CN113402725B - 杂多酸改性金属有机框架复合物的制备方法及应用 - Google Patents

杂多酸改性金属有机框架复合物的制备方法及应用 Download PDF

Info

Publication number
CN113402725B
CN113402725B CN202110661716.6A CN202110661716A CN113402725B CN 113402725 B CN113402725 B CN 113402725B CN 202110661716 A CN202110661716 A CN 202110661716A CN 113402725 B CN113402725 B CN 113402725B
Authority
CN
China
Prior art keywords
heteropoly acid
hours
organic framework
metal organic
modified metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110661716.6A
Other languages
English (en)
Other versions
CN113402725A (zh
Inventor
王倩
尹立坤
翟绍雄
林俊
高学强
谢宁宁
路忠睿
何少剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges Corp
Original Assignee
China Three Gorges Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges Corp filed Critical China Three Gorges Corp
Priority to CN202110661716.6A priority Critical patent/CN113402725B/zh
Publication of CN113402725A publication Critical patent/CN113402725A/zh
Application granted granted Critical
Publication of CN113402725B publication Critical patent/CN113402725B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/16Condensation polymers of aldehydes or ketones with phenols only of ketones with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2487/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明提供了一种杂多酸改性金属有机框架复合物的制备方法及应用,其通过将混合均匀的含氨基金属有机框架与杂多酸的悬浊液在烘干后放入马弗炉中进行灼烧,制得通过共价键相连的MOF/杂多酸纳米填料。将填料加入磺化聚醚醚酮(SPEEK)中,复合质子交换膜表现出优异的质子电导率,其相比纯SPEEK提高50%以上;还具有较好的稳定性,质子电导率在水中超过30天未变化。该复合材料与导质子聚合物基底结合后可应用于电解水制氢的质子交换膜材料。

Description

杂多酸改性金属有机框架复合物的制备方法及应用
技术领域
本发明涉及电解水制氢领域,具体涉及一种杂多酸改性金属有机框架复合物的制备方法及应用;该复合填料与导质子聚合物基底结合后可应用于电解水制氢的质子交换膜材料。
背景技术
随着化石能源使用量的逐步降低,人们对氢能等新型能源需求更加迫切。氢能是安全可靠且清洁的能源。利用可再生能源来电解水制氢是氢能领域的重要技术。作为电解槽的核心部件,质子交换膜在电解槽中起到分隔阴阳极并传递质子的作用。质子交换膜传导质子的速率,即质子电导率,是影响电解槽性能的关键参数。目前大多数的质子交换膜都受到质子电导率较低的影响,进而限制了电解槽的性能。因此,目前质子交换膜的研究重点主要聚焦于如何提升其质子电导率。提升质子交换膜质子电导率的方法之一是制备有机-无机纳米复合膜。杂多酸是一类具有高质子电导率的多金属氧酸,由于结构稳定,价格低廉等特性而受到研究人员关注。然而,在水中较高的溶解度极大地限制了其在质子交换膜中的应用。通常研究人员会利用氢键或静电作用等,将杂多酸固定在不溶的载体上,但是二者间的弱相互作用力不可避免地会造成杂多酸的流失。金属有机框架是一种由金属中心原子与有机配体通过配位键结合而成的一类多孔材料,由于其易改性,结构稳定及比表面积高等优点而受到大量关注。将杂多酸与金属有机框架通过共价键结合的方式是提升杂多酸复合物稳定性的有效方法,但这类材料的制备方法仍十分稀少。传统依靠静电力等弱的相互作用力将二者结合的方式不仅十分限制底物对杂多酸的负载量,而且由于杂多酸在水中较高的溶解度,其不可避免的会导致杂多酸的流失。
综上所述,能够满足质子交换膜使用要求的金属有机框架的改性技术不仅是该领域的研究重点,而且将具有非常广泛的应用前景。
发明内容
本发明提供一种杂多酸改性金属有机框架复合物的制备方法及应用,该复合材料的稳定性好,能够控制杂多酸的流失,用于质子交换膜时,可以提高质子电导率。
本发明的技术方案是,一种杂多酸改性金属有机框架复合物的制备方法,包括以下步骤:
S1、将MOF-NH2在水中进行分散制备悬浊液,然后向其中加入杂多酸混合均匀,烘干水分,得到分散均匀的MOF/杂多酸粉末;
S2、将粉末在100~130℃下加热预处理,再升温加热至200~300℃,烧结3~6个小时,冷却后得到杂多酸改性金属有机框架复合物。
进一步地,杂多酸与MOF-NH2的质量比3:1~9:1之间。
进一步地,S1中所用的水为去离子水,分散制备悬浊液时利用超声进行混合,处理1~5h。
进一步地,S1中加入杂多酸后进行搅拌,混合时间为24h以上;烘干水分时的温度为60~80℃,烘干时间为24~48h。
进一步地,S2中加热预处理的时间为12~16h;预处理温度为100~130℃;升温时按5~10℃/分钟的升温速率进行,加热至200~300℃。
进一步地,S2中得到杂多酸改性金属有机框架复合物用水洗涤,除去未反应的杂多酸。得到纯净的杂多酸改性金属有机框架复合物。
进一步地,所述杂多酸为具有Keggin结构的杂多酸。所述的MOF-NH2为MIL-53-NH2,MIL-101-NH2,UiO-66-NH2,UiO-67-NH2或UiO-68-NH;
本发明还涉及所述制备方法得到的杂多酸改性金属有机框架复合物在质子交换膜中的应用。
进一步地,将杂多酸改性金属有机框架复合物加入磺化聚醚醚酮中混合,然后将混合物加入到N,N-二甲基乙酰胺中,混合均匀后加热去除溶剂,干燥得到复合质子交换膜。优选地,杂多酸改性金属有机框架复合物粉末加入磺化聚醚醚酮(SPEEK)中,保证粉末占总质量的2~8wt%。将前述混合物均匀分散在N,N-二甲基乙酰胺(DMAc)中,保证固体混合物与DMAc的质量比在1:10~1:20之间。超声并搅拌各4~8小时之后,将分散液倒入方形玻璃皿中,抽真空10~20分钟后置于烘箱中,80~90℃下放置24~48小时除去溶剂,后在真空烘箱中80~90℃下放置24~48小时,得到复合质子交换膜。复合质子交换膜在低湿度下(30%RH~70%RH)测量质子电导率,复合质子交换膜质子电导率在低湿度下是纯SPEEK的60倍以上。所得的磺化聚醚醚酮的离子交换容量(IEC)为1.52meq/g,质子电导率为0.041S/cm。
本发明还涉及所述制备方法得到的杂多酸改性金属有机框架复合物在电解水制氢领域质子质子交换膜中的应用。
本发明具备以下有益效果:
本发明首先将MOF-NH2与杂多酸在去离子水中分散均匀,得到稳定的悬浊液后通过蒸发得到分布均匀的MOF/杂多酸混合物。后通过烧结的方式将MOF与杂多酸通过共价键相连。本发明制备的复合纳米粒子具有良好的稳定性。在水中浸泡超过30天未见有杂多酸流失。而且利用杂多酸的强质子传导能力,与具有高度规整结构的MOF复合后为质子交换膜提供了长程有序的质子传输通路。利用杂多酸与MOF配体上的氨基官能团通过共价键相结合,将MOF负载杂多酸的量大大提高,最高可将杂多酸与MOF-NH2质量比提升至为9:1,远高于通过直接压缩或静电力结合的方式。为MOF-NH2提供质子导体的同时决杂多酸流失问题进而提高质子交换膜的质子电导率。
本发明制备的复合材料纳米粒子在加入SPEEK基体后,复合质子交换膜在水中的电导率比纯SPEEK高50%以上。
附图说明
图1是实施例1所得MIL-101-NH2/磷钨酸粉末材料的扫描电镜图片。
图2是实施例1所得MIL-101-NH2/磷钨酸粉末材料的X射线衍射图像。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。
实施例1:
将1g的MIL-101-NH2在去离子水中超声1h得到悬浊液,之后将5g磷钨酸加入分散均匀的MIL-101-NH2悬浊液中,搅拌24h以上。之后将悬浊液置于烘箱中,在60℃下放置24小时,使水完全去除,得到分散均匀的MIL-101-NH2/磷钨酸粉末。将粉末继续在置于烘箱中,先在100℃下放置12小时,再以5℃/分钟的升温速率加热到275℃,并保持5个小时。当马弗炉恢复到室温后,收集到粗制的UiO-66-NH2/磷钨酸粉末。
将制得粉末用水洗数次,除去未反应的磷钨酸,得到纯净的MIL-101-NH2/磷钨酸粉末。将0.018g粉末加入磺化聚醚醚酮(SPEEK)中,保证总质量在0.3g。将前述混合物均匀分散在N,N-二甲基乙酰胺(DMAc)中,保证固体混合物与DMAc的质量比在1:10。超声并搅拌各8小时之后,将分散液倒入方形玻璃皿中,抽真空10分钟后置于烘箱中,在80℃下放置28小时除去溶剂,后在真空烘箱中80℃下放置48小时,得到复合质子交换膜。
MIL-101-NH2及MIL-101-NH2/磷钨酸材料的扫描电镜图片见图1,X射线衍射图像见图2,从图1可以看出烧结后的粉末形貌与纯MIL-101-NH2变化不大,说明烧结过程没有毁坏MOF的基本形貌。从图2可以看出,MIL-101-NH2/磷钨酸粉末晶体结构已与纯MIL-101-NH2发生很大变化,整体衍射图像更接近杂多酸,但比起杂多酸亦有偏移,说明此时已形成一种新的物质。经对比发现,烧结后的粉末衍射图象与磷钨酸铵基本一致(ICDD 50-0305),说明磷钨酸与氨基官能团已以共价键的形式相互结合。
实施例2:
将1g的UiO-66-NH2在去离子水中超声1h,之后将5g硅钨酸加入分散均匀的UiO-66-NH2悬浊液中,搅拌24h以上。之后将悬浊液置于烘箱中,在60℃下放置24小时,使水完全去除,得到分散均匀的UiO-66-NH2/硅钨酸粉末。将粉末继续在置于烘箱中,先在100℃下放置12小时,再以5℃/分钟的升温速率加热到275℃,并保持5个小时。当马弗炉恢复到室温后,收集到粗制的UiO-66-NH2/硅钨酸粉末。将制得粉末用水洗数次,除去未反应的硅钨酸,得到纯净的UiO-66-NH2/硅钨酸粉末。
将0.018g粉末加入磺化聚醚醚酮(SPEEK)中,保证总质量在0.3g。将前述混合物均匀分散在N,N-二甲基乙酰胺(DMAc)中,保证固体混合物与DMAc的质量比在1:10。超声并搅拌各8小时之后,将分散液倒入方形玻璃皿中,抽真空10分钟后置于烘箱中,在80℃下放置28小时除去溶剂,后在真空烘箱中80℃下放置48小时,得到复合质子交换膜。
实施例3:
将1g的UiO-66-NH2在去离子水中超声1h,之后将9g磷钨酸加入分散均匀的UiO-66-NH2悬浊液中,搅拌24h以上。之后将悬浊液置于烘箱中,在60℃下放置24小时,使水完全去除,得到分散均匀的UiO-66-NH2/磷钨酸粉末。将粉末继续在置于烘箱中,先在100℃下放置12小时,再以5℃/分钟的升温速率加热到275℃,并保持5个小时。当马弗炉恢复到室温后,收集到粗制的UiO-66-NH2/磷钨酸粉末。将制得粉末用水洗数次,除去未反应的磷钨酸,得到纯净的UiO-66-NH2/磷钨酸粉末。
将0.018g粉末加入磺化聚醚醚酮(SPEEK)中,保证总质量在0.3g。将前述混合物均匀分散在N,N-二甲基乙酰胺(DMAc)中,保证固体混合物与DMAc的质量比在1:10。超声并搅拌各8小时之后,将分散液倒入方形玻璃皿中,抽真空10分钟后置于烘箱中,在80℃下放置28小时除去溶剂,后在真空烘箱中80℃下放置48小时,得到复合质子交换膜。
对比例1:
取0.3g磺化聚醚醚酮(SPEEK),均匀分散在N,N-二甲基乙酰胺(DMAc)中,保证SPEEK与DMAc的质量比在1:10。超声并搅拌各8小时之后,将分散液倒入方形玻璃皿中,抽真空10分钟后置于烘箱中,在80℃下放置28小时除去溶剂,后在真空烘箱中80℃下放置48小时,得到复合质子交换膜。
对比例2
将1g的UiO-66-NH2在去离子水中超声1h,搅拌24h以上。之后将悬浊液置于烘箱中,在60℃下放置24小时,使水完全去除。将粉末继续在置于烘箱中,先在100℃下放置12小时,再以5℃/分钟的升温速率加热到275℃,并保持5个小时。当马弗炉恢复到室温后,收集到粗制的MOF粉末。将制得粉末用水洗数次。将0.018g粉末加入磺化聚醚醚酮(SPEEK)中,保证总质量在0.3g。将前述混合物均匀分散在N,N-二甲基乙酰胺(DMAc)中,保证固体混合物与DMAc的质量比在1:10。超声并搅拌各8小时之后,将分散液倒入方形玻璃皿中,抽真空10分钟后置于烘箱中,在80℃下放置28小时除去溶剂,后在真空烘箱中80℃下放置48小时,得到复合质子交换膜。
对比例3
将5g磷钨酸加入分散均匀的UiO-66-NH2悬浊液中,搅拌24h以上。之后将溶液置于烘箱中,在60℃下放置24小时,使水完全去除,将粉末继续在置于烘箱中,先在100℃下放置12小时,待水完全烘干后,不经过烧结,直接收集到UiO-66-NH2/磷钨酸粉末。
将0.018g粉末加入磺化聚醚醚酮(SPEEK)中,保证总质量在0.3g。将前述混合物均匀分散在N,N-二甲基乙酰胺(DMAc)中,保证固体混合物与DMAc的质量比在1:10。超声并搅拌各8小时之后,将分散液倒入方形玻璃皿中,抽真空10分钟后置于烘箱中,在80℃下放置28小时除去溶剂,后在真空烘箱中80℃下放置48小时,得到复合质子交换膜。
对比例4
将1g的MIL-101-NH2在去离子水中超声1h,之后将5g磷钨酸加入分散均匀的MIL-101-NH2悬浊液中,搅拌24h以上。之后将悬浊液置于烘箱中,在60℃下放置24小时,使水完全去除,得到分散均匀的MIL-101-NH2/磷钨酸粉末。将粉末继续在置于烘箱中,不经过预处理,直接将粉末以5℃/分钟的升温速率加热到275℃,并保持5个小时。当马弗炉恢复到室温后,收集到粗制的MIL-101-NH2/磷钨酸粉末。将制得粉末用水洗数次,除去未反应的磷钨酸,得到纯净的MIL-101-NH2/磷钨酸粉末。
将0.018g粉末加入磺化聚醚醚酮(SPEEK)中,保证总质量在0.3g。将前述混合物均匀分散在N,N-二甲基乙酰胺(DMAc)中,保证固体混合物与DMAc的质量比在1:10。超声并搅拌各8小时之后,将分散液倒入方形玻璃皿中,抽真空10分钟后置于烘箱中,在80℃下放置28小时除去溶剂,后在真空烘箱中80℃下放置48小时,得到复合质子交换膜。
上述实施例1~3及对比例1~4所得的复合质子交换膜进行测试,具体数据见下表1。
表1实施例与对比例的性能对比
Figure BDA0003115324820000061
从表1可以看出改性方法对于有氨基基团的不同MOF及具有Keggin结构的不同杂多酸都有很好的效果,且相比于普通的静电作用,共价键的形成使得MOF/磷钨酸具有高的负载率及稳定性。粉末烧结前的预处理过程起到活化MOF的功能,相比于未做预处理的MOF/磷钨酸,经过预处理的粉末电导率更高。

Claims (7)

1.一种用于电解水制氢领域质子交换膜中的杂多酸改性金属有机框架复合物的制备方法,其特征在于,包括以下步骤:
S1、将MOF-NH2在水中进行分散制备悬浊液,然后向其中加入杂多酸混合均匀,混合时间为24h以上,烘干水分,烘干温度为60~80℃,烘干时间为24~48h;得到分散均匀的MOF/杂多酸粉末;
S2、将粉末在100~130oC下加热预处理12~16h,预处理温度为100~130℃,再按5~10℃ /分钟的升温速率升温加热至200~300℃,烧结3~6个小时,冷却后得到杂多酸改性金属有机框架复合物。
2.根据权利要求1所述的制备方法,其特征在于:杂多酸与MOF-NH2的质量比在3:1~9:1之间。
3.根据权利要求1所述的制备方法,其特征在于:S1中所用的水为去离子水,分散制备悬浊液时利用超声进行混合,处理1~5 h。
4.根据权利要求1所述的制备方法,其特征在于:S2中得到杂多酸改性金属有机框架复合物用水洗涤,除去未反应的杂多酸,得到纯净的杂多酸改性金属有机框架复合物。
5.根据权利要求1~4任意一项所述的制备方法,其特征在于:所述的MOF-NH2为MIL-53-NH2,MIL-101-NH2,UiO-66-NH2,UiO-67-NH2或UiO-68-NH;所述杂多酸为具有Keggin结构的杂多酸。
6.权利要求1~4任意一项所述制备方法得到的杂多酸改性金属有机框架复合物在电解水制氢领域质子交换膜中的应用。
7.根据权利要求6所述的应用,其特征在于:将杂多酸改性金属有机框架复合物加入磺化聚醚醚酮中混合,然后将混合物加入到N,N-二甲基乙酰胺中,混合均匀后加热去除溶剂,干燥得到复合质子交换膜。
CN202110661716.6A 2021-06-15 2021-06-15 杂多酸改性金属有机框架复合物的制备方法及应用 Active CN113402725B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110661716.6A CN113402725B (zh) 2021-06-15 2021-06-15 杂多酸改性金属有机框架复合物的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110661716.6A CN113402725B (zh) 2021-06-15 2021-06-15 杂多酸改性金属有机框架复合物的制备方法及应用

Publications (2)

Publication Number Publication Date
CN113402725A CN113402725A (zh) 2021-09-17
CN113402725B true CN113402725B (zh) 2022-05-17

Family

ID=77684089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110661716.6A Active CN113402725B (zh) 2021-06-15 2021-06-15 杂多酸改性金属有机框架复合物的制备方法及应用

Country Status (1)

Country Link
CN (1) CN113402725B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507984B (zh) * 2022-02-24 2023-07-25 中国长江三峡集团有限公司 杂多酸改性纤维素纳米纤维复合物、质子交换膜及其制备
CN117427696B (zh) * 2023-12-21 2024-02-23 烟台大学 一种负载型杂多酸盐催化剂、制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105670018A (zh) * 2016-02-25 2016-06-15 天津大学 磺化聚醚醚酮/mil101负载磷钨酸杂化膜及制备和应用
CN110433874A (zh) * 2019-09-06 2019-11-12 温州旭扬膜结构工程有限公司 一种磷钨钼酸-金属有机框架质子交换膜及其制法
CN112133946A (zh) * 2020-09-18 2020-12-25 长春工业大学 一种含羧基磺化聚芳醚酮砜/负载磷钨酸-离子液体金属有机框架复合膜及其制备方法
CN112495443A (zh) * 2020-12-15 2021-03-16 福州大学 一种固载杂多酸的Zr基MOFs复合材料的研磨制备方法及应用
CN112694079A (zh) * 2020-12-19 2021-04-23 济南大学 一种杂多酸刻蚀胶囊状空心多孔碳壳、制备方法及其在锂硫电池中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9307790B2 (en) * 2011-08-01 2016-04-12 Massachusetts Institute Of Technology Porous catalytic matrices for elimination of toxicants found in tobacco combustion products

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105670018A (zh) * 2016-02-25 2016-06-15 天津大学 磺化聚醚醚酮/mil101负载磷钨酸杂化膜及制备和应用
CN110433874A (zh) * 2019-09-06 2019-11-12 温州旭扬膜结构工程有限公司 一种磷钨钼酸-金属有机框架质子交换膜及其制法
CN112133946A (zh) * 2020-09-18 2020-12-25 长春工业大学 一种含羧基磺化聚芳醚酮砜/负载磷钨酸-离子液体金属有机框架复合膜及其制备方法
CN112495443A (zh) * 2020-12-15 2021-03-16 福州大学 一种固载杂多酸的Zr基MOFs复合材料的研磨制备方法及应用
CN112694079A (zh) * 2020-12-19 2021-04-23 济南大学 一种杂多酸刻蚀胶囊状空心多孔碳壳、制备方法及其在锂硫电池中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
" Ultra-High Ion Selectivity of a Modified Nafion Composite Membrane for Vanadium Redox Flow Battery by Incorporation of Phosphotungstic Acid Coupled UiO-66-NH2";Xiao-Bing Yang等;《CHEMISTRYSELECT》;20190423;第4卷(第15期);摘要、支持信息第S-1页 *
"Synergistic effect of Zr-MOF on phosphomolybdic acid promotes efficient oxidative desulfurization";Xiao-minZhang等;《Applied Catalysis B: Environmental》;20190608;第256卷;第2.1小节 *

Also Published As

Publication number Publication date
CN113402725A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
CN113402725B (zh) 杂多酸改性金属有机框架复合物的制备方法及应用
US6523699B1 (en) Sulfonic acid group-containing polyvinyl alcohol, solid polymer electrolyte, composite polymer membrane, method for producing the same and electrode
Wang et al. Anatase titania coated CNTs and sodium lignin sulfonate doped chitosan proton exchange membrane for DMFC application
CN105111507A (zh) 一种细菌纤维素/聚苯胺/碳纳米管导电膜材料的制备方法及其应用
CN113667161B (zh) 一种改性聚(偏二氟乙烯-co-六氟丙烯)接枝乙烯基咪唑阴离子交换膜的制备方法
CN108892138A (zh) 一种基于生物质衍生氮/氧共掺杂多级孔结构碳材料及其制备方法
CN101983759A (zh) 一种掺杂阴离子型快离子导体制备高离子传导效率的双极膜的方法
JP2001158806A (ja) スルホン基含有ポリビニルアルコール、固体高分子電解質、高分子複合膜、その製造方法、および電極
CN111342095B (zh) 一种高温燃料电池质子交换膜及其制备方法
CN109037743A (zh) 一种石墨烯气凝胶改性燃料电池质子交换膜及其制备方法
WO2021128770A1 (zh) 一种精氨酸改性的质子交换膜及其制备方法
Jang et al. Preparation, characterization and proton conductivity of membrane based on zirconium tricarboxybutylphosphonate and polybenzimidazole for fuel cells
CN114507984B (zh) 杂多酸改性纤维素纳米纤维复合物、质子交换膜及其制备
CN109921076B (zh) 一种具有介孔结构的中高温质子传导材料及其制备方法
CN102268690B (zh) 电化学合成五氧化二氮用的隔膜及其制备方法
CN113036194B (zh) 一种有机-无机复合碱性聚电解质膜的制备方法
CN117543038B (zh) 一种质子交换膜燃料电池的双极板的改性制备工艺
CN109867762A (zh) 一种具有含氮微孔结构的中高温质子传导材料及其制备方法
CN113628896B (zh) 一种石墨烯柔性电极复合膜的制备方法
CN117328099B (zh) 一种低能耗催化层及其制备方法
CN115181286B (zh) 一种胍基磷酸盐氢键有机框架材料及其制备方法和应用
CN108539216A (zh) 一种多孔石墨烯/镍碲复合催化剂及其制备方法和应用
CN102296322B (zh) 一种电化学合成五氧化二氮用的隔膜及其制备方法
CN117638103A (zh) 一种膜电极气体扩散层及其制备方法和应用、膜电极组件
CN114614060B (zh) 一种质子交换膜、制备方法、用途和包含其的燃料电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant