CN1133730C - 烃转化方法 - Google Patents

烃转化方法 Download PDF

Info

Publication number
CN1133730C
CN1133730C CNB971980748A CN97198074A CN1133730C CN 1133730 C CN1133730 C CN 1133730C CN B971980748 A CNB971980748 A CN B971980748A CN 97198074 A CN97198074 A CN 97198074A CN 1133730 C CN1133730 C CN 1133730C
Authority
CN
China
Prior art keywords
steam cracking
district
hydrotreatment
crust
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB971980748A
Other languages
English (en)
Other versions
CN1230976A (zh
Inventor
C・W・巴拉道
C·W·巴拉道
格勒诺布勒
D·C·格勒诺布勒
米拉姆
S·N·米拉姆
威吉斯特
B·H·威吉斯特
穆雷
B·D·穆雷
R·弗雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of CN1230976A publication Critical patent/CN1230976A/zh
Application granted granted Critical
Publication of CN1133730C publication Critical patent/CN1133730C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/08Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a hydrogenation of the aromatic hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提供了一种将含有沸点高于约100℃的组分的烃原料转化成蒸汽裂解产物的联合方法,该方法包括将所述原料送入压力为约400-1250psig的加氢处理区以基本上完全分解烃原料中的有机硫和/或氮化合物,将所述加氢处理区的产物送入蒸汽裂解区,和从产物中回收氢气和C1-C4烃、蒸汽裂解石脑油、蒸汽裂解瓦斯油和蒸汽裂解焦油,其中基于未经过加氢处理的初始烃原料,产生的蒸汽裂解焦油的量降低至少约15%。

Description

烃转化方法
本申请要求涉及烃转化方法的1996年8月15日申请的美国临时专利申请60/027859和1996年12月31日申请的美国临时专利申请60/034612的权益。
发明领域
本发明涉及改质随后用于蒸汽裂解的烃类原料的方法。特别是,本发明叙述了一种改质用于蒸汽裂解的烃类原料的方法,该方法是通过原料中存在的不饱和和/或芳烃物质的加氢处理和伴随的部分加氢,并且氢气、C1-C4烃类、蒸汽裂解石脑油和蒸汽裂解瓦斯油的产率增加,同时通过加氢处理烃类原料的蒸汽裂解伴随降低了蒸汽裂解的煤气焦油的产率。
发明背景
蒸汽裂解是石化领域公知的方法。该方法的主要目的是在升高的温度下在蒸汽存在下通过热裂解烃类原料而制备C1-C4烃类,特别是乙烯、丙烯和丁二烯。蒸汽裂解方法概括地描述于1966-1970年的“石油及天然气杂志单行本”中S.B.Zdonik等人的题为“制备乙烯”的出版物中。用于常规的蒸汽裂解装置的典型液体原料是直馏原料和加氢处理直馏原料,其范围是从轻质石脑油到减压瓦斯油。在蒸汽裂解装置中通常还加工气体原料如乙烷、丙烷和丁烷。
在蒸汽裂解装置中加工的原料的选择是与几个因素有关的,这些因素包括:(i)原料的可得性,(ii)原料的成本和(iii)蒸汽裂解该原料所得到的预定产率。原料的可得性和成本主要随着全球的供应和需求而变。另一方面,给定原料的蒸汽裂解得到的预定产率是随着原料的化学性质而变。通常,当蒸汽裂解装置的原料是气态原料如乙烷、丙烷和丁烷时,高价值的C1-C4烃,特别是乙烯、丙烯和丁二烯的产率最大。通过蒸汽裂解直馏原料或加氢处理直馏原料,高价值蒸汽裂解石脑油和低价值蒸汽裂解瓦斯油(SCGO)和价值特别低的蒸汽裂解焦油(SCT)的产率随着原料沸点范围的提高而提高。因此,蒸汽裂解液体原料如石脑油、瓦斯油和减压瓦斯油通常产生较大比例的价值特别低的蒸汽裂解产物,即蒸汽裂解焦油。另外,为了加工大量的由蒸汽裂解那些原料得到的液体副产物,加工石脑油和瓦斯油的蒸汽裂解设备需要附加的基础投资。
并且,当加工低质量贫氢裂解原料如热裂化石脑油、热裂化瓦斯油、催化裂化石脑油、催化裂化瓦斯油、焦化石脑油和焦化瓦斯油时,蒸汽裂解的最不需要的产物,即蒸汽裂解焦油的产率通常甚至更高。当加工低质量贫氢裂解原料时,相对于高价值的C1-C4烃产物的制备来说,低价值的蒸汽裂解焦油产物的产率显著提高,使得这些原料在蒸汽裂解装置中很少加工。
催化加氢脱硫(除去硫)、加氢脱氮(除去氮)和加氢(饱和烯烃、二烯烃和芳烃)是石油炼制领域公知的。如Zimmermann在US4619757中所述,已经使用加氢脱硫、加氢脱氮和部分加氢来改质蒸汽裂解的原料。该两步法使用载在非酸性(氧化铝)和酸性(沸石)载体上的基底金属、双金属催化剂。
Minderhoud等人的US4960505描述了一种改质煤油和燃料油原料的方法,该方法是先预处理原料进行加氢脱硫和加氢脱氮以产生硫和氮污染物含量分别低于1000和50ppm(重量)的液体产物,然后将低杂质烃物流进行加氢以产生高十六烷值燃料油产品。
Winquist等人的US5391291描述了一种改质煤油、燃料油和减压瓦斯油原料的方法,该方法是先预处理原料进行加氢脱硫和加氢脱氮,然后将得到的液体烃馏分进行加氢以产生高十六烷值燃料油产品。
已经发现,当用于直馏原料时,包括加氢处理、接着蒸汽裂解步骤的本发明使得氢气、C1-C4烃和蒸汽裂解石脑油的产率得到明显改善,并且当用于低质量贫氢裂化原料如热裂化石脑油、热裂化煤油、热裂化瓦斯油、催化裂化石脑油、催化裂化煤油、催化裂化瓦斯油、焦化石脑油、焦化煤油、焦化瓦斯油、蒸汽裂解石脑油和蒸汽裂解瓦斯油时,得到高产率的氢气、C1-C4烃和蒸汽裂解石脑油,并且得到降低产率的蒸汽裂解焦油。该方法处理低质量贫氢裂化原料,例如蒸汽裂解瓦斯油的能力使得这些至今所不希望的原料通过联合的原料改质和蒸汽裂解系统再循环至消失。
还发现,在下述方法中可以以较高的量制备氢气、C1-C4烃和蒸汽裂解石脑油,在该方法中将来自装有至少两种加氢处理催化剂的至少一个加氢处理区的流出物送入蒸汽裂解区,然后将蒸汽裂解区的流出物送入一个或多个分馏区,在分馏区中流出物被分离成含有氢气和C1-C4烃的馏分、蒸汽裂解石脑油馏分、蒸汽裂解瓦斯油馏分和蒸汽裂解焦油馏分。本发明方法改善了高价值蒸汽裂解产物的产率,即C1-C4烃,特别是乙烯、丙烯和丁二烯,和蒸汽裂解石脑油,特别是异戊二烯、顺戊二烯、反戊二烯、环戊二烯和苯,并且降低了蒸汽裂解焦油的产率。
发明概述
本发明提供了一种将含有沸点高于约100℃的组分的烃原料转化成蒸汽裂解产物的联合方法,该蒸汽裂解产物含有氢气、C1-C4烃、蒸汽裂解石脑油(沸点C5-220℃)、蒸汽裂解瓦斯油(沸点220℃-275℃)和蒸汽裂解焦油(沸点高于275℃)。
因此,本发明方法包括:(i)将烃原料通过至少一个加氢处理区,在该加氢处理区中,所述烃原料在升高的温度和约400-1250psig(磅/英寸2)(27-85巴)压力下与氢气源和至少两种加氢处理催化剂接触,以基本完全转化其中所含的有机硫和/或氮化合物分别成为H2S和NH3;(ii)将所述加氢处理区的产物送入产物分离区以除去气体,和如果需要的话除去轻质烃馏分;(iii)将所述分离区的产物送入蒸汽裂解区;然后(iv)将所述蒸汽裂解区的产物送入一个或多个产物分离区,以分离产物成为含有氢气和C1-C4烃的馏分、蒸汽裂解石脑油馏分、蒸汽裂解瓦斯油馏分和蒸汽裂解焦油馏分,其中相对于未处理的烃原料经过所述的蒸汽裂解和产物分离所得到的产率,在H2和C1-C4烃馏分中的乙烯、丙烯和丁二烯的产率各自增加了至少约5%,在蒸汽裂解石脑油馏分中的异戊二烯、顺戊二烯、反戊二烯、环戊二烯和苯的产率各自增加了至少约10%,蒸汽裂解瓦斯油的产率增加了至少约20%,蒸汽裂解焦油的产率减少了至少约15%。
优选实施方案的介绍
正如本说明书所用的,术语“C1-C4烃”是指甲烷、乙烷、乙烯、乙炔、丙烷、丙烯、丙二烯、甲基乙炔、丁烷、异丁烷、异丁烯、丁烯-1、顺丁烯-2、反丁烯-2、丁二烯和C4-炔类。术语“蒸汽裂解石脑油”是指沸点在C5-220℃之间的产物,包括异戊二烯、顺戊二烯、反戊二烯、环戊二烯、甲基环戊二烯和苯。
本发明方法中的烃原料一般包括主要量的,即大于约95%的其组分的沸点高于约100℃,优选高于约150℃或更高的烃馏分。这种类型的适合原料包括直馏石脑油、裂化石脑油(例如催化裂化、蒸汽裂解和焦化石脑油等)、直馏煤油、裂化煤油(例如催化裂化、蒸汽裂解和焦化煤油等)、直馏瓦斯油(例如常压和减压瓦斯油等)、裂化瓦斯油(例如焦化和催化裂化轻质和重质瓦斯油、蒸汽裂解瓦斯油等)、减粘油、脱沥青油、热裂化循环油、合成瓦斯油和煤液体(coal liquids)。通常,原料将具有宽的沸程,例如高达650℃或更高,但对某些原料其沸程有更受限制的范围。通常,原料的沸程为约150℃-约650℃。
在加氢处理区,烃原料和氢气源与至少两种加氢处理催化剂接触,以基本完全分解原料中的有机硫和/或氮化合物,即有机硫的含量低于约100ppm,优选低于约50ppm,更优选低于约25ppm,有机氮的含量低于约15ppm,优选低于约5ppm,更优选低于约3ppm。氢气源一般是通常含有约70%(体积)-约100%(体积)氢气的含氢气体混合物。
在一个实施方案中,加氢处理区装有以多层床或层状排放的两种加氢处理催化剂。当使用多层床催化剂构型时,第一加氢处理催化剂一般含有载在无定形载体如氧化铝、二氧化硅-氧化铝、二氧化硅、氧化锆或二氧化钛上的一种或多种VIB和/或VIII族(元素周期表)金属化合物。这种金属的例子包括镍、钴、钼和钨。第一加氢处理催化剂优选是载在氧化铝或二氧化硅-氧化铝上的VIII族金属,优选钴或镍的氧化物和/或硫化物和与其混合的VIB族金属,优选钼或钨的氧化物和/或硫化物。第二加氢处理催化剂一般含有载在酸性多孔载体上的一种或多种VIB族和/或VIII族金属组分。VIB族金属优选是钼、钨及其混合物。VIII族金属优选是钴、镍及其混合物。优选同时存在VIB族和VIII族金属。在一个特别优选的实施方案中,第二加氢处理催化剂的加氢处理组分是镍和/或钴和与其混合的钨和/或钼,特别优选的是镍/钨或镍/钼。对于第二加氢处理催化剂,VIB族和VIII族金属是载在酸性载体如二氧化硅-氧化铝,或大孔分子筛即沸石如Y沸石,特别是超稳Y沸石(沸石USY),或其他脱铝酸盐(dealuminated)Y沸石上。也可以使用多孔无定形无机氧化物载体和分子筛的混合物。通常,在使用前要硫化多层床形式的第一和第二加氢处理催化剂。
加氢处理区通常在约200℃-约550℃,优选约250℃-约500℃,更优选约275℃-约425℃的温度下操作。加氢处理区的压力通常为约400pisg-约1250pisg,优选为约400pisg-约1000pisg,更优选为约400pisg-约750pisg。液时空速(LHSV)一般为约0.1-约10,优选为约0.5-约5体积的液体烃/小时/体积催化剂,氢气与油之比为约500-约10000标准立方英尺氢气/桶原料(SCF/BBL)(约0.089-2.0标准立方米/升(m3/l)),优选约1000-约5000SCF/BBL(约0.18-1.00m3/l),最优选约2000-约3000SCF/BBL(约0.35-0.53m3/l)。调节这些条件以达到基本完全脱硫和脱氮,即有机硫含量低于约100ppm,优选低于约50ppm,更优选低于约25ppm,有机氮含量低于约15ppm,优选低于约5ppm,更优选低于约3ppm。
另外,加氢处理步骤可使用两个或多个加氢处理区来进行。例如,在一个实施方案中,加氢处理步骤可以以下述方式进行,其中使用了两个区,第一加氢处理区和第二加氢处理区。
在第一加氢处理区中,烃原料和氢气源与第一加氢处理催化剂接触,氢气源一般是通常含有约70%(体积)-约100%(体积)氢气的含氢气体混合物。第一加氢处理催化剂一般包括载在无定形载体如氧化铝、二氧化硅-氧化铝、二氧化硅、氧化锆或二氧化钛上的一种或多种VIB族和/或VIII族金属化合物。这些金属的例子包括镍、钴、钼和钨。该第一加氢处理催化剂优选是载在氧化铝或二氧化硅-氧化铝上的VIII族金属,优选钴或镍的氧化物和/或硫化物和与其混合的VIB族金属,优选钼或钨的氧化物和/或硫化物。这些催化剂优选是硫化形式。
第一加氢处理区通常在约200℃-约550℃,优选约250℃-约500℃,更优选约275℃-约425℃的温度下操作。第一加氢处理区的压力通常为约27巴-约85巴,优选为约27巴-约68巴,更优选为约27巴-约51巴。液时空速(LHSV)一般为约0.2-约2,优选为约0.5-约1体积的液体烃/小时/体积催化剂,氢气与油之比为约500-约10000标准立方英尺氢气/桶原料(SCF/BBL)(约0.089-2.0m3/l),优选约1000-约5000SCF/BBL(约0.18-1.0m3/l),最优选约2000-约3000SCF/BBL(约0.35-0.53m3/l)。调节这些条件以达到所需程度的脱硫和脱氮。通常,在第一加氢处理区中要求有机硫含量降至低于约500ppm,优选低于约200ppm,有机氮含量低于约50ppm,优选低于约25ppm。
然后,可将第一加氢处理区的产物任意地送入一些设备中,从而用常规的方法从烃产物中除去氨和硫化氢。然后,将第一加氢处理区的烃产物送入第二加氢处理区。如果需要除去轻质烃馏分,那么在送入第二加氢处理区之前也可将烃产物任意地送入分馏区。
在第二加氢处理区中,第一加氢处理区的产物和氢气源与至少一种第二加氢处理催化剂接触,该氢气源一般是约70%(体积)-约100%(体积)的氢气与其他气体的混合物。通常用于第二加氢处理反应区的操作条件包括:温度为约200℃-约550℃,优选为约250℃-约500℃,更优选为约275℃-约425℃,液时空速(LHSV)为约0.1-约10体积的液体烃/小时/体积催化剂,优选LHSV为约0.5-约5,总压力为约27巴-约85巴,优选为约27巴-约68巴,更优选为约27巴-约51巴。氢气循环率通常为约500-约10000标准立方英尺/桶(SCF/BBL)(约0.089-2.0m3/l),优选约1000-约5000SCF/BBL(约0.18-1.0m3/l),更优选约2000-约3000SCF/BBL(约0.35-0.53m3/l)。调节这些条件以达到基本完全脱硫和脱氮。通常,要求从一个或多个加氢处理区得到的加氢处理产物具有的有机硫含量低于约100ppm,优选低于约50ppm,更优选低于约25ppm,有机氮含量低于约15ppm,优选低于约5ppm,更优选低于约3ppm。应当理解,操作条件的苛刻度是随着第二加氢处理区的原料体积和/或氮和硫污染物含量的降低而降低。例如,如果产物气体,包括H2S和NH3(氨),和任意的轻质烃馏分在第一加氢处理区之后被除去,那么第二加氢处理区的温度将较低,或者第二加氢处理区的LHSV将较高。
一般用于第二加氢处理区的催化剂含有载在酸性多孔载体上的活性金属组分。第二加氢处理催化剂的活性金属组分,“加氢处理组分”,选自VIB族和/或VIII族金属组分。VIB族中优选钼、钨及其混合物。VIII族中优选钴、镍及其混合物。优选同时存在VIB族和VIII族金属。在一个特别优选的实施方案中,加氢处理组分是镍和/或钴和与其混合的钨和/或钼,特别优选的是镍/钨或镍/钼。这些组分一般以硫化物形式存在。
将VIB族和VIII族金属载在酸性载体上。通常使用本领域中已知的二种主要类别的载体:(a)二氧化硅-氧化铝,和(b)大孔分子筛,即沸石,例如Y沸石、丝光沸石、β沸石等。也可使用多孔无定形无机氧化物载体和分子筛的混合物。术语“二氧化硅-氧化铝”是指非沸石硅铝酸盐。
最优选的载体包括Y沸石,优选脱铝酸盐的Y沸石如超稳Y沸石(USY沸石)。用于本文的超稳沸石是本领域技术人员已知的,它们也在US3293192和3449070中例举,这些专利的内容引入本文作为参考。这些沸石通常是通过脱铝酸盐作用由Y型钠沸石制备的。
沸石与粘结剂结合,该粘结剂选自氧化铝、二氧化硅、二氧化硅-氧化铝及其混合物。优选的粘结剂是氧化铝,优选γ氧化铝粘结剂或其前体,例如氧化铝水凝胶、氢氧化铝、铝氢氧化合物或拟勃姆石。
VIB族/VIII族第二加氢处理催化剂优选在用于第二加氢处理区之前硫化。通常在氢气和硫或含硫物质存在下将催化剂加热至高温(例如200-400℃)来硫化催化剂。
然后将最终加氢处理区的产物送入蒸汽裂解区,即热解区。然而,在送入蒸汽裂解区之前,如果需要的话,可将最终加氢处理区的烃产物送入分馏区以除去产物气体和轻质烃馏分。
在蒸汽裂解区,将加氢处理区的产物和蒸汽加热至裂化温度。蒸汽裂解区的操作条件包括盘管出口温度大于约700℃,特别是在约700-925℃之间,优选约750-约900℃之间,蒸汽的存在量为蒸汽与烃的重量比在约0.1∶1-约2.0∶1。蒸汽裂解区的盘管出口压力一般为约0巴-约5巴,优选约0巴-约4巴。裂解反应的停留时间一般为约0.01秒-约5秒,优选约0.1秒-约1秒。
起始烃原料经过加氢处理步骤和蒸汽裂解步骤之后,可将蒸汽裂解步骤的流出物送入一个或多个分馏区,在分馏区中流出物被分离成含有氢气和C1-C4烃的馏分、沸点为C5-约220℃的蒸汽裂解石脑油馏分、沸点为约220℃-约275℃的蒸汽裂解瓦斯油馏分和沸点高于275℃的蒸汽裂解焦油馏分。使用本发明方法得到的不需要的蒸汽裂解产物,即蒸汽裂解焦油的量大大降低。相对于未处理的烃原料经过蒸汽裂解和产物分离所得到的产率,本发明的蒸汽裂解焦油的产率降低了至少约15%。
本发明的方法可在任何适合的设备中进行。本发明的一个或多个加氢处理区一般包括一个或多个垂直反应器并且装有将氢气源注入反应器的装置,该反应器装有至少一个催化剂床。特别优选的是其中原料通过一个或多个在每个区中的催化剂固定床的固定床加氢处理反应器系统。
本说明书和权利要求书所提供的范围和限制被认为是特指的并且清楚地要求了本发明的保护范围。然而,应当理解,以基本上相同的方式完成基本上相同的作用以得到相同或基本上相同的结果的其他范围和限制应在如本说明书和权利要求书所定义的本发明范围内。
现在通过下面的实施例说明本发明,这些实施例是说明性,并不对本
发明的范围构成限制。说明性实施方案1
使用具有下表1所示性能的100%重质常压瓦斯油(HAGO)原料进行下列的实施例1和对比实施例1-A。实施例1说明了本发明的方法。对比实施例1-A说明在蒸汽裂解之前不经过加氢处理的HAGO。实施例1
实施例1叙述了本发明方法,该方法使用具有下表1所示性质的100%重质常压瓦斯油(HAGO)原料,使用在下述多层床体系中的两种加氢处理催化剂加氢处理该原料。
使用从Akzo Chemicals Inc.,U.S.A.得到的名为KF-756的市售氧化铝承载的镍/钼催化剂作为第一加氢处理催化剂(催化剂A),同时使用从Zeolyst International得到的名为Z-763的市售沸石镍/钨催化剂作为第二加氢处理催化剂(催化剂B)。
催化剂A和B以“多层床”操作,其中HAGO和氢气先与催化剂A接触,然后与催化剂B接触,催化剂(A∶B)的体积比为1∶1。在360℃(675°F)、39.8巴总单元压力、总LHSV为0.5小时-1和氢气流速为3000SCF/BBL(约0.53m3/l)条件下加氢处理HAGO。
然后将加氢处理产物送入蒸汽裂解区,在蒸汽裂解区中该产物与蒸汽在745-765℃温度、0.88-1.73巴压力和蒸汽与烃重量比为0.3∶1-0.45∶1的条件下接触。在蒸汽裂解装置中的停留时间为0.4-0.6秒。然后将蒸汽裂解产物送入分馏区以确定总的氢气(H2)和C1-C4烃、蒸汽裂解石脑油(SCN)、蒸汽裂解瓦斯油(SCGO)和蒸汽裂解焦油(SCT)的量。蒸汽裂解结果表示在下表3中。对比实施例1-A
以与上述实施例1相同的方式处理100%重质常压瓦斯油(HAGO),只是该原料在蒸汽裂解之前不经过加氢处理。蒸汽裂解结果表示在下表3中。
                          表1
HAGO原料(对比实施例1-A)和加氢处理的HAGO(实施例1)的性能
                      HAGO原料        加氢处理的HAGO
                      (1-A)           (实施例1)重量%,H                 12.76           13.47ppm(重量),S              12400           41ppm(重量),N              426             1密度,g/cm3@15℃         0.8773          0.8242模拟蒸馏,D-2887(ASTM),℃IBP                       99              375%                       200             9910%                      238             12430%                      304             20050%                      341             26170%                      374             33790%                      421             38995%                      443             413FBP                       491             485
为了确定存在的烃的结构类型,用GC-MS分析HAGO原料(对比实施例1-A)和加氢处理的HAGO(实施例1)。这些结果示于下表2。结果清楚地显示出本发明方法(实施例1)有效地降低了烃原料物流的芳烃含量,同时伴随着增加了链烷烃/异链烷烃和环烷烃的量。
                        表2
        测定的HAGO,HT-HAGO,加氢处理的HAGO
        和蒸馏的饱和的HT-HAGO的分子结构类型各种分子类型的相对分布      HAGO       加氢处理的HAGO量,体积%                  (1-A)      (实施例1)链烷烃/异链烷烃             27.69      28.70环烷烃                      38.87      41.29芳烃                        33.46      30.00
                         表3
气体产物、石脑油、瓦斯油和焦油的实验室蒸汽裂解产率基于原料的产物产率            HAGO             加氢处理的HAGO重量%                       (1-A)             (实施例1)总的H2和C1-C4烃           48.73             52.66总的其他C5和更高级的烃      51.27             47.34SCN,C5-220℃(430°F)       23.54             29.50SCGO,220-275℃(430-525°F)  4.83              6.06SCT,275℃(526°F)-以上      22.90             11.78合计                         100.0             100.0选择的气体产物氢气                         0.39              0.46甲烷                         7.64              8.02乙烷                         4.03              3.91乙烯                         14.39             16.54乙炔                         0.06              0.07丙烷                         0.72              0.62丙烯                         12.06             12.80丙二烯和甲基乙炔             0.18              0.18丁烷和异丁烷                 0.13              0.16异丁烯                       1.88              2.16丁烯-1                       2.21              2.72丁二烯-1,3                  3.32              3.74丁烯-2(顺和反)               1.25              1.27C4炔类                      0.01              0.01选择的液体产物异戊二烯                     0.89              1.08戊二烯(顺和反)               0.74              0.95环戊二烯                     1.19              1.48甲基环戊二烯                 0.81              1.06苯                           3.35              3.88
从上表3可以看出,当使用包括加氢处理和蒸汽裂解的本发明方法(实施例1)时,相对于未处理的烃原料只经过蒸汽裂解(对比实施例1-A)所得到的产率,在H2和C1-C4烃馏分中的每种特别有价值的蒸汽裂解单烯烃和二烯烃产物,即乙烯、丙烯和丁二烯的产率增加了至少约6.0%,在蒸汽裂解石脑油馏分中每种有价值的蒸汽裂解二烯烃和芳烃产物,即异戊二烯、顺戊二烯、反戊二烯、环戊二烯和苯的产率增加了至少约15%,蒸汽裂解瓦斯油产物的产率增加了约25%,低价值的蒸汽裂解焦油产物的产率降低了约48%。说明性实施方案2
各自使用具有下表4所示性质的100%催化裂化石脑油(CCN)原料进行实施例2和对比实施例2-A。实施例2说明了本发明方法。对比实施例2-A是CCN在蒸汽裂解之前不经过加氢处理的例子。实施例2
实施例2叙述了使用100%催化裂化石脑油(CCN)原料的本发明方法。
使用从Criterion Catalyst Company得到的名为C-411的市售氧化铝承载的镍/钼催化剂(1/20”三叶形)作为第一加氢处理催化剂(催化剂A),同时使用从Linde AG得到的名为HC-10的市售标准氢加工催化剂(1/8”圆柱形)作为第二加氢处理催化剂(催化剂B)。
催化剂A和B以“多层床”在加氢处理区操作,其中原料和氢气先与催化剂A接触,然后与催化剂B接触;在加氢处理区中催化剂(A∶B)的体积比为2∶1。在370℃(700°F)、40.8巴总单元压力、总LHSV为0.33小时-1和氢气流速为2900SCF/BBL(0.52m3/l)条件下加氢处理原料。
CCN原料的加氢处理消耗了860SCF/BBL(0.15m3/l)氢气,产生了0.9%(重量)轻质气体(甲烷、乙烷、丙烷和丁烷)和2.5%(重量)沸点在C5和150℃(300°F)之间的液体烃。
然后将加氢处理的CCN送入蒸汽裂解区,在蒸汽裂解区中在790-805℃温度、1.22-1.39巴压力和蒸汽与烃重量比为0.3∶1-0.45∶1的条件下加氢处理的CCN与蒸汽接触。在蒸汽裂解装置中的停留时间为0.4-0.6秒。然后将蒸汽裂解产物送入分馏区以确定总的氢气(H2)和C1-C4烃、蒸汽裂解石脑油(SCN)、蒸汽裂解瓦斯油(SCGO)、和蒸汽裂解焦油(SCT)的量。蒸汽裂解结果表示在下表6中。对比实施例2-A
以与上述实施例2相同的方式处理100%催化裂化石脑油(CCN)原料,只是该原料在蒸汽裂解之前不经过加氢处理。蒸汽裂解结果表示在下表6中。
                         表4
CCN原料(对比实施例2-A)和加氢处理CCN(实施例2)的性质
                    CCN原料          加氢处理的CCN
                    (2-A)            (实施例2)重量%,C               89.15            88.31重量%,H               10.31            11.78ppm重量,S              4130             2ppm重量,N              217              <1密度,g/cm3@15℃       0.9071           0.8714模拟蒸馏,D-2887(ASTM),℃IBP                     189              755%                     202              16110%                    205              18330%                    212              20450%                    221              21270%                    230              22390%                    236              23595%                    242              244FBP                     376              341
为了确定存在的烃的结构类型,用GC-MS分析CCN原料(对比实施例2-A)和加氢处理的CCN(实施例2)。这些结果示于下表5中。从表5可以看出,本发明方法(实施例2)有效地降低了烃原料物流的芳烃含量,同时伴随着增加了链烷烃/异链烷烃和环烷烃的量。
                            表5
测定的CCN原料(对比实施例2-A)和加氢处理的CCN(实施例2)
                   的分子结构类型各种分子类型的相对分布     CCN原料        加氢处理的CCN量,体积%                 (2-A)          (实施例2)链烷烃/异链烷烃            7.97           10.92环烷烃                     5.19           26.79芳烃                       86.83          62.27
                            表6
   气体产物、石脑油、瓦斯油和焦油的实验室蒸汽裂解产率基于原料的产物产率               CCN原料      加氢处理的CCN重量%                           (2-A)        (实施例2)总的H2和C1-C4烃               27.67        33.32总的其他C5和更高级的烃          72.33        66.68SCN,C5-220℃(430°F)           40.85        35.79SCGO,220-275℃(430-525°F)      7.75         12.00SCT,275℃(526°F)-以上          23.73        18.89合计                             100.00       100.00选择的气体产物氢气                             0.65         0.74甲烷                             8.03         9.58乙烷                             1.91         2.66乙烯                             9.09         10.81乙炔                             0.08         0.09丙烷                             0.07         0.07丙烯                             4.79         5.81丙二烯和甲基乙炔                 0.08         0.08丁烷和异丁烷                     0.03         0.02异丁烯                           0.87         0.91丁烯-1                           0.25         0.27丁二烯-1,3                      1.28         1.53丁烯-2(顺和反)                   0.32         0.43C4炔类                          0.00         0.00选择的液体产物异戊二烯                         0.00         0.35戊二烯(顺和反)                   0.13         0.15环戊二烯                         0.49         0.80甲基环戊二烯                     0.10         0.00苯                               2.79         4.03
从上表6可以看出,当使用包括加氢处理和蒸汽裂解的本发明方法(实施例2)时,相对于未处理的烃原料只经过蒸汽裂解(对比例2-A)所得到的产率,在H2和C1-C4烃馏分中的每种特别有价值的蒸汽裂解单烯烃和二烯烃产物即乙烯、丙烯和丁二烯的产率增加了至少约18%,在蒸汽裂解石脑油馏分中每种有价值的蒸汽裂解二烯烃和芳烃产物即异戊二烯、顺戊二烯、反戊二烯、环戊二烯和苯的产率增加了至少约15%,蒸汽裂解瓦斯油产物的产率增加了约54%,低价值的蒸汽裂解焦油产物的产率降低了约20%。

Claims (17)

1.一种将含有沸点高于100℃的组分的已裂解或未裂解烃原料转化成蒸汽裂解产物的联合方法,该方法包括:a)在氢气源和两种加氢处理催化剂存在下、在升高的温度和27巴-85巴压力下将所述烃原料通过加氢处理区以基本上完全分解烃原料中所含的有机硫和/或氮化合物,其中至少一种所述加氢处理催化剂承载在酸性沸石分子筛上;b)将所述加氢处理区的产物送入蒸汽裂解区,在该蒸汽裂解区中所述产物在高于700℃的温度下与蒸汽接触,和c)从产物中回收氢气和C1-C4烃、蒸汽裂解石脑油、蒸汽裂解瓦斯油和蒸汽裂解焦油,其中基于未经过加氢处理的初始烃原料,产生的蒸汽裂解焦油的量降低了至少15%。
2.根据权利要求1的方法,其中所述的烃原料含有沸点在150-650℃范围内的组分。
3.根据权利要求1的方法,其中在步骤a)中所述加氢处理区装有第一加氢处理催化剂和第二加氢处理催化剂,第一加氢处理催化剂含有载在无定形载体上的选自VIB族金属、其氧化物、硫化物,VIII族金属、其氧化物、硫化物及其混合物的组分,第二加氢处理催化剂含有选自钨、钼及其混合物的VIB族组分,选自镍、钴及其混合物的VIII族组分,以及所述酸性沸石分子筛具有大于6埃的孔径且与选自氧化铝、二氧化硅、二氧化硅-氧化铝及其混合物的无机氧化物粘结剂混合。
4.根据权利要求3的方法,其中所述第一加氢处理催化剂和所述第二加氢处理催化剂以多层床构型放在所述加氢处理区中。
5.根据权利要求1的方法,其中步骤a)中的所述加氢处理区在温度为200-550℃,压力为27巴-68巴的条件下操作。
6.根据权利要求1的方法,其中步骤a)中的所述加氢处理区在温度为200-550℃,压力为27巴-51巴的条件下操作。
7.根据权利要求1的方法,其中在步骤b)中的所述蒸汽裂解区在温度大于700℃,盘管出口压力为0-5巴的条件下操作。
8.根据权利要求1的方法,其中在步骤b)中的所述蒸汽裂解区在温度为700-925℃,盘管出口压力为0-4巴的条件下操作。
9.一种将含有沸点高于100℃的组分的已裂解或未裂解烃原料转化成蒸汽裂解产物的联合方法,该方法包括:a)在氢气源和第一加氢处理催化剂存在下、在升高的温度和27巴-85巴压力下将所述烃原料通过第一加氢处理区以降低烃原料中所含的有机硫和/或氮化合物量,b)将所述第一加氢处理区的产物送入第二加氢处理区,在第二加氢处理区中在压力为27巴-85巴和温度为200-550℃下所述产物与氢气源和第二加氢处理催化剂接触,第二加氢处理催化剂含有载在酸性沸石分子筛上的一种或多种选自VIB族金属、其氧化物、硫化物,VIII族金属、其氧化物、硫化物及其混合物的加氢组分,以基本上完全分解第一加氢处理区的产物中所含的有机硫和/或氮化合物,c)将所述第二加氢处理区的产物送入蒸汽裂解区,在该蒸汽裂解区中所述产物在高于700℃的温度下与蒸汽接触,和e)从产物中回收氢气和C1-C4烃、蒸汽裂解石脑油、蒸汽裂解瓦斯油和蒸汽裂解焦油,其中基于未经过加氢处理的初始烃原料,产生的蒸汽裂解焦油的量降低了至少15%。
10.根据权利要求9的方法,其中所述的烃原料含有沸点为150-650℃的组分。
11.根据权利要求10的方法,其中步骤a)中的所述第一加氢处理催化剂含有载在无定形载体上的选自VIB族金属、其氧化物、硫化物,VIII族金属、其氧化物、硫化物及其混合物的组分。
12.根据权利要求9的方法,其中步骤a)中的所述第一加氢处理区在温度为200-550℃,压力为27巴-68巴的条件下操作。
13.根据权利要求9的方法,其中步骤b)中的所述第二加氢处理催化剂含有选自钨、钼及其混合物的VIB族组分,选自镍、钴及其混合物的VIII族组分,所述分子筛具有大于6埃的孔径且与选自氧化铝、二氧化硅、二氧化硅-氧化铝及其混合物的无机氧化物粘结剂混合。
14.根据权利要求13的方法,其中VIII族组分是镍,VIB族组分选自钼、钨及其混合物,分子筛是Y分子筛,粘结剂是氧化铝。
15.根据权利要求9的方法,其中步骤b)中的所述第二加氢处理区在温度为200-550℃,压力为27巴-68巴的条件下操作。
16.根据权利要求9的方法,其中在步骤c)中的所述蒸汽裂解区在温度大于700℃,盘管出口压力为0-5巴的条件下操作。
17.根据权利要求9的方法,其中在步骤c)中的所述蒸汽裂解区在温度为700-925℃,盘管出口压力为0-4巴的条件下操作。
CNB971980748A 1996-08-15 1997-08-15 烃转化方法 Expired - Fee Related CN1133730C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US2785996P 1996-08-15 1996-08-15
US60/027,859 1996-08-15
US3461296P 1996-12-31 1996-12-31
US60/034,612 1996-12-31
US08/848,438 1997-05-08
US08/848,438 US6190533B1 (en) 1996-08-15 1997-05-08 Integrated hydrotreating steam cracking process for the production of olefins

Publications (2)

Publication Number Publication Date
CN1230976A CN1230976A (zh) 1999-10-06
CN1133730C true CN1133730C (zh) 2004-01-07

Family

ID=27363107

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB971980748A Expired - Fee Related CN1133730C (zh) 1996-08-15 1997-08-15 烃转化方法
CNB971979812A Expired - Fee Related CN1133729C (zh) 1996-08-15 1997-08-15 烃转化方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB971979812A Expired - Fee Related CN1133729C (zh) 1996-08-15 1997-08-15 烃转化方法

Country Status (9)

Country Link
US (1) US6190533B1 (zh)
EP (2) EP0951524B1 (zh)
JP (2) JP2001521556A (zh)
CN (2) CN1133730C (zh)
AU (2) AU719599B2 (zh)
CA (1) CA2262492C (zh)
DE (2) DE69707709T2 (zh)
ES (2) ES2185978T3 (zh)
WO (2) WO1998006795A1 (zh)

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444250A (en) * 1987-08-10 1989-02-16 Kawasaki Refractories Co Ltd Continuous casting nozzle for stainless steel
JPH0489981A (ja) * 1990-07-31 1992-03-24 Hitachi Building Syst Eng & Service Co Ltd 扉の解錠方法
KR100419065B1 (ko) * 2001-03-07 2004-02-19 주식회사 엘지화학 열분해 반응관 및 이를 이용한 열분해 방법
GB0126643D0 (en) * 2001-11-06 2002-01-02 Bp Exploration Operating Composition and process
US6783659B2 (en) * 2001-11-16 2004-08-31 Chevron Phillips Chemical Company, L.P. Process to produce a dilute ethylene stream and a dilute propylene stream
US7097758B2 (en) * 2002-07-03 2006-08-29 Exxonmobil Chemical Patents Inc. Converting mist flow to annular flow in thermal cracking application
US7090765B2 (en) * 2002-07-03 2006-08-15 Exxonmobil Chemical Patents Inc. Process for cracking hydrocarbon feed with water substitution
US7138047B2 (en) * 2002-07-03 2006-11-21 Exxonmobil Chemical Patents Inc. Process for steam cracking heavy hydrocarbon feedstocks
JP2004269685A (ja) * 2003-03-07 2004-09-30 Nippon Oil Corp 軽油組成物及びその製造方法
WO2004078887A1 (ja) * 2003-03-07 2004-09-16 Nippon Oil Corporation 軽油留分の水素化処理方法
US20050038304A1 (en) * 2003-08-15 2005-02-17 Van Egmond Cor F. Integrating a methanol to olefin reaction system with a steam cracking system
EP1727877B1 (en) * 2004-03-22 2012-04-04 ExxonMobil Chemical Patents Inc. Process for steam cracking heavy hydrocarbon feedstocks
US7297833B2 (en) * 2004-05-21 2007-11-20 Exxonmobil Chemical Patents Inc. Steam cracking of light hydrocarbon feedstocks containing non-volatile components and/or coke precursors
US7247765B2 (en) 2004-05-21 2007-07-24 Exxonmobil Chemical Patents Inc. Cracking hydrocarbon feedstock containing resid utilizing partial condensation of vapor phase from vapor/liquid separation to mitigate fouling in a flash/separation vessel
US7235705B2 (en) * 2004-05-21 2007-06-26 Exxonmobil Chemical Patents Inc. Process for reducing vapor condensation in flash/separation apparatus overhead during steam cracking of hydrocarbon feedstocks
US7312371B2 (en) * 2004-05-21 2007-12-25 Exxonmobil Chemical Patents Inc. Steam cracking of hydrocarbon feedstocks containing non-volatile components and/or coke precursors
US7358413B2 (en) * 2004-07-14 2008-04-15 Exxonmobil Chemical Patents Inc. Process for reducing fouling from flash/separation apparatus during cracking of hydrocarbon feedstocks
US7402237B2 (en) * 2004-10-28 2008-07-22 Exxonmobil Chemical Patents Inc. Steam cracking of hydrocarbon feedstocks containing salt and/or particulate matter
US7285697B2 (en) * 2004-07-16 2007-10-23 Exxonmobil Chemical Patents Inc. Reduction of total sulfur in crude and condensate cracking
US7311746B2 (en) * 2004-05-21 2007-12-25 Exxonmobil Chemical Patents Inc. Vapor/liquid separation apparatus for use in cracking hydrocarbon feedstock containing resid
US7193123B2 (en) * 2004-05-21 2007-03-20 Exxonmobil Chemical Patents Inc. Process and apparatus for cracking hydrocarbon feedstock containing resid to improve vapor yield from vapor/liquid separation
US7408093B2 (en) * 2004-07-14 2008-08-05 Exxonmobil Chemical Patents Inc. Process for reducing fouling from flash/separation apparatus during cracking of hydrocarbon feedstocks
US7351872B2 (en) * 2004-05-21 2008-04-01 Exxonmobil Chemical Patents Inc. Process and draft control system for use in cracking a heavy hydrocarbon feedstock in a pyrolysis furnace
US7220887B2 (en) * 2004-05-21 2007-05-22 Exxonmobil Chemical Patents Inc. Process and apparatus for cracking hydrocarbon feedstock containing resid
US7488459B2 (en) * 2004-05-21 2009-02-10 Exxonmobil Chemical Patents Inc. Apparatus and process for controlling temperature of heated feed directed to a flash drum whose overhead provides feed for cracking
US7244871B2 (en) * 2004-05-21 2007-07-17 Exxonmobil Chemical Patents, Inc. Process and apparatus for removing coke formed during steam cracking of hydrocarbon feedstocks containing resids
US7481871B2 (en) * 2004-12-10 2009-01-27 Exxonmobil Chemical Patents Inc. Vapor/liquid separation apparatus
JP4987485B2 (ja) * 2004-12-28 2012-07-25 Jx日鉱日石エネルギー株式会社 超低硫黄軽油基材又は超低硫黄軽油組成物の製造方法及び超低硫黄軽油組成物
US8173854B2 (en) * 2005-06-30 2012-05-08 Exxonmobil Chemical Patents Inc. Steam cracking of partially desalted hydrocarbon feedstocks
US8696888B2 (en) * 2005-10-20 2014-04-15 Exxonmobil Chemical Patents Inc. Hydrocarbon resid processing
WO2008027131A1 (en) * 2006-08-31 2008-03-06 Exxonmobil Chemical Patents Inc. Disposition of steam cracked tar
JP5105326B2 (ja) * 2007-04-19 2012-12-26 昭和電工株式会社 水素化方法及び石油化学プロセス
US7897828B2 (en) * 2007-08-28 2011-03-01 Exxonmobile Research And Engineering Company Process for separating a heavy oil feedstream into improved products
US7867379B2 (en) * 2007-08-28 2011-01-11 Exxonmobil Research And Engineering Company Production of an upgraded stream from steam cracker tar by ultrafiltration
US8864996B2 (en) * 2007-08-28 2014-10-21 Exxonmobil Research And Engineering Company Reduction of conradson carbon residue and average boiling points utilizing high pressure ultrafiltration
US7871510B2 (en) * 2007-08-28 2011-01-18 Exxonmobil Research & Engineering Co. Production of an enhanced resid coker feed using ultrafiltration
US8177965B2 (en) * 2007-08-28 2012-05-15 Exxonmobil Research And Engineering Company Enhancement of saturates content in heavy hydrocarbons utilizing ultrafiltration
US7815790B2 (en) * 2007-08-28 2010-10-19 Exxonmobil Research And Engineering Company Upgrade of visbroken residua products by ultrafiltration
US7815791B2 (en) * 2008-04-30 2010-10-19 Exxonmobil Chemical Patents Inc. Process and apparatus for using steam cracked tar as steam cracker feed
US9458390B2 (en) * 2009-07-01 2016-10-04 Exxonmobil Chemical Patents Inc. Process and system for preparation of hydrocarbon feedstocks for catalytic cracking
US8197668B2 (en) * 2009-07-09 2012-06-12 Exxonmobil Chemical Patents Inc. Process and apparatus for upgrading steam cracker tar using hydrogen donor compounds
US9005430B2 (en) * 2009-12-10 2015-04-14 IFP Energies Nouvelles Process and apparatus for integration of a high-pressure hydroconversion process and a medium-pressure middle distillate hydrotreatment process, whereby the two processes are independent
US8821713B2 (en) 2009-12-17 2014-09-02 H R D Corporation High shear process for processing naphtha
SG181825A1 (en) 2010-01-21 2012-07-30 Shell Int Research Process for treating a hydrocarbon-containing feed
EP2526173A2 (en) 2010-01-21 2012-11-28 Shell Oil Company Process for cracking a hydrocarbon-containing feed
SG182264A1 (en) 2010-01-21 2012-08-30 Shell Int Research Hydrocarbon composition
WO2011091206A2 (en) 2010-01-21 2011-07-28 Shell Oil Company Hydrocarbon composition
JP5318019B2 (ja) * 2010-03-30 2013-10-16 Jx日鉱日石エネルギー株式会社 スチームクラッカーにおけるhar油の処理方法
US8658022B2 (en) * 2010-11-23 2014-02-25 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
CN101976924B (zh) * 2010-12-02 2013-07-24 石云艾 单相多极开关磁阻电机
US9255230B2 (en) 2012-01-27 2016-02-09 Saudi Arabian Oil Company Integrated hydrotreating and steam pyrolysis process for direct processing of a crude oil
US9284502B2 (en) 2012-01-27 2016-03-15 Saudi Arabian Oil Company Integrated solvent deasphalting, hydrotreating and steam pyrolysis process for direct processing of a crude oil
US9382486B2 (en) 2012-01-27 2016-07-05 Saudi Arabian Oil Company Integrated hydrotreating, solvent deasphalting and steam pyrolysis process for direct processing of a crude oil
KR102118616B1 (ko) * 2012-01-27 2020-06-03 사우디 아라비안 오일 컴퍼니 원유의 직접 가공처리를 위한 통합된 수소처리 및 스팀 열분해 공정
US9296961B2 (en) 2012-01-27 2016-03-29 Saudi Arabian Oil Company Integrated hydrotreating and steam pyrolysis process including residual bypass for direct processing of a crude oil
US9284497B2 (en) 2012-01-27 2016-03-15 Saudi Arabian Oil Company Integrated solvent deasphalting and steam pyrolysis process for direct processing of a crude oil
US9279088B2 (en) 2012-01-27 2016-03-08 Saudi Arabian Oil Company Integrated hydrotreating and steam pyrolysis process including hydrogen redistribution for direct processing of a crude oil
US9228141B2 (en) 2012-03-20 2016-01-05 Saudi Arabian Oil Company Integrated hydroprocessing, steam pyrolysis and slurry hydroprocessing of crude oil to produce petrochemicals
SG11201405868YA (en) 2012-03-20 2014-11-27 Saudi Arabian Oil Co Steam cracking process and system with integral vapor-liquid separation
WO2013142609A1 (en) * 2012-03-20 2013-09-26 Saudi Arabian Oil Company Integrated hydroprocessing, steam pyrolysis catalytic cracking process to produce petrochemicals from crude oil
SG11201405865SA (en) 2012-03-20 2014-11-27 Saudi Arabian Oil Co Integrated hydroprocessing and steam pyrolysis of crude oil to produce light olefins and coke
SG11201405900TA (en) 2012-03-20 2014-11-27 Saudi Arabian Oil Co Integrated slurry hydroprocessing and steam pyrolysis of crude oil to produce petrochemicals
US10603657B2 (en) 2016-04-11 2020-03-31 Saudi Arabian Oil Company Nano-sized zeolite supported catalysts and methods for their production
US11084992B2 (en) 2016-06-02 2021-08-10 Saudi Arabian Oil Company Systems and methods for upgrading heavy oils
US10301556B2 (en) 2016-08-24 2019-05-28 Saudi Arabian Oil Company Systems and methods for the conversion of feedstock hydrocarbons to petrochemical products
US10472579B2 (en) * 2016-11-21 2019-11-12 Saudi Arabian Oil Company Process and system for conversion of crude oil to petrochemicals and fuel products integrating vacuum gas oil hydrocracking and steam cracking
US10689587B2 (en) 2017-04-26 2020-06-23 Saudi Arabian Oil Company Systems and processes for conversion of crude oil
CN110753742A (zh) * 2017-05-17 2020-02-04 埃克森美孚化学专利公司 提质烃热解产物
SG11202000278XA (en) * 2017-07-14 2020-02-27 Exxonmobil Chemical Patents Inc Multi-stage upgrading of hydrocarbon pyrolysis tar using recycled interstage product
EP3655501A1 (en) 2017-07-17 2020-05-27 Saudi Arabian Oil Company Systems and methods for processing heavy oils by oil upgrading followed by steam cracking
WO2019036291A1 (en) 2017-08-15 2019-02-21 Sabic Global Technologies B.V. SHALE GAS AND CONDENSATE GIVING CHEMICALS
WO2019036426A1 (en) 2017-08-15 2019-02-21 Sabic Global Technologies, B.V. PRODUCTION OF LIGHT OLEFINS BY INTEGRATED VAPOCRACKING AND HYDROCRACKING METHOD
WO2020033065A1 (en) 2018-08-09 2020-02-13 Exxonmobil Research And Engineering Company Advanced steam cracking
CN110129088B (zh) * 2019-05-06 2021-03-30 盘锦北方沥青燃料有限公司 一种低碳烃混合加氢生产乙烯裂解原料的方法
US11193072B2 (en) 2019-12-03 2021-12-07 Saudi Arabian Oil Company Processing facility to form hydrogen and petrochemicals
US11680521B2 (en) 2019-12-03 2023-06-20 Saudi Arabian Oil Company Integrated production of hydrogen, petrochemicals, and power
US11572517B2 (en) 2019-12-03 2023-02-07 Saudi Arabian Oil Company Processing facility to produce hydrogen and petrochemicals
US11426708B2 (en) 2020-03-02 2022-08-30 King Abdullah University Of Science And Technology Potassium-promoted red mud as a catalyst for forming hydrocarbons from carbon dioxide
US11279891B2 (en) 2020-03-05 2022-03-22 Saudi Arabian Oil Company Systems and processes for direct crude oil upgrading to hydrogen and chemicals
US11492255B2 (en) 2020-04-03 2022-11-08 Saudi Arabian Oil Company Steam methane reforming with steam regeneration
US11420915B2 (en) 2020-06-11 2022-08-23 Saudi Arabian Oil Company Red mud as a catalyst for the isomerization of olefins
US11495814B2 (en) 2020-06-17 2022-11-08 Saudi Arabian Oil Company Utilizing black powder for electrolytes for flow batteries
US11492254B2 (en) 2020-06-18 2022-11-08 Saudi Arabian Oil Company Hydrogen production with membrane reformer
US12000056B2 (en) 2020-06-18 2024-06-04 Saudi Arabian Oil Company Tandem electrolysis cell
US11583824B2 (en) 2020-06-18 2023-02-21 Saudi Arabian Oil Company Hydrogen production with membrane reformer
US11999619B2 (en) 2020-06-18 2024-06-04 Saudi Arabian Oil Company Hydrogen production with membrane reactor
US11274068B2 (en) 2020-07-23 2022-03-15 Saudi Arabian Oil Company Process for interconversion of olefins with modified beta zeolite
US11332678B2 (en) 2020-07-23 2022-05-17 Saudi Arabian Oil Company Processing of paraffinic naphtha with modified USY zeolite dehydrogenation catalyst
US11420192B2 (en) 2020-07-28 2022-08-23 Saudi Arabian Oil Company Hydrocracking catalysts containing rare earth containing post-modified USY zeolite, method for preparing hydrocracking catalysts, and methods for hydrocracking hydrocarbon oil with hydrocracking catalysts
US11154845B1 (en) 2020-07-28 2021-10-26 Saudi Arabian Oil Company Hydrocracking catalysts containing USY and beta zeolites for hydrocarbon oil and method for hydrocracking hydrocarbon oil with hydrocracking catalysts
US11142703B1 (en) 2020-08-05 2021-10-12 Saudi Arabian Oil Company Fluid catalytic cracking with catalyst system containing modified beta zeolite additive
US11820658B2 (en) 2021-01-04 2023-11-21 Saudi Arabian Oil Company Black powder catalyst for hydrogen production via autothermal reforming
US11718522B2 (en) 2021-01-04 2023-08-08 Saudi Arabian Oil Company Black powder catalyst for hydrogen production via bi-reforming
US11724943B2 (en) 2021-01-04 2023-08-15 Saudi Arabian Oil Company Black powder catalyst for hydrogen production via dry reforming
US11814289B2 (en) 2021-01-04 2023-11-14 Saudi Arabian Oil Company Black powder catalyst for hydrogen production via steam reforming
US11427519B2 (en) 2021-01-04 2022-08-30 Saudi Arabian Oil Company Acid modified red mud as a catalyst for olefin isomerization
US11578016B1 (en) 2021-08-12 2023-02-14 Saudi Arabian Oil Company Olefin production via dry reforming and olefin synthesis in a vessel
US11718575B2 (en) 2021-08-12 2023-08-08 Saudi Arabian Oil Company Methanol production via dry reforming and methanol synthesis in a vessel
US11787759B2 (en) 2021-08-12 2023-10-17 Saudi Arabian Oil Company Dimethyl ether production via dry reforming and dimethyl ether synthesis in a vessel
US11618858B1 (en) 2021-12-06 2023-04-04 Saudi Arabian Oil Company Hydrodearylation catalysts for aromatic bottoms oil, method for producing hydrodearylation catalysts, and method for hydrodearylating aromatic bottoms oil with hydrodearylation catalysts
US12018392B2 (en) 2022-01-03 2024-06-25 Saudi Arabian Oil Company Methods for producing syngas from H2S and CO2 in an electrochemical cell
US11617981B1 (en) 2022-01-03 2023-04-04 Saudi Arabian Oil Company Method for capturing CO2 with assisted vapor compression

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6503410A (zh) 1963-02-21 1965-09-20
US3293192A (en) 1965-08-23 1966-12-20 Grace W R & Co Zeolite z-14us and method of preparation thereof
US3513217A (en) * 1966-09-16 1970-05-19 Universal Oil Prod Co Olefin producing process
US3511771A (en) * 1967-07-24 1970-05-12 Exxon Research Engineering Co Integrated hydrofining,hydrodesulfurization and steam cracking process
US3617501A (en) * 1968-09-06 1971-11-02 Exxon Research Engineering Co Integrated process for refining whole crude oil
US3644197A (en) * 1969-01-31 1972-02-22 Union Oil Co Dual-catalyst hydrofining process
GB1383229A (en) * 1972-11-08 1975-02-05 Bp Chem Int Ltd Production of gaseous olefins from petroleum residue feedstocks
US3855113A (en) * 1972-12-21 1974-12-17 Chevron Res Integrated process combining hydrofining and steam cracking
US3907920A (en) * 1974-03-25 1975-09-23 Continental Oil Co Two-stage hydropyrolysis-cracking process for producing ethylene
FR2380337A1 (fr) * 1977-02-11 1978-09-08 Inst Francais Du Petrole Procede de vapocraquage de charges lourdes precede d'un hydrotraitement
FR2390493B1 (fr) * 1977-05-12 1985-04-26 Linde Ag Procede de preparation d'olefines
US4447314A (en) * 1982-05-05 1984-05-08 Mobil Oil Corporation Demetalation, desulfurization, and decarbonization of petroleum oils by hydrotreatment in a dual bed system prior to cracking
DE3232395A1 (de) * 1982-08-31 1984-03-01 Linde Ag, 6200 Wiesbaden Verfahren zur herstellung von olefinen
US4446004A (en) * 1982-12-23 1984-05-01 Mobil Oil Corporation Process for upgrading vacuum resids to premium liquid products
FR2619390A1 (fr) 1987-08-14 1989-02-17 Shell Int Research Procede d'hydrogenation d'huiles hydrocarbonees
US5472928A (en) * 1989-07-19 1995-12-05 Scheuerman; Georgieanna L. Catalyst, method and apparatus for an on-stream particle replacement system for countercurrent contact of a gas and liquid feed stream with a packed bed
DK0519573T3 (da) 1991-06-21 1995-07-03 Shell Int Research Hydrogenerings-katalysator og fremgangsmåde
EP0584879B1 (en) * 1992-08-25 1997-10-29 Shell Internationale Researchmaatschappij B.V. Process for the preparation of lower olefins

Also Published As

Publication number Publication date
CN1230975A (zh) 1999-10-06
EP0948582B1 (en) 2003-01-02
EP0951524A1 (en) 1999-10-27
CN1133729C (zh) 2004-01-07
DE69718203D1 (de) 2003-02-06
AU3983497A (en) 1998-03-06
JP2001521556A (ja) 2001-11-06
CA2262492C (en) 2006-04-11
JP2002501551A (ja) 2002-01-15
ES2185978T3 (es) 2003-05-01
EP0948582A1 (en) 1999-10-13
DE69718203T2 (de) 2003-11-13
AU719599B2 (en) 2000-05-11
WO1998006795A1 (en) 1998-02-19
ES2165624T3 (es) 2002-03-16
CN1230976A (zh) 1999-10-06
AU717657B2 (en) 2000-03-30
EP0951524B1 (en) 2001-10-24
AU3984197A (en) 1998-03-06
DE69707709T2 (de) 2002-06-20
US6190533B1 (en) 2001-02-20
CA2262492A1 (en) 1998-02-19
DE69707709D1 (de) 2001-11-29
WO1998006794A1 (en) 1998-02-19

Similar Documents

Publication Publication Date Title
CN1133730C (zh) 烃转化方法
US6210561B1 (en) Steam cracking of hydrotreated and hydrogenated hydrocarbon feeds
KR102420209B1 (ko) 중질 연료유의 화학제품으로의 전환
US6149800A (en) Process for increased olefin yields from heavy feedstocks
US8912377B2 (en) Method for producing high value aromatics and olefin from light cycle oil produced by a fluidized catalytic cracking process
JP3270545B2 (ja) 炭化水素の改質方法
US8933283B2 (en) Process for the preparation of clean fuel and aromatics from hydrocarbon mixtures catalytic cracked on fluid bed
KR101958512B1 (ko) 촉매 크래킹 장치의 예비처리 업스트림을 사용하여 중질 공급원료를 중간 증류물로 전환하기 위한 개선된 방법
CN1264417A (zh) 烃类改质方法
JPH0756035B2 (ja) 水素化分解方法
CN1425054A (zh) 石脑油和循环油转化方法
JP2017512228A (ja) C5〜c12炭化水素混合物からbtxを製造する方法
US20240018421A1 (en) Solvent Composition Prepared from Waste Oil and Method of Preparing the Same
KR20220139372A (ko) 방향족 콤플렉스 하부물질의 수소화를 위한 공정 및 시스템
CN1298815C (zh) 混合烃进料的加氢脱硫和降低进料苯含量的方法
CN1478866A (zh) 一种汽油脱硫的方法
CN1151236C (zh) 利用供氢组分降低汽油烯烃含量的催化转化方法
JP2907547B2 (ja) 中間留分留出物樹脂前駆体の生成方法
US20070068849A1 (en) Lead-free gasoline composition and method for production thereof
CA2262392C (en) Hydrocarbon conversion process
CN115725338A (zh) 废塑料热解油中的中间馏分转化为润滑油基础油的方法
JPH07300591A (ja) 軽質ガスオイル基材の製造方法
CN1142524A (zh) 残余烃油的转化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1032156

Country of ref document: HK

C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee