)制备的疏水纳米纤维膜上,通过鼓风机干燥,然后再涂覆,根据喷涂次数来调整涂层的厚度,最后将膜在150~180℃下加热1~2h以使PVA交联,制得光催化-光热膜蒸馏用复合膜。
2.根据权利要求书1中所述制备方法,其特征在于,步骤(1)中,所述硝酸铈和尿素的摩尔比为1∶(18~22),水热反应温度为140~180℃,反应时间为2~18h,氧化石墨烯含量为0.2~0.8mg/ml,硝酸银含量为2.3~2.8mg/ml,柠檬酸钠含量为2~5mg/ml,CeO2纳米颗粒和GO@Ag纳米复合材料混合质量比为(1~3)∶1。
3.根据权利要求书1中所述制备方法,其特征在于,步骤(2)中所述聚偏氟乙烯PVDF的质量分数为10~22%,静电纺丝参数电压为15~25kV,接收距离为15~20cm,纺丝速度0.5~1.0mL/h。
4.根据权利要求书1中所述制备方法,其特征在于,步骤(3)中,所述PVA溶液的质量分数为0.75%~2%,复合光热光催化剂的含量为10~30mg/ml,在喷涂过程中,喷涂距离在10~20cm,气压保持在0.2Mpa~0.6Mpa,喷涂时间2~4s,喷涂次数1~4次。
CN202110993266.0A 2021-08-27 2021-08-27 一种光催化-光热膜蒸馏用复合膜的制备方法 Active CN113680221B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110993266.0A CN113680221B (zh) 2021-08-27 2021-08-27 一种光催化-光热膜蒸馏用复合膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110993266.0A CN113680221B (zh) 2021-08-27 2021-08-27 一种光催化-光热膜蒸馏用复合膜的制备方法

Publications (2)

Publication Number Publication Date
CN113680221A true CN113680221A (zh) 2021-11-23
CN113680221B CN113680221B (zh) 2022-11-08

Family

ID=78583224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110993266.0A Active CN113680221B (zh) 2021-08-27 2021-08-27 一种光催化-光热膜蒸馏用复合膜的制备方法

Country Status (1)

Country Link
CN (1) CN113680221B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114177943A (zh) * 2021-12-25 2022-03-15 福州大学 一种AgCl/MIL-100(Fe)/PTFE光催化膜及其制备方法和应用
CN114939346A (zh) * 2022-06-22 2022-08-26 中国科学技术大学苏州高等研究院 一种go-tu/pvdf复合膜及其制备方法与应用
CN115748232A (zh) * 2022-11-14 2023-03-07 吉林大学 一种具有光热光催化协同效应的超疏水低粘附材料、制备方法及其应用
CN116002814A (zh) * 2023-01-09 2023-04-25 上海师范大学 具有光催化-光热协同性能的超滤膜及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104941636A (zh) * 2015-05-26 2015-09-30 上海大学 电子束辐照制备银/二氧化铈/石墨烯三元复合光催化剂的方法
US20150353385A1 (en) * 2014-06-09 2015-12-10 King Abdullah University Of Science And Technology Hydrophobic photothermal membranes, devices including the hydrophobic photothermal membranes, and methods for solar desalination
CN105854627A (zh) * 2016-05-04 2016-08-17 上海交通大学 一种多功能纳米复合污水净化薄膜及其制备方法与应用
CN107106986A (zh) * 2014-10-03 2017-08-29 威廉马歇莱思大学 表面改性多孔膜用于流体蒸馏的用途
CN109833779A (zh) * 2019-04-08 2019-06-04 哈尔滨工业大学 一种膜蒸馏组件及系统
CN111715287A (zh) * 2020-04-20 2020-09-29 上海师范大学 Zif-67/go光催化-光热复合薄膜及其制备方法和应用
CN113019867A (zh) * 2019-12-24 2021-06-25 华中科技大学 一种基于喷涂法制备光热膜的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150353385A1 (en) * 2014-06-09 2015-12-10 King Abdullah University Of Science And Technology Hydrophobic photothermal membranes, devices including the hydrophobic photothermal membranes, and methods for solar desalination
CN107106986A (zh) * 2014-10-03 2017-08-29 威廉马歇莱思大学 表面改性多孔膜用于流体蒸馏的用途
CN104941636A (zh) * 2015-05-26 2015-09-30 上海大学 电子束辐照制备银/二氧化铈/石墨烯三元复合光催化剂的方法
CN105854627A (zh) * 2016-05-04 2016-08-17 上海交通大学 一种多功能纳米复合污水净化薄膜及其制备方法与应用
CN109833779A (zh) * 2019-04-08 2019-06-04 哈尔滨工业大学 一种膜蒸馏组件及系统
CN113019867A (zh) * 2019-12-24 2021-06-25 华中科技大学 一种基于喷涂法制备光热膜的方法
CN111715287A (zh) * 2020-04-20 2020-09-29 上海师范大学 Zif-67/go光催化-光热复合薄膜及其制备方法和应用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114177943A (zh) * 2021-12-25 2022-03-15 福州大学 一种AgCl/MIL-100(Fe)/PTFE光催化膜及其制备方法和应用
CN114177943B (zh) * 2021-12-25 2023-08-18 福州大学 一种AgCl/MIL-100(Fe)/PTFE光催化膜及其制备方法和应用
CN114939346A (zh) * 2022-06-22 2022-08-26 中国科学技术大学苏州高等研究院 一种go-tu/pvdf复合膜及其制备方法与应用
CN114939346B (zh) * 2022-06-22 2023-09-19 中国科学技术大学苏州高等研究院 一种go-tu/pvdf复合膜及其制备方法与应用
CN115748232A (zh) * 2022-11-14 2023-03-07 吉林大学 一种具有光热光催化协同效应的超疏水低粘附材料、制备方法及其应用
CN115748232B (zh) * 2022-11-14 2024-05-10 吉林大学 一种具有光热光催化协同效应的超疏水低粘附材料、制备方法及其应用
CN116002814A (zh) * 2023-01-09 2023-04-25 上海师范大学 具有光催化-光热协同性能的超滤膜及其制备方法与应用
CN116002814B (zh) * 2023-01-09 2024-05-24 上海师范大学 具有光催化-光热协同性能的超滤膜及其制备方法与应用

Also Published As

Publication number Publication date
CN113680221B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
CN113680221B (zh) 一种光催化-光热膜蒸馏用复合膜的制备方法
CN109603880B (zh) 中空管状氮化碳光催化剂及其制备方法和应用
CN108273492B (zh) 一种氧化铋/四氧化二铋异质结光催化剂及其制法和用途
CN111672497B (zh) 一种原位合成二氧化铈/石墨相氮化碳复合光催化材料的方法
CN106563477B (zh) 一种三元复合可见光催化剂及其制备方法和应用
CN104907087A (zh) 一种具有可见光响应的多孔氮化碳/氧化铜纳米棒复合材料的合成方法及应用
CN106423224B (zh) 一种BiVO4/BiOI异质结复合光催化剂及其制备方法和应用
CN108993550B (zh) 一种表面氧空位改性的溴氧铋光催化剂及其制备方法
CN104475133B (zh) 一种Bi/BiOCl光催化剂的制备方法
CN108855140B (zh) 一种CuS/Bi2WO6异质结光催化剂及其制备方法和应用
CN109985644B (zh) 一种高效降解水中有机染料的光催化剂及其制备方法
CN101947463B (zh) 一种紫外可见全光谱光催化材料的制备方法和应用
CN108745393A (zh) 一种铋-碳酸氧铋异质结构光催化材料及其制备方法
CN113663679B (zh) 一种钙钛矿型复合光催化剂、制备方法及专用系统和方法
CN111420668A (zh) 一种原位合成α-Bi2O3/CuBi2O4异质结光催化材料的制备方法及应用
CN108607590A (zh) g-C3N4嫁接卤氧化铋微球光催化剂的制备方法及应用
CN105126821B (zh) 一种花状Bi2MoO6的制备及其在光催化还原CO2中的应用
CN114105280A (zh) 一种基于非金属复合催化材料活化过二硫酸盐处理有机废水的方法
CN103785429A (zh) 一种磷酸银/石墨烯/二氧化钛纳米复合材料及制备方法
CN109589985B (zh) 掺杂纳米锗酸锌的制备方法及其催化还原二氧化碳
CN105498750A (zh) 具有广谱降解性能的钨酸铋/石墨烯光催化剂的制备方法
Cheng et al. Visible-light-driven hierarchical porous CeO2 derived from wood for effective photocatalytic degradation of methylene blue
CN110404524A (zh) 碳量子点/二氧化钛复合光催化剂的制备方法及其应用
CN102125831A (zh) 介孔Bi2O3/TiO2纳米光催化剂的制备方法
CN102794188A (zh) 一种PtCl4/Bi2WO6光催化剂及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221107

Address after: 223900 No. 21, Huaihe West Road, Sihong Economic Development Zone, Suqian City, Jiangsu Province

Patentee after: Jiangsu jinmeida new materials Co.,Ltd.

Address before: No. 399 Bingshui Road, Xiqing District, Tianjin, Tianjin

Patentee before: TIANJIN POLYTECHNIC University