CN111187066A - 一种单层正交结构磁电多铁陶瓷及其制备方法 - Google Patents

一种单层正交结构磁电多铁陶瓷及其制备方法 Download PDF

Info

Publication number
CN111187066A
CN111187066A CN202010118616.4A CN202010118616A CN111187066A CN 111187066 A CN111187066 A CN 111187066A CN 202010118616 A CN202010118616 A CN 202010118616A CN 111187066 A CN111187066 A CN 111187066A
Authority
CN
China
Prior art keywords
ceramic
precursor powder
hours
preparation
nitrate hexahydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010118616.4A
Other languages
English (en)
Inventor
毛翔宇
殷永杰
王伟
卢建安
刘飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202010118616.4A priority Critical patent/CN111187066A/zh
Publication of CN111187066A publication Critical patent/CN111187066A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2675Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种单层正交结构磁电多铁陶瓷及其制备方法,该陶瓷的晶格参数如下:化学式:LaFe0.5Co0.5O3(LCFO),分子量:244.29;晶系:正交晶系;空间群:pbnm;a:5.521(9)Å;b:5.530(0)Å;c:7.812(7)Å;α=β=γ=90o;体积:238.5(69);先制备LaFe0.5Co0.5O3(LCFO)的前驱粉末,再将前驱粉末制备所述陶瓷。本发明大大降低了单层多铁陶瓷的制备温度,所得陶瓷样品的磁性能显著提高,致密度高,微观颗粒大小均匀,且工艺流程简单稳定,烧结温度低,反应周期短,原料无毒,更具有环境协调性。

Description

一种单层正交结构磁电多铁陶瓷及其制备方法
技术领域
本发明是关于一种具有单层状钙钛矿结构的同时具有铁电、铁磁性能的正交结构的铁钴酸镧陶瓷及其制备方法,属于氧化物陶瓷材料制备。
背景技术
单相多铁材料是同一相中同时呈现出铁电性、铁磁性或者铁弹性三者中的至少两个铁性的材料。该类材料的多铁特性在多功能电子器件、新型的信息存储、磁电调控传感器表现出巨大的应用前景。自然界无多铁性材料依靠人工合成,然而绝大部分单相多铁材料由于电子的竞争需求不同无法在室温下同时拥有铁磁性和铁电性,限制了其应用范围,故人工合成的室温多铁性材料引起了人们的关注。
理想的钙钛矿结构为立方结构,满足空间群Pm3m,在ABO3钙钛矿型复合氧化物结构中:ABO3结构对A位和B位元素离子半径和价态具有相当大的容忍能力。通常A位离子为稀土金属离子,B位离子为过渡金属离子。A为较大的阳离子,与12个O配位,位于立方体的中心。B为较小的阳离子,与6个O配位,位于6个O组成的八面体中心。即占据着由氧离子形成的全部氧八面体空隙,因此必须具备A离子较大、B离子较小的先决条件。A离子和氧离子共同构成近似立方密堆积,每个氧离子有6个阳离子连接,位于立方体的棱边。A位和B位也可进行各种化学取代与掺杂,以调变其物理性质。比如,对A位进行碱土金属或碱金属离子掺杂或对B位进行过渡金属离子掺杂,会使材料的晶格结构、能带结构、电子结构等发生变化,赋予其丰富的磁、电性能。可以说,ABO3型的复合氧化物是开发强关联电子体系磁、电功能材料的“万能母体”,使得人们对其显示出巨大的研究热情。
BiFeO3(BFO)是一种典型的常温单相多铁材料。为ABO3型钙钛矿结构,Bi3+位于A位点,B位点被磁性过渡金属离子Fe3+所占据。但目前已知的BFO制备过程中会产生大量氧空位和铁离子价电子的波动,BFO具有较高的漏电流。通常ABO3型钙钛矿A位用稀土元素取代会大大提高电性能,同时BiFeO3样品磁性源于Fe-O-Fe的耦合作用故为了提高样品的磁性,采用不同的磁性离子,如:Co,Ni等取代Fe离子形成Fe-O-Co/Fe-O-Ni等形成亚铁磁耦合提高了样品室温下的磁性能。故用La占据A位,B位用Co3+部分取代Fe3+制备的LaFe0.5Co0.5O3具有良好的多铁性能。目前已知的文献中所制备LaFe0.5Co0.5O3陶瓷样品均为立方结构表现出反铁磁性,而对于的晶格畸变成正交结构后表现出很强的铁磁性能,其所属空间群为Pbnm的陶瓷样品也未曾报道。
发明内容
本发明的目的之一是提供一种单层正交结构磁电多铁陶瓷LaFe0.5Co0.5O3(LCFO),该陶瓷表现出很强的铁磁性能(2Mr=3.84emu/g)。
本发明另一个目的是提供以上材料的制备方法。该工艺简单合理,具有与现行的固相工艺有良好的兼容性,样品制备温度远远低于现行工艺的制备温度、材料晶粒为纳米级且性能更优可大大降低能耗,提高利用率,缩短制样周期便于实验研究及产业化应用。
实现本发明目的之一的技术方案是:一种单层正交结构磁电多铁陶瓷,晶格参数如下:化学式:LaFe0.5Co0.5O3(LCFO),分子量:244.29;晶系:正交晶系;空间群:pbnm;a:
Figure BDA0002392272110000021
b:
Figure BDA0002392272110000022
c:
Figure BDA0002392272110000023
α=β=γ=90°;体积:238.5(69)。
实现本发明另一个目的的技术方案是:一种单层正交结构磁电多铁陶瓷的制备方法,先制备LaFe0.5Co0.5O3(LCFO)的前驱粉末,再将前驱粉末制备所述陶瓷,具体包括如下步骤:
(1)前驱粉末制备:以六水合硝酸镧,六水合硝酸钴,九水合硝酸铁,一水合柠檬酸,氢氧化钠为原料,采用水热法制备前驱粉末;
(2)陶瓷制备:将前驱粉末压制成型,排塑、烧结,即得所述陶瓷。
较佳的,步骤(1)中,六水合硝酸镧、六水合硝酸钴、九水合硝酸铁、一水合柠檬酸和氢氧化钠的摩尔比为1:0.5:0.5:2:10。
较佳的,步骤(1)中,采用水热法在155℃下水热反应12h制备前驱粉末。
具体的,步骤(1)中,将六水合硝酸镧、六水合硝酸钴、九水合硝酸铁、一水合柠檬酸置于水中搅拌3h形成溶液,然后缓慢加入氢氧化钠,搅拌3h形成浊液,将所得浊液采用水热法制备前驱粉末。
较佳的,步骤(2)中,将前驱粉末压制成型,在500℃下排塑3h,再在800℃下烧结5h,即得所述陶瓷。
具体的,步骤(2)中,将1g前驱粉末滴入1滴粘合剂(粘合剂为浓度为10wt%的聚乙烯醇溶液),在16MPa的压力下压制成型,在500℃下排塑3h,再在800℃下烧结5h,即得所述陶瓷。
与现有技术相比,本发明具有如下效果:
(1)合成一种新型正交晶系的磁电多铁陶瓷LaFe0.5Co0.5O3(LCFO)。
(2)大大降低了单层多铁陶瓷的制备温度。
(3)与现有水热工艺衔接。
(4)所得陶瓷样品磁性能显著提高。
(5)工艺流程简单稳定。
(6)烧结温度低,反应周期短,原料无毒,更具有环境协调性。
(7)所得陶瓷样品致密度高,微观颗粒大小均匀。
附图说明
图1是本发明实施例中样品的X射线图形。
图2是本发明实施例中样品扫描电镜照片。
图3是本发明实施例中样品的Raman图形。
图4是本发明实施例中样品磁性能测量结果曲线图。
具体实施方案
下面结合实施例和附图对本发明进行详细阐述。
(1)样品原料准备:
1)选用分析纯六水合硝酸镧(La(NO3)3·6H2O)、九水合硝酸铁(Fe(NO3)3·9H2O)、六水合硝酸钴(Co(NO3)·6H2O)、一水合柠檬酸(C6H8O7·H2O)、氢氧化钠(NaOH)为原料,原料均采用上海化学试剂公司产品。
(2)LCFO前驱粉末的制备:
按表1所示,将称好的六水合硝酸镧(La(NO3)3·6H2O)、九水合硝酸铁(Fe(NO3)3·9H2O)、六水合硝酸钴(Co(NO3)·6H2O)、一水合柠檬酸(C6H8O7·H2O)溶解在45ml去离子水内搅拌3h形成溶液,然后缓慢加入氢氧化钠(NaOH),搅拌3h形成浊液,转移至反应釜中在155℃温度下,反应12h,自然冷却室温,取出、用酒精和去离子水洗涤各三次。90℃、4h烘干,研磨烘干产物,得到LCFO前驱粉末。
表1
Figure BDA0002392272110000031
Figure BDA0002392272110000041
(3)LCFO陶瓷的制备
取步骤(2)所得LCFO前驱粉末1g。滴入1滴粘合剂(浓度为10wt%的聚乙烯醇溶液),在16MPa的压力下成型,制成圆柱体样品,样品尺寸为
Figure BDA0002392272110000042
将成型后的样品坯体在500℃温度下排塑3h。然后将经过排塑过的样品在800℃的温度下烧结5h。
图1是样品的XRD衍射图,其各个峰位与正交晶系的标准峰一致,证明该样品为正交结构的LCFO物质。
图2是样品的扫描电镜图,其微观形貌为球状,与文献描述一致,同样表明LCFO样品制备成功。
图3是样品的Raman声子峰,其各个峰位与文献报道一致,证明晶胞内部FeO6/CoO6的存在表明其为LCFO这种物质。
图4是磁性能测量图,其剩余磁化强度2Mr=3.84emu/g强于之前文献报道的单层钙钛矿的磁性能。
本发明工艺简单,采用现行的水热法工艺和市场购得的硝酸盐水合物为原料在低温低压下制备出前驱粉末,煅烧制备出单层多铁性陶瓷样品。

Claims (8)

1. 一种单层正交结构磁电多铁陶瓷,其特征在于,所述陶瓷的晶格参数如下:化学式:LaFe0.5Co0.5O3(LCFO),分子量:244.29;晶系:正交晶系;空间群:pbnm;a:5.521(9) Å; b:5.530(0) Å; c:7.812(7) Å; α = β = γ =90o ; 体积: 238.5(69)。
2.一种如权利要求1所述的单层正交结构磁电多铁陶瓷的制备方法,其特征在于,包括如下步骤:
(1)以六水合硝酸镧,六水合硝酸钴,九水合硝酸铁,一水合柠檬酸,氢氧化钠为原料,采用水热法制备前驱粉末;
(2)将前驱粉末压制成型,排塑、烧结,即得所述陶瓷。
3.如权利要求2所述的方法,其特征在于,步骤(1)中,六水合硝酸镧、六水合硝酸钴、九水合硝酸铁、一水合柠檬酸和氢氧化钠的摩尔比为1:0.5:0.5:2:10。
4.如权利要求2所述的方法,其特征在于,步骤(1)中,采用水热法在155℃下水热反应12h制备前驱粉末。
5.如权利要求2或3所述的方法,其特征在于,步骤(1)中,将六水合硝酸镧、六水合硝酸钴、九水合硝酸铁、一水合柠檬酸置于水中搅拌3h形成溶液,然后缓慢加入氢氧化钠,搅拌3h形成浊液,将所得浊液采用水热法制备前驱粉末。
6.如权利要求2所述的方法,其特征在于,步骤(2)中,将前驱粉末压制成型,在500℃下排塑3h,再在800℃下烧结5h,即得所述陶瓷。
7.如权利要求2所述的方法,其特征在于,步骤(2)中,将1g前驱粉末滴入1滴粘合剂,在16MPa的压力下压制成型,在500℃下排塑3h,再在800℃下烧结5h,即得所述陶瓷。
8.如权利要求7所述的方法,其特征在于,粘合剂为浓度为10wt%的聚乙烯醇溶液。
CN202010118616.4A 2020-02-26 2020-02-26 一种单层正交结构磁电多铁陶瓷及其制备方法 Pending CN111187066A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010118616.4A CN111187066A (zh) 2020-02-26 2020-02-26 一种单层正交结构磁电多铁陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010118616.4A CN111187066A (zh) 2020-02-26 2020-02-26 一种单层正交结构磁电多铁陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN111187066A true CN111187066A (zh) 2020-05-22

Family

ID=70703959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010118616.4A Pending CN111187066A (zh) 2020-02-26 2020-02-26 一种单层正交结构磁电多铁陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN111187066A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112023936A (zh) * 2020-09-15 2020-12-04 赵玉平 一种多层立方体LaCoO3柴油机尾气氧化催化剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288437A (zh) * 2012-06-21 2013-09-11 中国科学技术大学 具有多铁性能的六层状结构钛铁钴酸钇铋陶瓷材料及其制备方法
CN103588474A (zh) * 2013-11-15 2014-02-19 哈尔滨工业大学 一种包覆结构的磁电复相陶瓷的制备方法
US20160329573A1 (en) * 2009-12-28 2016-11-10 Posco Method for Manufacturing Composite Ceramic Material
CN110204330A (zh) * 2019-05-16 2019-09-06 扬州大学 钛铁钴酸铋粉末制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160329573A1 (en) * 2009-12-28 2016-11-10 Posco Method for Manufacturing Composite Ceramic Material
CN103288437A (zh) * 2012-06-21 2013-09-11 中国科学技术大学 具有多铁性能的六层状结构钛铁钴酸钇铋陶瓷材料及其制备方法
CN103588474A (zh) * 2013-11-15 2014-02-19 哈尔滨工业大学 一种包覆结构的磁电复相陶瓷的制备方法
CN110204330A (zh) * 2019-05-16 2019-09-06 扬州大学 钛铁钴酸铋粉末制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAYMAZ TABARI ET AL.: "Fabrication and Characterization of Perovskite-Type Oxide LaFe0.9Co0.1O3 Nanoparticles and Its Performance in Aerobic Oxidation of Thiols to Disulfide", 《催化学报》 *
XIUTAO GE ET AL.: "Preparation and gas-sensitive properties of LaFe1-yCoyO3 semiconducting materials", 《SENSORS AND ACTUATORS B》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112023936A (zh) * 2020-09-15 2020-12-04 赵玉平 一种多层立方体LaCoO3柴油机尾气氧化催化剂
CN112023936B (zh) * 2020-09-15 2023-07-28 上海派特贵金属环保科技有限公司 一种多层立方体LaCoO3柴油机尾气氧化催化剂

Similar Documents

Publication Publication Date Title
Singh et al. A current review on the synthesis and magnetic properties of M-type hexaferrites material
Gatelytė et al. Sol-gel synthesis and characterization of selected transition metal nano-ferrites
Kuruva et al. Effect of Ni–Zr codoping on dielectric and magnetic properties of SrFe12O19 via sol–gel route
CN101607818B (zh) 具有多铁性能的层状结构钛铁钴酸铋陶瓷材料及其制备方法
CN103449807B (zh) 一种具有交换耦合的双相复合硬磁铁氧体的制备方法
Bifa et al. Magnetic properties of samarium and gadolinium co-doping Mn-Zn ferrites obtained by sol-gel auto-combustion method
Kharbanda et al. Multiferroic perovskite bismuth ferrite nanostructures: a review on synthesis and applications
Jin-Ho et al. Preparation and magnetic properties of ultrafine SrFe12O19 particles derived from a metal citrate complex
CN111196721A (zh) 一种La1-xBixFeO3稀土铁氧体磁性材料及其制备方法
CN104326510A (zh) 一种多铁性铁酸铋立方纳米颗粒的制备方法
Shisode et al. Investigations of magnetic and ferroelectric properties of multiferroic Sr-doped bismuth ferrite
CN103183505B (zh) 一种织构化钴铁氧体膜材料及制备方法
CN102167584A (zh) 具有多铁性能的五层状结构钛铁钴酸铋陶瓷材料及其制备方法
CN101704669A (zh) 具有多铁性能的层状结构钛铁钴酸镧铋陶瓷及其制备方法
US4473542A (en) Production of microcrystalline ferrimagnetic spinels
Polley et al. Synthesis and characterization of BaFe 12 O 19-CoFe 2 O 4 ferrite composite for high-frequency antenna application
Chávez-Guerrero et al. Synthesis and characterization of LaNixCo1− xO3: Role of microstructure on magnetic properties
Jain et al. Unveiling the impact of Ni 2+/Y 3+ co-substitution on the structural, dielectric, and impedance properties of multiferroic spinel ferrite for hydroelectric cell application
CN111187066A (zh) 一种单层正交结构磁电多铁陶瓷及其制备方法
CN108640158B (zh) 一种高纯度六角片状钡铁氧体的制备方法
CN107840659B (zh) 一种钨青铜纯相室温多铁性陶瓷及其制备方法
US20230377784A1 (en) Enhanced Magnetic Properties Through Alignment of Non-Magnetic Constituents
CN108911740B (zh) 具有多铁性能的五层层状结构的钛铁钴酸锶铋陶瓷材料及其制备方法
Sutka et al. Characterization of sol–gel auto-combustion derived spinel ferrite nano-materials
Pimentel et al. Structural and magnetic characterization of LaFe1-xAlxO3 (x= 0 and 0.2) orthoferrites synthesized by gelatin method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200522