CN114177943B - 一种AgCl/MIL-100(Fe)/PTFE光催化膜及其制备方法和应用 - Google Patents

一种AgCl/MIL-100(Fe)/PTFE光催化膜及其制备方法和应用 Download PDF

Info

Publication number
CN114177943B
CN114177943B CN202111605739.1A CN202111605739A CN114177943B CN 114177943 B CN114177943 B CN 114177943B CN 202111605739 A CN202111605739 A CN 202111605739A CN 114177943 B CN114177943 B CN 114177943B
Authority
CN
China
Prior art keywords
mil
agcl
solution
ptfe
photocatalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111605739.1A
Other languages
English (en)
Other versions
CN114177943A (zh
Inventor
鄢忠森
卢振宇
范功端
宁荣盛
蒋宇铃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202111605739.1A priority Critical patent/CN114177943B/zh
Publication of CN114177943A publication Critical patent/CN114177943A/zh
Application granted granted Critical
Publication of CN114177943B publication Critical patent/CN114177943B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/447Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by membrane distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种AgCl/MIL‑100(Fe)/PTFE光催化膜及其制备方法和应用,该光催化膜是以PTFE膜为载体,其上负载有AgCl和MIL‑100(Fe)。制备方法包括以下步骤:先利用化学反应生成MIL‑100(Fe),再通过AgNO3在MIL‑100(Fe)上发生原位反应并沉积生成AgCl/MIL‑100(Fe),最后借助Nafion溶液的粘合作用,在真空泵的辅助作用下,制备AgCl/MIL‑100(Fe)/PTFE光催化膜。本发明的光催化膜合成方法简单、成本低、绿色无污染,具有可见光吸收能力强、光催化降解能力强、可循环利用和稳定性好等特点,可用于光催化膜蒸馏系统中,强化去除水中挥发性有机物,在水处理技术领域具有较好前景。

Description

一种AgCl/MIL-100(Fe)/PTFE光催化膜及其制备方法和应用
技术领域
本发明属于水处理技术领域,具体涉及一种AgCl/MIL-100(Fe)/PTFE复合光催化膜及其制备方法,用于光催化膜蒸馏系统中以强化去除水中挥发性有机物。
背景技术
当前,膜蒸馏作为膜分离与传统蒸馏水处理技术的有效结合,在废水处理领域受到了越来越广泛的关注。与传统的压力膜技术不同,膜蒸馏由进出水温差驱动传质,理论上仅有水蒸汽可以透过膜孔进入出水侧,对非挥发性物质的排斥率高达100%。然而,膜蒸馏对水中挥发性有机物的去除率较低,挥发性有机化合物很容易与形成的蒸汽一起进入至出水侧,严重影响出水质量,甚至会引发饮用水安全问题。因此,迫切需要一种高效简便的方法去除水中的挥发性有机物。
在现有的挥发性有机物控制技术中,光催化技术由于其快速去除的可行性、低成本、高效率和无二次污染等特点而受到广泛关注。光催化纳米材料在光的激发下原位产生活性自由基,可有效攻击吸附在膜表面的污染物,将半挥发性有机物分解成较小分子的中间产物,中间产物还能进一步被矿化为水和二氧化碳,以此实现去除半挥发性有机物的效果。据此,光催化纳米材料的挥发性有机物的去除能力可以完美地填补膜蒸馏技术的缺陷,同时其带来的光热效应可以抑制膜蒸馏过程的温差极化现象。但是单一的光催化材料普遍存在光生电子-空穴复合率高、太阳能利用率低和光催化效率差等缺点,需要找到一组合适的光催化材料来充分发挥其优势。
近年来,银基纳米材料作为一种具有优异的光催化性能的材料,已成功应用于紫外光照射后膜蒸馏系统中膜通量的恢复。除银基材料外,铁基金属有机框架材料还有利于挥发性有机物的快速吸附和分解,因为它具有均匀分布的铁活性位点和芳香配体结构。金属有机框架材料和银基材料的组合能弥补单一光催化材料的一些常见缺点,故可能对膜蒸馏技术中挥发性有机物的去除起到积极的作用。
综上所述,本发明通过将银基纳米材料和铁基金属有机框架材料组合以合成性能优异的光催化材料,进一步地将光催化技术和膜蒸馏工艺相结合,以解决膜蒸馏难以去除挥发性有机物和光催化材料二次污染的问题,同时提升光催化膜的运行稳定性和可重复利用性,以此来保证净水效果,降低净水成本。
发明内容
本发明的目的在于提供一种AgCl/MIL-100(Fe)/PTFE光催化膜及其制备方法和应用,合成方法简单、成本低、绿色无污染,制得的光催化膜具有可见光吸收能力强、光催化降解能力强、可循环利用和稳定性好等特点,用于光催化膜蒸馏系统中能强化去除水中挥发性有机物,在水处理技术领域具有较好前景。
为实现上述目的,本发明采用如下技术方案:
一种AgCl/MIL-100(Fe)/PTFE光催化膜的制备方法,包括以下步骤:
步骤1、制备MIL-100(Fe)纳米材料
将1,3,5-苯三甲酸(H3BTC)加入氢氧化钠(NaOH)溶液中,得到浅绿色混合物,记为溶液A;将四水氯化亚铁(FeCl2·4H2O)加入去离子水(DI)中,超声处理15 min后,得到溶液B;在磁力搅拌下,以恒定速度滴注溶液B至溶液A中,将混合物变成浅棕色;最后在室温下搅拌24 h,离心洗涤后干燥过夜,得到MIL-100(Fe)纳米材料。
步骤2、制备AgCl/MIL-100(Fe)复合光催化材料
将AgCl/MIL-100(Fe)加入到硝酸银(AgNO3)溶液中,在室温下剧烈搅拌3 h。再将氯化钠(NaCl)溶液逐滴加入并充分搅拌8小时。经过反复洗涤和过夜干燥后,得到AgCl/MIL-100(Fe)复合光催化材料。
步骤3、制备AgCl/MIL-100(Fe)/PTFE光催化膜
首先将AgCl/MIL-100(Fe)纳米颗粒溶解在乙醇溶液中超声分散30 min,然后将Nafion溶液滴入混合液体中并使用振荡器混合;用乙醇预清洁PTFE膜后进行干燥处理,并放置在自制夹具中。将混合物倒入夹具,使用真空泵在0.1 MPa真空压力下进行抽滤,除去多余溶剂并使材料负载在PTFE膜上;将制备的膜干燥过夜,得到AgCl/MIL-100(Fe)/PTFE光催化膜。
与现有技术相比,本发明的有益效果在于:
(1)本发明制得的AgCl/MIL-100(Fe)/PTFE光催化膜具有良好的可见光吸收能力和高表面疏水性,并且能成功应用于DCMD系统中,在可见光下显著提高对水中硝基苯的去除率。
(2)本发明制备了不同负载量的AgCl/MIL-100(Fe)/PTFE光催化膜,在保证NB去除率的前提下,从节约纳米材料、保证水通量等方面考虑,探究出75 mg为最佳负载量。
(3)本发明所制备的AgCl/MIL-100(Fe)/PTFE光催化膜在可见光下经过5个周期的MD测试后,仍能保持较高的NB去除率和纯水通量,表现出优异的可重复使用性和可靠性,很有可能在更广阔的前景中扩展光催化和膜蒸馏工艺的应用。
附图说明
图1为实施例3制得的AgCl/MIL-100(Fe)/PTFE光催化膜表面的扫描电镜图谱(SEM)。
图2为实施例3制得的AgCl/MIL-100(Fe)/PTFE光催化膜横截面的SEM。
图3为本发明中的AgCl/MIL-100(Fe)/PTFE光催化膜(8 mg AgCl/MIL-100(Fe)/PTFE、20 mg AgCl/MIL-100(Fe)/PTFE、75 mg AgCl/MIL-100(Fe)/PTFE、100 mg AgCl/MIL-100(Fe)/PTFE)和商业PTFE膜在光催化膜蒸馏系统中处理NB废水过程所对应的运行时间与NB去除率关系图。
图4为实施例3制得的AgCl/MIL-100(Fe)/PTFE光催化膜对NB废水的循环去除效果图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合附图和具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
一、制备MIL-100(Fe)纳米材料
1、在搅拌下将1.676 g H3BTC粉末加入到24 mL的1 mol NaOH溶液中,并得到的浅绿色混合物,记为溶液A(pH = 11)。
2、将2.26 g FeCl2·4H2O溶于97 mL DI中,超声处理15分钟,得到深棕红色的溶液B(pH = 2.8)。
3、在磁力搅拌下,以恒定速度滴注溶液B至溶液A中,将混合物变成浅棕色(pH =5)。在室温下搅拌24 h,离心洗涤后干燥过夜,得到MIL-100(Fe)纳米颗粒。
二、制备AgCl/MIL-100(Fe)复合光催化材料
AgCl/MIL-100(Fe)二元复合光催化剂的合成是通过原位沉积进行的。将0.2 gAgCl/MIL-100(Fe)加入到28 mL AgNO3溶液(53.7 mM)中,在室温下剧烈搅拌3 h。再将98mL NaCl溶液(10.48 mM)逐滴加入并充分搅拌8小时。经过反复洗涤和过夜干燥后,得到AgCl/MIL-100(Fe)纳米复合材料。
三、制备AgCl/MIL-100(Fe)/PTFE光催化膜
1、首先将8 mg AgCl/MIL-100(Fe)纳米颗粒溶解在8 mL乙醇溶液(87.5 wt%)中超声分散30 min,然后将0.1 mL Nafion溶液滴入混合液体中并使用振荡器混合。
2、用乙醇预清洁PTFE膜后进行干燥处理,并放置在自制夹具中。将混合物倒入夹具(有效载荷面积为25 cm2),使用真空泵在0.1 MPa真空压力下进行抽滤,除去多余溶剂并使材料负载在PTFE膜上。
3、将制备的膜干燥过夜,得到8 mg AgCl/MIL-100(Fe)/PTFE光催化膜。同样,在不同材料负载量下制备了20 mg AgCl/MIL-100(Fe)/PTFE、75 mg AgCl/MIL-100(Fe)/PTFE和100 mg AgCl/MIL-100(Fe)/PTFE光催化膜。
所制备的AgCl/MIL-100(Fe)/PTFE光催化膜,可用于光催化膜蒸馏系统中强化去除水中挥发性有机物的去除。以下,已NB为代表性挥发性有机物,考察光催化膜性能。
膜蒸馏系统中光催化活性和稳定性评价:
NB的去除在实验室规模的光催化直接接触式膜蒸馏(DCMD)系统中进行。该系统主要由进水和出水循环系统、膜组件和在线检测系统组成。在DCMD系统中,进料侧初始溶液为150 mL NB溶液(4 mg/L),通过加热装置使其温度保持在335.15 K(±1 K)。同时,预装150mL DI作为出水侧循环水,通过恒温水浴装置使其温度保持在298.15 K(±1 K)。在蠕动泵的驱动下,使进水和出水朝相反方向进行循环来启动实验。在出水烧杯底下设置在线连续监测电子天平,记录重量数据,用于计算膜通量。将钨灯(500 W)设置为可见光源,经过400nm紫外滤光片过滤紫外线,调整膜与灯之间的距离以产生100 mW/cm2的光强度。为了减少光损失,在平板膜组件的顶部还预留了一个25 cm2的石英玻璃窗口。系统设置温度和压力传感器以实时监控膜蒸馏系统,以确保系统运行的稳定性。
在15、30、60、90和120 min时刻,于出水侧蒸馏瓶中取出1.5 mL溶液并测定其NB浓度。最终通过光催化膜蒸馏循环实验,研究所制备的光催化膜的稳定性和回收能力。NB废水处理实验结束后,将AgCl/MIL-100(Fe)/PTFE光催化膜用DI进行在线原位冲洗,以去除膜上的NB残留物。之后,将冲洗完毕的膜用于下一个NB去除实验。
本发明中所用的H3BTC购自上海阿拉丁生化科技股份有限公司,其余药品都购自E. I. du Pont de Nemours公司,所有试剂均为分析级,无需进一步纯化即可使用。本发明中所用的疏水性PTFE膜(膜孔0.45 μm,支撑层为聚丙烯(PP))购自苏州明列膜材料有限公司。
实施例1:
(1)MIL-100(Fe)纳米材料的制备
在搅拌下将1.676 g H3BTC粉末加入到24 mL的1 M NaOH溶液中,得到的浅绿色混合物,记为溶液A。然后将2.26 g FeCl2·4H2O溶于97 mL去离子水中,超声处理15 min,得到深棕红色的溶液B。最后在磁力搅拌下,以恒定速度滴注溶液B至溶液A中,将混合物变成浅棕色。在室温下搅拌24 h,离心洗涤后干燥过夜,得到MIL-100(Fe)纳米材料。
(2)AgCl/MIL-100(Fe)复合光催化材料的制备
将0.2 g AgCl/MIL-100(Fe)加入到28 mL的53.7 mM AgNO3溶液中,在室温下剧烈搅拌3 h。再将98 mL NaCl溶液(10.48 mM)逐滴加入并充分搅拌8小时。经过反复洗涤和过夜干燥后,得到AgCl/MIL-100(Fe)复合光催化材料。
(3)AgCl/MIL-100(Fe)/PTFE光催化膜的制备
首先将8 mg AgCl/MIL-100(Fe)纳米颗粒溶解在8 mL的87.5 wt%乙醇溶液中超声分散30 min,然后将0.1 mL Nafion溶液滴入混合液体中并使用振荡器混合。然后用乙醇预清洁PTFE膜后进行干燥处理,并放置在自制夹具中。将混合物倒入夹具(有效载荷面积为25cm2),使用真空泵在0.1 MPa真空压力下进行抽滤,除去多余溶剂并使材料负载在PTFE膜上。最后将制备的膜干燥过夜,得到AgCl/MIL-100(Fe)/PTFE光催化膜,命名为8 mg AgCl/MIL-100(Fe)/PTFE光催化膜。
实施例2:
按实施步骤例1中的步骤,不同的是(3)首先将20 mg AgCl/MIL-100(Fe)纳米颗粒溶解在8 mL的87.5 wt%乙醇溶液中超声分散30 min,然后将0.1 mL Nafion溶液滴入混合液体中并使用振荡器混合。然后用乙醇预清洁PTFE膜后进行干燥处理,并放置在自制夹具中。将混合物倒入夹具(有效载荷面积为25 cm2),使用真空泵在0.1 MPa真空压力下进行抽滤,除去多余溶剂并使材料负载在PTFE膜上。最后将制备的膜干燥过夜,得到AgCl/MIL-100(Fe)/PTFE光催化膜,命名为20 mg AgCl/MIL-100(Fe)/PTFE光催化膜。
实施例3:
按实施步骤例1中的步骤,不同的是(3)首先将75 mg AgCl/MIL-100(Fe)纳米颗粒溶解在8 mL的87.5 wt%乙醇溶液中超声分散30 min,然后将0.1 mL Nafion溶液滴入混合液体中并使用振荡器混合。然后用乙醇预清洁PTFE膜后进行干燥处理,并放置在自制夹具中。将混合物倒入夹具(有效载荷面积为25 cm2),使用真空泵在0.1 MPa真空压力下进行抽滤,除去多余溶剂并使材料负载在PTFE膜上。最后将制备的膜干燥过夜,得到AgCl/MIL-100(Fe)/PTFE光催化膜,命名为75 mg AgCl/MIL-100(Fe)/PTFE光催化膜。
图1和图2分别为75 mg AgCl/MIL-100(Fe)/PTFE光催化膜表面SEM和横截面SEM。
实施例4:
按实施步骤例1中的步骤,不同的是(3)首先将100 mg AgCl/MIL-100(Fe)纳米颗粒溶解在8 mL的87.5 wt%乙醇溶液中超声分散30 min,然后将0.1 mL Nafion溶液滴入混合液体中并使用振荡器混合。然后用乙醇预清洁PTFE膜后进行干燥处理,并放置在自制夹具中。将混合物倒入夹具(有效载荷面积为25 cm2),使用真空泵在0.1 MPa真空压力下进行抽滤,除去多余溶剂并使材料负载在PTFE膜上。最后将制备的膜干燥过夜,得到AgCl/MIL-100(Fe)/PTFE光催化膜,命名为100 mg AgCl/MIL-100(Fe)/PTFE光催化膜。
实施例5:
一种AgCl/MIL-100(Fe)/PTFE光催化膜在光催化膜蒸馏系统中处理挥发性有机物废水中的应用,具体为利用AgCl/MIL-100(Fe)/PTFE光催化膜处理NB废水,包括以下步骤:
NB的去除在实验室规模的光催化DCMD系统中进行。该系统主要由进水和出水循环系统、膜组件和在线检测系统组成。在DCMD系统中,进料侧初始溶液为150 mL NB溶液(4mg/L),通过加热装置使其温度保持在335.15 K(±1 K)。同时,预装150 mL DI作为出水侧循环水,通过恒温水浴装置使其温度保持在298.15 K(±1 K)。在蠕动泵的驱动下,使进水和出水朝相反方向进行循环来启动实验。在出水烧杯底下设置在线连续监测电子天平,记录重量数据,用于计算膜通量。将钨灯(500 W)设置为可见光源,经过400 nm紫外滤光片过滤紫外线,调整膜与灯之间的距离以产生100 mW/cm2的光强度。为了减少光损失,在平板膜组件的顶部还预留了一个25 cm2的石英玻璃窗口。还设置了温度和压力传感器以实时监控膜蒸馏系统,以确保系统运行的稳定性。
去除率的测定:在15、30、60、90和120 min时刻,于出水侧蒸馏瓶内取出1.5 mL溶液置于液相小瓶中。通过配备C18分析柱(4.6 mm × 250 mm,5 μm)的高效液相色谱仪(HPLC,岛津,LC-2030,日本)测定NB浓度。检测器的紫外波长设置为266 nm,柱温设置为308.15 K。甲醇与流动相中纯水的比例为35:65。每次浓度测定的进样体积为20 μL。根据NB原始浓度和剩余浓度计算NB的去除率。
从图3中可知:
未经改性的商业PTFE膜在光催化膜蒸馏系统中进行NB废水处理实验,测得该膜对NB的去除率在120 min时为64.84%。
本发明实施例1中制得的8 mg AgCl/MIL-100(Fe)/PTFE光催化膜在光催化膜蒸馏系统中进行NB废水处理实验,测得该光催化膜对NB的去除率在120 min时为72.66%。
本发明实施例2中制得的20 mg AgCl/MIL-100(Fe)/PTFE光催化膜在光催化膜蒸馏系统中进行NB废水处理实验,测得该光催化膜对NB的去除率在120 min时为75.61%。
本发明实施例3中制得的75 mg AgCl/MIL-100(Fe)/PTFE光催化膜在光催化膜蒸馏系统中进行NB废水处理实验,测得该光催化膜对NB的去除率在120 min时为87.84%。
本发明实施例4中制得的100 mg AgCl/MIL-100(Fe)/PTFE光催化膜在光催化膜蒸馏系统中进行NB废水处理实验,测得该光催化膜对NB的去除率在120 min时为87.10%。
实施例6:
考察本发明AgCl/MIL-100(Fe)/PTFE光催化膜在光催化膜蒸馏系统中处理NB废水的稳定性,包括以下步骤:
(1)按实施例5的步骤,在结束后将AgCl/MIL-100(Fe)/PTFE光催化膜用DI进行在线原位冲洗,以去除膜上的NB残留物。
(2)继续重复步骤(1)4次。
图4为本发明75 mg AgCl/MIL-100(Fe)/PTFE光催化膜对硝基苯废水的循环去除效果图。可以看出,经过5次循环实验后,NB去除率从87.84%略微下降到84.84%,仍然保持在较高的NB去除水平,说明本发明的AgCl/MIL-100(Fe)/PTFE光催化膜具有优异的可重复利用性和稳定性,在未来的实际应用中具有良好的潜力。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.一种用于膜蒸馏的AgCl/MIL-100(Fe)/PTFE光催化膜的制备方法,其特征在于:包括以下步骤:
步骤1、制备MIL-100(Fe)纳米材料
将1,3,5-苯三甲酸加入氢氧化钠溶液中,得到溶液A;将氯化亚铁加入去离子水中,超声处理15 min,得到溶液B;在磁力搅拌下,以恒定速度将溶液B滴加到溶液A中,在室温下搅拌24 h,离心洗涤后干燥过夜,得到MIL-100(Fe)纳米材料;
步骤2、制备AgCl/MIL-100(Fe)复合光催化材料
将MIL-100(Fe)加入到硝酸银溶液中,在室温下剧烈搅拌3 h;再将氯化钠溶液逐滴加入并充分搅拌8小时;经反复洗涤和干燥过夜后,得到AgCl/MIL-100(Fe)复合光催化材料;
步骤3、制备AgCl/MIL-100(Fe)/PTFE光催化膜
将AgCl/MIL-100(Fe)溶解在乙醇溶液中得到溶液C,超声分散30 min,滴加Nafion溶液,混合均匀;PTFE膜用乙醇预清洁、干燥,加入混合物,真空抽滤,干燥过夜,得到AgCl/MIL-100(Fe)/PTFE光催化膜;
步骤2中,MIL-100(Fe)、AgNO3和NaCl的质量比为3.33:4.25:1,AgNO3溶液的浓度为53.7mM,NaCl溶液的浓度为10.48 mM;
步骤3中,溶液C中AgCl/MIL-100(Fe)与乙醇的质量比为0.008:5.495,乙醇溶液的浓度为87.5 wt%;溶液C与Nafion溶液的体积比为100:1。
2. 根据权利要求1所述的方法,其特征在于,步骤1中,溶液A中1,3,5-苯三甲酸和NaOH的质量比为1.746:1,NaOH溶液的浓度为1 M;溶液B中FeCl2·4H2O与去离子水的质量比为1:42.92;1,3,5-苯三甲酸与FeCl2·4H2O的质量比为1:1.348。
3.一种如权利要求1-2任一项所述的方法制得的用于膜蒸馏的AgCl/MIL-100(Fe)/PTFE光催化膜,其特征在于:以PTFE膜为载体,负载0.08-0.1wt.%的AgCl/MIL-100(Fe)。
4.一种如权利要求1-2任一项所述的方法制得的AgCl/MIL-100(Fe)/PTFE光催化膜应用于膜蒸馏时去除水中挥发性有机物。
CN202111605739.1A 2021-12-25 2021-12-25 一种AgCl/MIL-100(Fe)/PTFE光催化膜及其制备方法和应用 Active CN114177943B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111605739.1A CN114177943B (zh) 2021-12-25 2021-12-25 一种AgCl/MIL-100(Fe)/PTFE光催化膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111605739.1A CN114177943B (zh) 2021-12-25 2021-12-25 一种AgCl/MIL-100(Fe)/PTFE光催化膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114177943A CN114177943A (zh) 2022-03-15
CN114177943B true CN114177943B (zh) 2023-08-18

Family

ID=80545018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111605739.1A Active CN114177943B (zh) 2021-12-25 2021-12-25 一种AgCl/MIL-100(Fe)/PTFE光催化膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114177943B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102600839A (zh) * 2012-02-16 2012-07-25 华南理工大学 负载银纳米线的导电载体及其制备方法与应用
CN105562110A (zh) * 2016-01-17 2016-05-11 济南大学 一种AgXMIL(Fe)复合光催化剂的制备方法
CN109772454A (zh) * 2019-02-28 2019-05-21 清华大学深圳研究生院 光催化膜及其制备方法和对消毒副产物前体物的降解应用
CN112536070A (zh) * 2020-12-02 2021-03-23 浙江大学 可见光响应型MIL-100(Fe)光催化复合材料的制备方法
CN113680221A (zh) * 2021-08-27 2021-11-23 天津工业大学 一种光催化-光热膜蒸馏用复合膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102600839A (zh) * 2012-02-16 2012-07-25 华南理工大学 负载银纳米线的导电载体及其制备方法与应用
CN105562110A (zh) * 2016-01-17 2016-05-11 济南大学 一种AgXMIL(Fe)复合光催化剂的制备方法
CN109772454A (zh) * 2019-02-28 2019-05-21 清华大学深圳研究生院 光催化膜及其制备方法和对消毒副产物前体物的降解应用
CN112536070A (zh) * 2020-12-02 2021-03-23 浙江大学 可见光响应型MIL-100(Fe)光催化复合材料的制备方法
CN113680221A (zh) * 2021-08-27 2021-11-23 天津工业大学 一种光催化-光热膜蒸馏用复合膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
光催化膜反应器应用于废水处理的研究进展;张青青;曾婷;张磊;王春英;;环境化学(第05期);全文 *

Also Published As

Publication number Publication date
CN114177943A (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
Chen et al. Polyaniline modified MIL-100 (Fe) for enhanced photocatalytic Cr (VI) reduction and tetracycline degradation under white light
Yang et al. Insights into the degradation mechanism of perfluorooctanoic acid under visible-light irradiation through fabricating flower-shaped Bi5O7I/ZnO nn heterojunction microspheres
Wang et al. Photocatalytic removal of antibiotics from natural water matrices and swine wastewater via Cu (I) coordinately polymeric carbon nitride framework
Yang et al. Photocatalytic PVDF ultrafiltration membrane blended with visible-light responsive Fe (III)-TiO2 catalyst: Degradation kinetics, catalytic performance and reusability
Lin et al. Facile synthesis of direct Z-scheme UiO-66-NH2/PhC2Cu heterojunction with ultrahigh redox potential for enhanced photocatalytic Cr (VI) reduction and NOR degradation
Meng et al. Efficient ciprofloxacin removal over Z-scheme ZIF-67/V-BiOIO3 heterojunctions: Insight into synergistic effect between adsorption and photocatalysis
Han et al. Boosting visible light photocatalytic activity via impregnation-induced RhB-sensitized MIL-125 (Ti)
Hu et al. Easily recyclable photocatalyst Bi 2 WO 6/MOF/PVDF composite film for efficient degradation of aqueous refractory organic pollutants under visible-light irradiation
Hu et al. Biomimetic O2-carrying and highly in-situ H2O2 generation using Ti3C2 MXene/MIL-100 (Fe) hybrid via Fe-Protoporphyrin bridging for photo-fenton synergistic degradation of thiacloprid
Li et al. Self-cleaning photocatalytic PVDF membrane loaded with NH2-MIL-88B/CDs and Graphene oxide for MB separation and degradation
Zhang et al. Plasma-assisted doping of nitrogen into cobalt sulfide for loading cadmium sulfide: A direct Z-scheme heterojunction for efficiently photocatalytic Cr (VI) reduction under visible light
Sun et al. Recent advances in the application of zeolitic imidazolate frameworks (ZIFs) in environmental remediation: a review
Liu et al. Fine tuning of phosphorus active sites on gC 3 N 4 nanosheets for enhanced photocatalytic decontamination
Zhou et al. BiOCl0. 875Br0. 125/polydopamine functionalized PVDF membrane for highly efficient visible-light-driven photocatalytic degradation of roxarsone and simultaneous arsenic immobilization
CN109499573A (zh) 一种磁性木基材料的原位制备方法
Wang et al. Efficient photocatalytic degradation of tetracycline under visible light by an all-solid-state Z-scheme Ag3PO4/MIL-101 (Cr) heterostructure with metallic Ag as a charge transmission bridge
Wu et al. Construction of 3D porous BiOBr/MIL-101 (Cr) Z-scheme heterostructure for boosted photocatalytic degradation of tetracycline hydrochloride
Li et al. Hollow C, N-TiO2@ C surface molecularly imprinted microspheres with visible light photocatalytic regeneration availability for targeted degradation of sulfadiazine
Far et al. Synthesis of MXene/Metal-Organic Framework (MXOF) composite as an efficient photocatalyst for dye contaminant degradation
Huang et al. Synthesis of recyclable 3D LC/h-ZIF-8 by Zn (Ⅱ) containing wastewater for photocatalytic degradation of mixed-dye under UV-Vis irradiation
Yin et al. Alloying effect of PdCu-TiO2 in photocatalytic membrane reactor for efficient removal of humic acid foulant
Wang et al. A sustainable solution for organic pollutant degradation: Novel polyethersulfone/carbon cloth/FeOCl composite membranes with electric field-assisted persulfate activation
Li et al. Solar-catalytic membranes constructed by graphene oxide and prussian blue@ covalent triazine framework “active mega cubes” for ultrafast water transport
Zhang et al. Will the photocatalytic ceramic membrane be the solution for the next generation of photocatalysis?-A comprehensive comparison between g-C3N4 powder and g-C3N4 modified ceramic membrane
Hua et al. Synthesis of type II heterojunction 2D/3D Bi2S3/MIL-88 (A) with enhanced photocatalytic activity under visible-light irradiation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant