CN113428903A - 一种制备纳米锰锌铁氧体纤维的方法 - Google Patents

一种制备纳米锰锌铁氧体纤维的方法 Download PDF

Info

Publication number
CN113428903A
CN113428903A CN202110823545.2A CN202110823545A CN113428903A CN 113428903 A CN113428903 A CN 113428903A CN 202110823545 A CN202110823545 A CN 202110823545A CN 113428903 A CN113428903 A CN 113428903A
Authority
CN
China
Prior art keywords
manganese
zinc
reaction
zinc ferrite
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110823545.2A
Other languages
English (en)
Inventor
商雅静
罗凡
张宇阳
段中夏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electrical Engineering of CAS
Original Assignee
Institute of Electrical Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electrical Engineering of CAS filed Critical Institute of Electrical Engineering of CAS
Priority to CN202110823545.2A priority Critical patent/CN113428903A/zh
Publication of CN113428903A publication Critical patent/CN113428903A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)

Abstract

一种制备纳米锰锌铁氧体纤维的方法,其特征在于,其包括以下步骤:S1,将可溶性二价锰盐、二价锌盐和三价铁盐,加入到去离子水中,采用超声处理使颗粒溶解完全,并充分搅拌以形成反应溶液;S2,向上述反应溶液中添加氢氧化钠溶液以及表面活性剂CTAB,并搅拌;S3,将步骤S2的反应溶液移入到反应釜中,进行水热反应,待水热完毕后让反应釜自然冷却,移去上层清液,将沉淀物清洁干净后,在真空烘箱中烘干;S4,将步骤S3烘干后的产物研成粉末,以得到纤维状的锰锌铁氧体。上述方法可以有效地解决现有技术中的制备方法制备出的锰锌铁氧体纳米材料的形貌多为球状或颗粒状,锰锌铁氧体形貌不一致、性能差的问题。

Description

一种制备纳米锰锌铁氧体纤维的方法
技术领域
本发明涉及纳米锰锌铁氧体纤维制备技术领域,具体涉及一种采用水热法制备纳米锰锌铁氧体纤维的方法。
背景技术
锰锌铁氧体纤维是软磁铁氧体的一种。锰锌铁氧体纤维属尖晶石型结构,由铁、锰、锌的氧化物及其盐类采用陶瓷工艺制成。它具有高的起始导磁率。一般在1千赫至10兆赫的频率范围内使用。可制作电感器、变压器、滤波器的磁芯、磁头及天线棒。通常被称为铁氧体磁芯。
现有技术如公开号为CN101306472A的专利文献公开了一种锰锌铁氧体磁性纳米微球的制备方法,上述技术中通过采用以可溶性的铁盐、锌盐、锰盐为起始原料,乙二醇为溶剂并辅以各种添加剂,从而采用水热法制备了粒径在50nm至200nm的球状锰锌铁氧体。上述制备方法虽然具有工艺流程简单,易于工业化生产的优点。但是,该制备方法制备出的锰锌铁氧体纳米材料的形貌多为球状或颗粒状。上述不同尺寸和形貌的锰锌铁氧体在性能上各不相同,现有的制备方法缺乏对水热合成过程中样品的成核与生长过程进行调控,导致锰锌铁氧体形貌不一致、性能差的问题。
因此本发明采用表明活性剂对水热合成过程中样品的成核与生长过程进行调控,通过控制锰锌铁氧体形貌,进一步提升其性能。
发明内容
因此,本发明旨在提供一种制备纳米锰锌铁氧体纤维的方法,以解决现有技术中的制备方法制备出的锰锌铁氧体纳米材料的形貌多为球状或颗粒状,锰锌铁氧体形貌不一致、性能差的问题。本申请提供一种制备纳米锰锌铁氧体纤维的方法,包括以下步骤:
S1,将可溶性二价锰盐、二价锌盐和三价铁盐,加入到去离子水中,采用超声处理使颗粒溶解完全,并充分搅拌以形成反应溶液;
S2,向上述反应溶液中添加氢氧化钠溶液以及表面活性剂CTAB,并搅拌;
S3,将步骤S2的反应溶液移入到反应釜中,进行水热反应,待水热完毕后让反应釜自然冷却,移去上层清液,将沉淀物清洁干净后,在真空烘箱中烘干;
S4,将步骤S3烘干后的产物研成粉末,以得到纤维状的锰锌铁氧体。
表面活性剂CTAB为十六烷基三甲基溴化铵表面活性剂。
可选的,在步骤S2中,所述氢氧化钠溶液的溶液pH为10.0至12.0;和/或,
添加有氢氧化钠溶液以及表面活性剂CTAB的所述反应溶液,在磁力搅拌器作用下搅拌。
可选的,在步骤S3中,所述沉淀物用去离子水和无水乙醇冲洗6至7次,以洗净所述沉淀物。
可选的,其特征在于,在步骤S2中,所述表面活性剂CTAB的浓度范围是0.05mol/L至0.4mol/L,所述表面活性剂CTAB的加入量为5ml。
可选的,所述表面活性剂CTAB的浓度为0.2mol/L,加入量为5ml。
可选的,在步骤S3中的所述反应溶液的体积为反应斧体积的1/2;且,
所述水热反应的温度为180℃至220℃,反应时间为12h至36h,以制得纳米锰锌铁氧体纤维。
所述纳米锰锌铁氧体纤维的化学式为Mn0.5Zn0.5Fe2O4
可选的,在步骤S1中,
所述二价锰盐为四水合硝酸锰;所述二价锌盐为六水合硝酸锌;所述三价铁盐为九水合硝酸铁。
四水合硝酸锰的化学式为Mn(NO3)2·4H2O;六水合硝酸锌的化学式为Zn(NO3)2·6H2O;九水合硝酸铁的化学式为Fe(NO3)3·9H2O
可选的,在步骤S1中反应溶液原料的铁离子、锌离子和锰离子三者之间的摩尔比为4:1:1。
本发明的技术方案,具有如下优点:
1.本发明提供的制备纳米锰锌铁氧体纤维的方法,包括以下步骤:S1,将可溶性二价锰盐、二价锌盐和三价铁盐,加入到去离子水中,采用超声处理使颗粒溶解完全,并充分搅拌以形成反应溶液;S2,向上述反应溶液中添加氢氧化钠溶液以及表面活性剂CTAB,并搅拌;S3,将步骤S2的反应溶液移入到反应釜中,进行水热反应,待水热完毕后让反应釜自然冷却,移去上层清液,将沉淀物清洁干净后,在真空烘箱中烘干;S4,将步骤S3烘干后的产物研成粉末,以得到纤维状的锰锌铁氧体。
在本发明中,首次以金属盐为原料,采用阳离子型表面活性剂CTAB来调控纳米粒子以棒状方式生长,通过水热反应制备出一维锰锌铁氧体纳米纤维。通过采用金属盐为原料并用阳离子型表面活性剂CTAB,上述表面活性剂CTAB为阳离子化合物,可以在水中能够完全电离从而负责纳米粒子的棒状组装。而且,上述表面活性剂CTAB还可以有效地降低溶液的表面张力,进而减少了反应过程中形成新相所需的能量。此外,表面活性剂CTAB电离后,其带正电荷的疏水长尾四面体CTA+,与MnZnFe2O4中带负电荷的晶体生长单元还可以通过静电相互作用形成离子对,从而构成晶体生长起始剂。综上所述,通过采用金属盐为原料并用阳离子型表面活性剂CTAB,可以有效地解决现有技术中的制备方法制备出的锰锌铁氧体纳米材料的形貌多为球状或颗粒状,锰锌铁氧体形貌不一致、性能差的问题。
2.本发明提供的制备纳米锰锌铁氧体纤维的方法,在步骤S2中,所述氢氧化钠溶液的溶液pH为10.0至12.0,让反应溶液中的金属离子充分沉淀,不完全溶解。
3.本发明提供的制备纳米锰锌铁氧体纤维的方法,添加有氢氧化钠溶液以及表面活性剂CTAB的所述反应溶液,在磁力搅拌器作用下搅拌,使反应溶液得到充分的混合、反应。
4.本发明提供的制备纳米锰锌铁氧体纤维的方法,所述表面活性剂CTAB的浓度范围是0.05mol/L至0.4mol/L。
在本发明中通过改变溶液中表面活性剂CTAB的浓度,可以有效地调控水热反应过程中锰锌铁氧体粒子以棒状方式生长,进而合成一维纳米锰锌铁氧体纤维。
5.本发明提供的制备纳米锰锌铁氧体纤维的方法,所述表面活性剂CTAB的浓度为0.2mol/L,加入量为5ml,此时有利于锰锌铁氧体粒子以棒状方式生长,产生的杂相少。
6.本发明提供的制备纳米锰锌铁氧体纤维的方法,在步骤S3中的所述反应溶液的体积为反应斧体积的1/2;且,所述水热反应的温度为180℃至220℃,反应时间为12h至36h,以制得纳米锰锌铁氧体纤维,若反应温度和反应时间过低,锰锌铁氧体粒子向棒状方式生长趋势变低,若反应温度和反应时间过高,产物中杂相增多。
7.本发明提供的制备纳米锰锌铁氧体纤维的方法,在步骤S1中反应溶液原料的铁离子、锌离子和锰离子三者之间的摩尔比为4:1:1,以制得锰锌比例相同的Mn0.5Zn0.5Fe2O4。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的纳米锰锌铁氧体纤维的制备方法流程图;
图2为本发明提供的水热法制备纳米锰锌铁氧体纤维的扫描电镜照片;
图3为现有技术中的烧结后水热法制备纳米锰锌铁氧体纤维的扫描电镜照片;
图4为本发明提供的水热法制备纳米锰锌铁氧体纤维的X射线衍射图;
图5为现有技术中的烧结后水热法制备纳米锰锌铁氧体纤维的X射线衍射图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
本实施例提供一种制备纳米锰锌铁氧体纤维的方法,如图1所示,其包括以下步骤:
S1,将可溶性二价锰盐、二价锌盐和三价铁盐,加入到去离子水中,采用超声处理使颗粒溶解完全,并充分搅拌以形成反应溶液;上述所述二价锰盐为四水合硝酸锰;所述二价锌盐为六水合硝酸锌;所述三价铁盐为九水合硝酸铁;且,在步骤S1中反应溶液原料的铁离子、锌离子和锰离子三者之间的摩尔比为4:1:1;
S2,向上述反应溶液中添加氢氧化钠溶液以及表面活性剂CTAB,并搅拌;其中,所述氢氧化钠溶液的溶液pH为11.0;所述表面活性剂CTAB的浓度为0.2mol/L,加入量为5ml。且添加有氢氧化钠溶液以及表面活性剂CTAB的所述反应溶液在磁力搅拌器作用下搅拌;
S3,将步骤S2的反应溶液移入到反应釜中,进行水热反应,待水热完毕后让反应釜自然冷却,移去上层清液,将沉淀物清洁干净后,在真空烘箱中烘干;在步骤S3中,所述沉淀物用去离子水和无水乙醇冲洗6至7次,以洗净所述沉淀物;在本步骤中的所述反应溶液的体积为反应斧体积的1/2;且,所述水热反应的温度为180℃,反应时间为12h,以制得纳米锰锌铁氧体纤维;
S4,将步骤S3烘干后的产物研成粉末,以得到纤维状的锰锌铁氧体。
当然,本发明申请对步骤S2中的氢氧化钠溶液的溶液pH不做具体限制,在其它实施例中,所述氢氧化钠溶液的溶液pH为10.0或者12.0。
当然,本发明申请对步骤S3中水热反应的温度和反应时间不做具体限制,在其它实施例中,所述水热反应的温度为200℃或者为220℃,反应时间为12h至36h,以制得纳米锰锌铁氧体纤维。
实施例2
用电子天平分别称取Fe(NO3)3·9H2O0.808 g,Zn(NO3)2·6H2O0.1485 g和Mn(NO3)2·4H2O0.123 g。将其放入烧杯中,并加入去离子水,超声处理使颗粒溶解完全,并充分搅拌。用滴管向溶解反应溶液的烧杯瓶中滴加氢2mol/L的氧化钠溶液,调节溶液的pH为11.0,之后用磁力搅拌器搅拌10min。再滴加5mL 0.2mol/L的CTAB溶液于反应烧杯中,继续用磁力搅拌器搅拌20min。向烧杯中滴加去离子水使总体积为25mL,用磁力搅拌器搅拌10min。将配制好的溶液全部装入50mL的反应釜中,在真空干燥箱中180℃下反应12h。待水热完毕后让反应釜自然冷却,移去上层清液,将沉淀物用去离子水和无水乙醇冲洗6~7次,确定洗净后,在真空烘箱中烘干。烘干后,将产物用研钵研成粉末,得到纤维状的锰锌铁氧体。
如图4所示,为水热法制备纳米锰锌铁氧体纤维的X射线衍射图。可以发现:产物的衍射峰与锰锌铁氧体的衍射峰一致,通过XRD数据分析软件分析比对,结果表明该产物的主相为Mn0.5Zn0.5Fe2O4,杂相为Fe2O3和FeO(OH)。如图2所示,水热法制备纳米锰锌铁氧体纤维的扫描电镜照片。可以看出,所制备样品的形貌大多数为一维纳米纤维,少量为零维等轴状纳米颗粒。
实施例3
为了进一步去除实施例1中的Fe2O3和FeO(OH)杂相,在实施例2的基础上,将制得的锰锌铁氧体粉末在氮氢混合气的条件下进行烧结,其中H2的比例为5%,反应温度为500℃,烧结时间为3h。烧结后的水热法制备纳米锰锌铁氧体纤维的X射线衍射图,如图5所示。可以发现:经XRD数据分析软件分析比对,烧结后该产物的主相仍为Mn0.5Zn0.5Fe2O4,且产物中的杂相Fe2O3和FeOOH均消失,产物的纯度提高。图3示出了烧结后水热法制备纳米锰锌铁氧体纤维的扫描电镜照片。可以看出,烧结后的样品形貌仍呈一维纳米纤维状分布。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (8)

1.一种制备纳米锰锌铁氧体纤维的方法,其特征在于,其包括以下步骤:
S1,将可溶性二价锰盐、二价锌盐和三价铁盐,加入到去离子水中,采用超声处理使颗粒溶解完全,并充分搅拌以形成反应溶液;
S2,向上述反应溶液中添加氢氧化钠溶液以及表面活性剂CTAB,并搅拌;
S3,将步骤S2的反应溶液移入到反应釜中,进行水热反应,待水热完毕后让反应釜自然冷却,移去上层清液,将沉淀物清洁干净后,在真空烘箱中烘干;
S4,将步骤S3烘干后的产物研成粉末,以得到纤维状的锰锌铁氧体。
2.根据权利要求1所述的制备纳米锰锌铁氧体纤维的方法,其特征在于,在步骤S2中,所述氢氧化钠溶液的溶液pH为10.0至12.0;和/或,
添加有氢氧化钠溶液以及表面活性剂CTAB的所述反应溶液,在磁力搅拌器作用下搅拌。
3.根据权利要求1所述的制备纳米锰锌铁氧体纤维的方法,其特征在于,在步骤S3中,所述沉淀物用去离子水和无水乙醇冲洗6至7次,以洗净所述沉淀物。
4.根据权利要求1所述的制备纳米锰锌铁氧体纤维的方法,其特征在于,在步骤S2中,所述表面活性剂CTAB的浓度范围是0.05mol/L至0.4mol/L,所述表面活性剂CTAB的加入量为5ml。
5.根据权利要求4所述的制备纳米锰锌铁氧体纤维的方法,其特征在于,所述表面活性剂CTAB的浓度为0.2mol/L,加入量为5ml。
6.根据权利要求1所述的制备纳米锰锌铁氧体纤维的方法,其特征在于,在步骤S3中的所述反应溶液的体积为反应斧体积的1/2;且,
所述水热反应的温度为180℃至220℃,反应时间为12h至36h,以制得纳米锰锌铁氧体纤维。
7.根据权利要求1所述的制备纳米锰锌铁氧体纤维的方法,其特征在于,在步骤S1中,
所述二价锰盐为四水合硝酸锰;所述二价锌盐为六水合硝酸锌;所述三价铁盐为九水合硝酸铁。
8.根据权利要求7所述的制备纳米锰锌铁氧体纤维的方法,其特征在于,在步骤S1中反应溶液原料的铁离子、锌离子和锰离子三者之间的摩尔比为4:1:1。
CN202110823545.2A 2021-07-21 2021-07-21 一种制备纳米锰锌铁氧体纤维的方法 Pending CN113428903A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110823545.2A CN113428903A (zh) 2021-07-21 2021-07-21 一种制备纳米锰锌铁氧体纤维的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110823545.2A CN113428903A (zh) 2021-07-21 2021-07-21 一种制备纳米锰锌铁氧体纤维的方法

Publications (1)

Publication Number Publication Date
CN113428903A true CN113428903A (zh) 2021-09-24

Family

ID=77761220

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110823545.2A Pending CN113428903A (zh) 2021-07-21 2021-07-21 一种制备纳米锰锌铁氧体纤维的方法

Country Status (1)

Country Link
CN (1) CN113428903A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114751459A (zh) * 2022-04-06 2022-07-15 中国科学院电工研究所 制备锰锌铁氧体纤维的方法与锰锌铁氧体纤维

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986426A (zh) * 2005-12-20 2007-06-27 南京理工大学 锰锌铁氧体纳米材料的制备方法
CN101591037A (zh) * 2009-07-03 2009-12-02 北京化工大学 一种一维氧化锌纳米材料及其制备方法
WO2012083511A1 (zh) * 2010-12-20 2012-06-28 海洋王照明科技股份有限公司 二氧化锰纳米棒的制备方法和应用
CN103214037A (zh) * 2013-02-28 2013-07-24 中国地质大学(武汉) 一种自组装式棒状锰锌铁氧体磁性材料及其制备方法
CN103896342A (zh) * 2014-02-28 2014-07-02 沈阳理工大学 一种棒状尖晶石型铁氧体的制备方法
CN106365205A (zh) * 2016-08-18 2017-02-01 河北工业大学 一种锰锌铁氧体纳米粉体的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986426A (zh) * 2005-12-20 2007-06-27 南京理工大学 锰锌铁氧体纳米材料的制备方法
CN101591037A (zh) * 2009-07-03 2009-12-02 北京化工大学 一种一维氧化锌纳米材料及其制备方法
WO2012083511A1 (zh) * 2010-12-20 2012-06-28 海洋王照明科技股份有限公司 二氧化锰纳米棒的制备方法和应用
CN103214037A (zh) * 2013-02-28 2013-07-24 中国地质大学(武汉) 一种自组装式棒状锰锌铁氧体磁性材料及其制备方法
CN103896342A (zh) * 2014-02-28 2014-07-02 沈阳理工大学 一种棒状尖晶石型铁氧体的制备方法
CN106365205A (zh) * 2016-08-18 2017-02-01 河北工业大学 一种锰锌铁氧体纳米粉体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
田会娟等: "表面活性剂对纳米氧化锌形貌和发光性能的影响", 《材料导报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114751459A (zh) * 2022-04-06 2022-07-15 中国科学院电工研究所 制备锰锌铁氧体纤维的方法与锰锌铁氧体纤维

Similar Documents

Publication Publication Date Title
JP6676493B2 (ja) 鉄系酸化物磁性粒子粉の製造方法
CN1195705C (zh) 单晶铁氧体细粉
JP2021121694A (ja) 鉄粉およびその製造方法並びにインダクタ用成形体およびインダクタ
JP6480715B2 (ja) 鉄系酸化物磁性粒子粉の前駆体およびそれを用いた鉄系酸化物磁性粒子粉の製造方法
JP4096152B2 (ja) 誘電体組成物
CN113428903A (zh) 一种制备纳米锰锌铁氧体纤维的方法
CN103159469A (zh) 一种高磁导率锰锌铁氧体料粉的制备方法
CN105016395A (zh) 一种纳米铁氧体材料及其制备方法
JP2018110167A (ja) 複合磁性粒子、電波吸収体および複合磁性粒子の製造方法
US20220081319A1 (en) Iron-based oxide magnetic powder and production method therefor
Akhtar et al. Structural and magnetic characterizations of nano structured Ni0. 8Zn0. 2Fe2O4 prepared by self combustion method
TWI701348B (zh) 鐵粉及其製造方法,以及電感器用成形體及電感器
JP4087555B2 (ja) 酸化鉄およびその製造方法
CN115650309A (zh) 一种铈掺杂钡铁氧体吸波材料及其制备方法
TWI768299B (zh) 置換型ε氧化鐵磁性粒子粉、置換型ε氧化鐵磁性粒子粉的製造方法、壓粉體、壓粉體的製造方法及電波吸收體
CN115246653A (zh) 纳米氧化镝及其制备方法与应用
KR970008749B1 (ko) 금속옥살레이트를 전구체로 이용한 니켈-아연 페라이트 분말제조방법
KR101931635B1 (ko) 페라이트 코어 제조 방법 및 그 페라이트 코어
WO2020179659A1 (ja) 置換型ε酸化鉄磁性粒子粉、置換型ε酸化鉄磁性粒子粉の製造方法、圧粉体、圧粉体の製造方法および電波吸収体
CN111187066A (zh) 一种单层正交结构磁电多铁陶瓷及其制备方法
EP3950598A1 (en) Substituted ?-iron oxide magnetic particle powder, production method for substituted ?-iron oxide magnetic particle powder, green compact, production method for green compact, and electromagnetic wave absorber
CN110182853A (zh) 一种Co-Ti共掺杂六角铁氧体纳米粉体的制备方法
JP7497258B2 (ja) 置換型ε酸化鉄磁性粒子粉および置換型ε酸化鉄磁性粒子粉の製造方法
JP3894298B2 (ja) Fe▲2▼O▲3▼およびその製造方法
WO2021187329A1 (ja) 鉄系酸化物磁性粉の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210924