CN113272473B - 方向性电磁钢板及方向性电磁钢板的制造方法 - Google Patents

方向性电磁钢板及方向性电磁钢板的制造方法 Download PDF

Info

Publication number
CN113272473B
CN113272473B CN202080008246.7A CN202080008246A CN113272473B CN 113272473 B CN113272473 B CN 113272473B CN 202080008246 A CN202080008246 A CN 202080008246A CN 113272473 B CN113272473 B CN 113272473B
Authority
CN
China
Prior art keywords
steel sheet
insulating film
boron
grain
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080008246.7A
Other languages
English (en)
Other versions
CN113272473A (zh
Inventor
高桥史明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of CN113272473A publication Critical patent/CN113272473A/zh
Application granted granted Critical
Publication of CN113272473B publication Critical patent/CN113272473B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/62Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

本发明提供具有能够赋予比以往更大的张力的硼酸铝被膜的方向性电磁钢板及方向性电磁钢板的制造方法。本发明的方向性电磁钢板具有钢板和设置于上述钢板上的由包含铝和硼的氧化物制成的绝缘被膜,上述氧化物包含结晶质氧化物,通过辉光放电发光分光分析法而测定的上述绝缘被膜与上述钢板的界面处的硼相对于铝的发光强度比的最大值为上述绝缘被膜中的硼相对于铝的发光强度比的2.5倍~4.0倍。

Description

方向性电磁钢板及方向性电磁钢板的制造方法
技术领域
本发明涉及方向性电磁钢板及方向性电磁钢板的制造方法。
背景技术
方向性电磁钢板具有以{110}<001>作为主取向的晶体组织,多用作变压器的铁心材料,特别是为了减少能量损耗,要求铁损小的材料。
在专利文献1中,作为降低方向性电磁钢板的铁损的手段,公开了一种方法,其对成品退火后的钢板表面照射激光束从而给予局部的应变,由此将磁畴细分化。
在专利文献2中公开了一种磁畴细分化手段,其即使是在实施了铁心加工后的消除应变退火(应力除去退火)后该效果也不会消失。
另一方面,含有铁及硅的铁合金由于晶体磁各向异性大,因此如果附加外部张力,则引起磁畴的细分化,能够降低铁损的主要素即涡流损耗。已知:特别是对于含有5%以下的硅的方向性电磁钢板的铁损的降低,对钢板赋予张力是有效的。该张力通过形成于表面的被膜来赋予。
对于方向性电磁钢板,通过下述的一次被膜及二次被膜这2层的被膜,从而在板厚为0.23mm的情况下赋予10MPa左右的张力,所述一次被膜是在成品退火工序中钢板表面的氧化物与退火分离剂发生反应而生成的以镁橄榄石作为主体的被膜,所述二次被膜是专利文献3等中公开的通过将以胶体状二氧化硅和磷酸盐作为主体的涂敷液进行烧结而生成的以非晶质为主的被膜。
与此相对,在专利文献4中提出了一种方向性电磁钢板,其在表面具有以硼酸铝晶体为主的被膜。
现有技术文献
专利文献
专利文献1:日本特开昭55-018566号公报
专利文献2:日本特开昭62-86175号公报
专利文献3:日本特开昭48-39338号公报
专利文献4:日本特开平6-65754号公报
发明内容
发明所要解决的课题
在专利文献3中公开的那样的以往被膜的情况下,虽然通过增多被膜量,能够赋予更大的张力,残留有由张力提高带来的铁损改善的可能性,但由于为了提高赋予张力而将被膜增厚至现状以上会导致占空系数的降低,因此是不优选的。因此,期望不会引起占空系数降低、密合性优异、薄且能够对钢板赋予大张力的被膜。
为了使某被膜成为高张力被膜,要求被膜的杨氏模量高、并且热膨张系数小。一般而言,晶体与非晶质相比杨氏模量高。专利文献4中记载的由硼酸铝制成的被膜由于主要构成物为晶体,因此与由二氧化硅和磷酸盐制成的以往的非晶质的被膜相比杨氏模量高。由于热膨张系数也充分低,因此与杨氏模量的效果相互结合,与专利文献3中公开的那样的被膜相比能够得到高张力。
然而,要求能够赋予更进一步大的张力的被膜。为了实现利用硼酸铝而得到的高张力被膜,需要在被膜中充分地生成硼酸铝晶体。如果张力被膜全部由硼酸铝晶体构成则是理想的,但实际上由于烧结时的元素从表面的蒸散等,导致产生被膜内的元素的不均匀性是不可避免的。据认为如果元素分布不恰当,则不会充分地形成硼酸铝,得不到高张力,但迄今为止并不清楚元素分布与张力的关系。
本发明的目的是提供具有能够赋予比以往更大的张力的硼酸铝被膜的方向性电磁钢板及方向性电磁钢板的制造方法。
用于解决课题的手段
本发明的发明者认为:为了通过硼酸铝被膜获得更高的张力,需要弄清楚被膜内的元素分布与张力的关系,明确可得到高张力的条件。而且,深入研究的结果认识到:如果被膜与钢板的界面附近的硼量多,则可得到高张力。
本发明是基于上述的见解而进行的,其主旨如下所述。
(1)一种方向性电磁钢板,其具有:
钢板;和
设置于上述钢板上的由包含铝和硼的氧化物制成的绝缘被膜,
上述氧化物包含结晶质氧化物,
通过辉光放电发光分光分析法而测定的上述绝缘被膜与上述钢板的界面处的硼相对于铝的发光强度比的最大值为上述绝缘被膜中的硼相对于铝的发光强度比的2.5倍~4.0倍。
(2)一种方向性电磁钢板的制造方法,其具有以下工序:
将包含以Al2O3/B2O3换算的质量比为1.8~2.6的硼源及铝源的涂布液涂布于钢板表面;
在露点为0~40℃且包含0~25体积%的氢的不活泼气体气氛中,将上述钢板以2~5℃/秒的平均的升温速度加热至处于450~600℃的范围的规定的温度后,以冷却速度为10℃/秒以上的冷却速度冷却至200℃以下;和
将上述钢板以平均为10~100℃/秒的升温速度升温至750℃,在750~1000℃的温度区域中进行20~120秒钟热处理。
发明效果
如以上说明的那样,根据本发明,通过控制绝缘被膜与钢板的界面附近的硼量,可获得具有能够赋予比以往更大的张力的硼酸铝被膜的方向性电磁钢板。
附图说明
图1是本发明的一个实施方式中的方向性电磁钢板的一个例子中的绝缘被膜及钢板的辉光放电发光分光分析图。
具体实施方式
以下在参照所附附图的同时对本发明的优选的实施方式进行详细说明。
<1.方向性电磁钢板>
以下,对本实施方式的方向性电磁钢板进行说明。本实施方式的方向性电磁钢板具有钢板(母材钢板)和设置于钢板上的由包含铝和硼的氧化物制成的绝缘被膜。
对于本实施方式中可使用的钢板(母材钢板),只要是完成了二次再结晶的钢板则没有特别限制。关于作为母材钢板而言一般使用的钢板,例如在成品退火(二次再结晶退火)时形成的具有镁橄榄石质的一次被膜的钢板为本实施方式中可使用的钢板。
如上所述,在钢板的表面上设置有由包含铝和硼的氧化物制成的绝缘被膜。而且,绝缘被膜的氧化物包含结晶质氧化物,通过辉光放电发光分光分析法(Grow Dischargeoptical emission Spectroscopy:GDS)测定的绝缘被膜与钢板的界面处的硼相对于铝的发光强度比B/Al的最大值为绝缘被膜中的硼相对于铝的发光强度比B/Al的2.5倍~4.0倍。由此,方向性电磁钢板的张力提高。以下,与本发明的发明者的想法一起进行详细说明。
本发明的发明者对绝缘被膜的特性的提高进行了调查及研究。其结果发现:通过控制绝缘被膜(张力被膜)与钢板的界面附近的硼量,可得到具有高张力的方向性电磁钢板。具体而言,发现:关于绝缘被膜中的硼相对于铝的发光强度比,在绝缘被膜与钢板的界面处的最大值为绝缘被膜中的值的2.5倍~4倍的情况下可得到具有表现出高张力的绝缘被膜的方向性电磁钢板。
测定绝缘被膜的深度方向的组成的方法有各种各样,但包含硼酸铝的绝缘被膜由于包含硼、铝、氧作为成分,因此利用能够简便地测定它们的辉光放电发光分光分析法的方法是恰当的。具体而言,为了对绝缘被膜内的元素分布进行定量化,对测定结果如下那样进行处理。
弄清楚了:对于Al和B,通过GDS测定发光强度相对于溅射时间的变化后,得到两者的发光强度之比B/Al(以下为B/Al值)的溅射时间依赖性,但如图1中所示的那样,如果处于绝缘被膜与钢板界面附近(以下为界面)的B/Al值的最大值(以下为B/Al峰)高,则可得到高张力。其中,在图1中的GDS图中,界面定义为铁(Fe)的发光强度从0附近上升至恒定值为止之间。在图1中,铁的发光强度为0附近的区域为绝缘被膜中的分析值,另外铁的发光强度以不为0的值成为大致恒定的区域为钢板中的分析值。因此,在图1中所示的例子中,从铁的发光强度从0附近(零附近是指后述恒定值的5%以下的强度的部分)开始上升的放电时间约100秒起直至铁的发光强度以大致2成为恒定值(这里,“恒定值”是指以钢板中的铁发光强度值计,关于1秒平均的值,从其前1秒平均的值起的变化为0.05%以下的区域的值)的约150秒为止之间为与组成由被膜成分变化为钢板成分的界面相对应的发光强度。本发明中定义的B/A1峰是表示该区域中最高的值的峰。因此,图1中处于放电时间120秒附近的设定为B/A1峰(Y)的峰为本发明中定义的B/A1峰,处于放电时间10秒附近或190秒附近的峰不符合本发明中定义的B/A1峰。将用于获得Fe、B、A1的发光强度的辉光放电发光分光分析法的测定条件的一个例子示于表1中。
[表1]
GDS测定条件
装置名 Rigaku制GDA750分析器
RF输出功率 30W
定量校正因子 1
调谐/负载电容器位置 调谐C1:561,负载C2:160,自动匹配
Ar压力 3hPa
数据间隔 0.04秒间隔、数据传输速率10%
分析区域 4mmφ
每种测定元素的灵敏度(PMT水平) Fe(Fe2):2、B:2、Al:2
以各元素测定的发光线 Fe:271.903nm、B:208.959nm、Al:396.152nm
光电倍增管电流 转换成光电倍增管0~150nA的电流
在GDS中,各元素的发光强度之比表示与被溅射的试样的部分的这些元素的组成比相关的值。因此,通过测定、算出由绝缘被膜测定的B/A1值及绝缘被膜与钢板的界面附近的B/Al峰的比,能够对与绝缘被膜进行比较的绝缘被膜与钢板的界面附近的硼量相对地进行观察。
在本发明中,为了获得具有张力赋予特性优异的硼酸铝被膜(绝缘被膜)的方向性电磁钢板,关于如上述那样操作而测定的硼的发光强度除以铝的发光强度而得到的值(发光强度),在将绝缘被膜中的B/Al值设定为X,将B/Al峰的最大值的值设定为Y时,将Y/X设定为2.5~4.0。其中,X的值为:关于绝缘被膜中的B/A1的值中的1秒平均的B/Al值,从其前1秒平均的值起的变化为0.001以下的区域整体的平均值。
所谓Y/X为2.5~4.0意味着界面处的B/Al值大于绝缘被膜中的B/Al值,这即意味着如果以Al的量作为基准,则界面处的B的量与绝缘被膜中的B的量相比相对较多。如果Y/X的值恰当则张力变高的理由并不清楚,但据认为:据推定在被膜张力高的绝缘被膜与钢板的界面处引起较多硼酸铝晶体的生成,因此表现出高张力。其理由如下那样推定。
据认为:由于氧化硼熔点低,因此在绝缘被膜中硼酸量多的部分熔融的氧化硼会加快元素的扩散。据认为:据推定如果元素的扩散快则变得容易形成硼酸铝,在绝缘被膜烧结时从低温起生成硼酸铝晶体,其结果是,硼酸铝晶体变多。据认为:如果以上述那样的机理而使硼酸铝晶体变多,则被膜张力变高。本发明中为了确保界面处的硼酸的量而着眼于B的量,对以同样存在于绝缘被膜中的Al的量进行归一化而得到的B/Al值进行规定,关于该值,相对于绝缘被膜中的值将其下限设定为2.5倍。但是,如果B/Al峰过高,则有可能界面未反应的硼变多,在湿润气氛下水分变得容易到达至钢板表面,产生生锈等问题。另外,在B/Al峰过高的情况下反而有可能被膜张力降低。据推定其原因是由于:如果B在界面处过于集中,则绝缘被膜中的硼的存在变得不均匀,在绝缘被膜的一部分中硼酸铝晶体的形成变得不充分从而被膜张力降低。因此,本发明中,对于B/Al峰相对于被膜中的B/Al的值设定上限,如果将该值设定为4.0倍,则可得到良好的结果。
Y/X只要为上述的范围内即可,但为了进一步增多绝缘被膜与钢板的界面处的硼酸铝晶体、更进一步增大被膜张力,优选为2.6以上,更优选为2.7以上。另外,为了抑制绝缘被膜与钢板的界面处的过量的硼、抑制被膜张力的降低,Y/X优选为3.8以下,更优选为3.5以下。
本实施方式的方向性电磁钢板的绝缘被膜由于在过厚的情况下母材钢板在方向性电磁钢板中所占的占空系数降低,因此根据目的尽可能薄为宜,优选相对于母材钢板厚度为5%以下的厚度。更优选为2%以下。需要说明的是,该被膜厚度为钢板两面的合计的厚度,如果以母材钢板板厚为0.23mm的情况进行例示,则优选的5%以下是指两面合计为11.5μm以下,每单面为5.75μm以下。同样地,更优选的2%以下是两面合计为4.6μm以下,每单面为2.3μm以下。另外,从张力赋予的观点出发,极端薄时得不到充分的效果,优选每钢板单面为0.1μm以上。此外,钢板板厚没有特别限制,作为一个例子,也可以设定为0.10mm~0.35mm。
<2.方向性电磁钢板的制造方法>
接下来,对本实施方式的方向性电磁钢板的制造方法进行说明。本实施方式的方向性电磁钢板的制造方法具有以下工序:将包含以Al2O3/B2O3换算的质量比为1.8~2.6的硼源及铝源的涂布液涂布于钢板表面;在露点为0~40℃且包含0~25体积%的氢的不活泼气体气氛中,将上述钢板以2~5℃/秒的平均的升温速度加热至处于450~600℃的范围的规定的温度后,以冷却速度为10℃/秒以上的冷却速度冷却至200℃以下;将上述钢板以平均为10~100℃/秒的升温速度升温至750℃,在750~1000℃的温度区域中进行20~120秒钟热处理。
本发明的发明者对于实现上述那样的绝缘被膜的手段,对工艺条件进行了详细研究。工艺研究的结果是,弄清楚了:为了形成满足上述的条件的绝缘被膜,在方向性电磁钢板的母材钢板上涂布氧化铝与氧化硼的质量比率Al2O3/B2O3成为1.8~2.6的涂布液后,对涂布后的干燥及包含烧结温度的热处理的温度及气氛条件进行限定为宜。该工艺包括:(i)涂布液干燥后硼酸铝结晶化前的升温中的硼的扩散、(ii)硼酸铝晶体的核生成、(iii)硼酸铝晶体生长。
以下,对于与上述的工艺(i)~(iii)的对应内容进行提及,并且对本实施方式的方向性电磁钢板的制造方法进行详细说明。
首先,在各工序之前,准备形成绝缘被膜的母材钢板。作为母材钢板,只要准备上述那样的钢板即可,具体而言,只要准备通过以往公知的方法进行成品退火而在表面形成有镁橄榄石质的一次被膜的钢板即可。
接着,对于这样的母材钢板,涂布用于形成绝缘被膜的涂布液。涂布液包含以Al2O3/B2O3换算的质量比为1.8~2.6的硼源及铝源。
作为硼源,从作业性、价格等方面出发,H3BO3所表示的原硼酸最为优选,也可以使用HBO2所表示的偏硼酸、B2O3所表示的氧化硼或它们的混合物。
作为铝源,可列举出氧化铝或氧化铝前驱体化合物。作为氧化铝前驱体化合物,例如可适宜使用勃姆石那样的Al2O3·mH2O所标记的氧化铝的水合物、氢氧化铝等、以硝酸铝、氯化铝为代表的各种铝盐类等。
另外,涂布液中的硼源及铝源按照以Al2O3/B2O3换算的质量比成为1.8~2.6的方式来包含。由此,能够以适宜的组成比形成上述绝缘被膜。与此相对,在上述质量比低于1.8的情况下,绝缘被膜中的硼量变得过多,其结果是,有可能硼在界面过于集中,绝缘被膜中的硼的存在变得不均匀,在绝缘被膜的一部分中硼酸铝晶体的形成变得不充分从而被膜张力降低。另外,如果上述质量比超过2.6,则铝源变得过多,其结果是,绝缘被膜与母材钢板的界面附近的硼不会成为充分的量,所生成的硼酸铝晶体变少,被膜张力不会变高。
上述质量比优选为1.9~2.4,更优选为2.0~2.2。
使这些原料分散于分散介质中来制作作为涂布液的浆料。关于分散介质,水是最好的,但只要在其他的工序中没有特别障碍,则可以使用有机溶剂或它们的混合物。浆料的固体成分浓度根据其作业性等进行适当选择,没有特别限定。
另外,作为该浆料中的氧化铝前驱体,通过使用被称为所谓的溶胶的微粒分散系,有可能得到薄且均匀、并且密合性良好的绝缘被膜。这在钢板的表面不存在非金属物质、在钢板的金属面上直接形成绝缘被膜的情况下特别显著。
在涂布液中使用溶胶的情况下,作为氧化铝前驱体,上述的被称为勃姆石溶胶和/或氧化铝溶胶的物质从作业性或价格等方面出发特别适合。
此外,涂布液也可以在不阻碍本发明所发挥的效果的范围内含有上述以外的成分。
所得到的浆料(涂布液)通过辊涂机等涂布机、浸渍法、喷雾吹附或电泳等以往公知的方法被涂布于成品退火完成后的方向性电磁钢板表面上。
此外,为了防止硼酸的析出、过度的水分的蒸发,涂布(涂敷)前的涂布液例如保持在20℃~40℃的温度为宜。如果涂布液的温度过低,则会因硼源的种类、浓度不同,导致在涂布液中引起硼酸的析出,如果温度过高,则水分容易变少,变得无法进行正常的涂布,任一情况下都有可能变得得不到作为目标的被膜。
接着,在露点为0~40℃且包含0~25体积%的氢的不活泼气体气氛中,将钢板以2~5℃/秒的平均的升温速度加热至处于450~600℃的范围的规定的温度。在这样的从室温起至450~600℃之间的规定的温度为止的温度区域中,在涂布液的加热、干燥及干燥结束后进行形成于母材钢板上的由硼化合物与铝化合物的混合物制成的膜状物质的加热。
将直至处于450~600℃的范围的规定的温度为止的升温速度限定为2~5℃/秒是为了:关于上述工艺(i),充分进行硼的扩散。如果升温速度过快,则硼的扩散变得不充分,得不到作为目标的水溶性成分的组成、量,而且在涂布液的干燥时变得容易因突沸而产生被膜缺陷。另一方面,如果过慢,则硼的蒸散过度进行,其结果是,变得得不到目标组成的绝缘被膜。
此外,上述钢板的加热中的到达温度只要为450℃~600℃即可,但优选为480℃~530℃。由此,在能够抑制硼的蒸散的基础上使硼充分地扩散,并且能够抑制不需要的晶体的生成。
另外,作为加热时的气氛中的不活泼气体,例如可列举出氮或氦、氩、氙等稀有气体。其中,为了抑制成本,也优选氮。
另外,加热时的气氛包含0~25体积%的氢。由此,能够抑制钢板与绝缘被膜之间的氧化,确保密合性。与此相对,即使氢的含量超过25体积%,也没有特别问题,但从过于花费成本的观点出发是不优选的。
另外,加热时的气氛的露点为0℃~40℃。在上述露点低于0℃的情况下,无法充分确保绝缘被膜的张力。另外,如果上述露点超过40℃,则产生下述问题:有可能容易产生钢板与绝缘被膜界面的氧化、密合性劣化。加热时的气氛的露点优选为10℃~30℃。
接着,将钢板以上述的升温速度进行加热后,以冷却速度为10℃/秒以上的冷却速度冷却至200℃以下。虽然理由并不清楚,但据推测:关于上述的工艺(ii),通过这样的冷却处理,硼酸铝晶体的核生成得以促进。在冷却温度不为200℃以下的情况下、或冷却速度低于10℃/秒的情况下,得不到充分的被膜张力。冷却温度只要为200℃以下即可,但从成本、所需时间的观点出发,不优选过度地设定为低温,优选为100℃~200℃。另外,冷却速度只要为10℃/秒以上即可,但如果过快,则均匀的冷却变得困难,因此优选为10℃/秒~150℃/秒。此外,通常而言,在上述的升温速度下的加热后立即进行冷却。
接着,将钢板以平均为10~100℃/秒的升温速度升温至750℃,在750~1000℃的温度区域中进行20~120秒钟热处理。将像以上那样操作涂布后的钢板干燥后,通过在750℃以上进行烧结从而在表面形成作为绝缘被膜的氧化物被膜。
而且,如上所述,通过将钢板以10~100℃/秒的平均升温速度升温至750℃,从而关于上述的工艺(i),能够抑制硼的蒸散。即,在600℃以上的温度区域中,由于硼的蒸散特别容易进行,因此如上所述以比较快的速度进行钢板的升温。如果升温速度慢,则硼的蒸散进行,变得得不到目标组成的绝缘被膜。即使升温速度快也没有问题,但即使超过100℃/秒,与更低的升温速度的情况相比也见不到改善,另外急速的升温还有可能成为提升设备成本的要因,因此升温速度的实质性上限为100℃/秒。升温速度优选为50℃/秒~80℃/秒。
需要在750~1000℃之间进行20~120秒热处理是由于:关于上述的工艺(iii),在750℃以上时会引起硼酸铝的晶体生长,结晶化进展。如果温度及时间不满足上述的范围,则硼酸铝的结晶化不会充分进展,变得得不到充分的张力。另外,在烧结温度(热处理温度)低于750℃的情况下,有可能涂布的前驱体不会成为氧化物,另外由于烧结温度低,因此不会表现出充分的张力,因此是不优选的。
热处理温度只要为上述的范围内即可,但从对张力提高的效果与成本的平衡的观点出发,优选为800℃~950℃。另外,热处理时间只要为上述的范围内即可,但优选为50秒~90秒。
此外,在超过750℃来进行升温的情况下,将从超过750℃的时刻起至接下来变得低于750℃为止的时间设定为热处理时间。
烧结时(升温及热处理时)的气氛优选氮等不活泼气体气氛、氮-氢混合气氛等还原性气氛,空气或过度包含氧的气氛有可能使钢板过度氧化,因此是不优选的。
关于气氛气体的露点,0~40℃时可得到良好的结果。
或者,烧结时的气氛也可以与涂布液的干燥时的气氛相同。
如以上那样操作,可得到具有上述那样的绝缘被膜的具有高张力的方向性电磁钢板。
实施例
以下,对本发明基于实施例更详细地进行说明,但以下所示的实施例只不过是本发明的一个例子,本发明并不仅限于所述实施例。
实施例1
将市售的硼酸试剂及氧化铝(Al2O3)粉末(平均粒径:0.4μm)以表2中所示的比例混合。此外,硼酸是换算成氧化硼(B2O3)相当量来进行秤量。向其中加入蒸馏水来制作浆料。
将所得到的浆料按照以烧结后的被膜质量计成为4.5g/m2的方式涂布于含有3.2%的Si的厚度为0.23mm的成品退火完成后的单方向性硅钢板(有镁橄榄石质的一次被膜)上。之后,以表2中所示的条件干燥、冷却后,升温至750℃,在该温度下将均热时间设定为100秒来进行烧结,形成绝缘被膜。干燥时的钢板的到达温度设定为500℃。干燥、冷却、升温、烧结时的气氛为包含10%的氢的氮气氛,露点设定为30℃。
通过X射线衍射对形成有绝缘被膜的试样进行测定,由衍射线确认了结晶质硼酸铝的存在。
将形成有绝缘被膜的钢板的单侧的被膜除去,由钢板的弯曲算出被膜张力。该张力为不含镁橄榄石层的仅硼酸铝被膜的张力。对于绝缘被膜的除去,使用氢氧化钠水溶液。关于张力,将15MPa以上定义为高张力。由表2的结果可知:在实施例中,得到了张力高的绝缘被膜。
[表2]
Figure BDA0003151226380000121
实施例2
相对于市售的氧化铝(Al2O3)粉末(平均粒径:0.4μm)100g,将硼酸试剂以氧化硼(B2O3)换算计设定为45.3g,向其中加入蒸馏水来制作浆料。Al2O3/B2O3为2.2。
将其按照以烧结后的被膜重量计成为4.5g/m2的方式涂布于含有3.2%的Si的厚度为0.23mm的成品退火完成后的单方向性硅钢板(有镁橄榄石质的一次被膜)上。将其在露点为30℃且含有10体积%氢的氮气氛中以平均为3℃/秒升温至500℃后,以60℃/秒冷却至200℃后,以平均为50℃/秒升温至均热温度,以表3中所示的条件进行烧结,形成绝缘被膜。
与实施例1同样地,将形成有绝缘被膜的钢板的单侧的被膜除去,由钢板的弯曲算出被膜张力。该张力为不含镁橄榄石层的仅硼酸铝被膜的张力。对于绝缘被膜的除去,使用氢氧化钠水溶液。关于张力,将15MPa以上定义为高张力。由表3的结果可知:在实施例中,得到了高的被膜张力。
[表3]
Figure BDA0003151226380000131
以上,在参照所附附图的同时对本发明的优选的实施方式进行了详细说明,但本发明并不限于所述例子。只要是具有本发明所属的技术领域的普通知识的人,则显然能够在权利要求书中记载的技术思想的范围内想到各种变更例或修正例,关于它们,当然也理解为属于本发明的技术范围内。

Claims (2)

1.一种方向性电磁钢板,其具有:
钢板;和
设置于所述钢板上的由包含铝和硼的氧化物制成的绝缘被膜,
所述氧化物包含结晶质氧化物,
通过辉光放电发光分光分析法而测定的所述绝缘被膜与所述钢板的界面处的硼相对于铝的发光强度比的最大值为所述绝缘被膜中的硼相对于铝的发光强度比的2.5倍~4.0倍,
其中,所述绝缘被膜中的硼相对于铝的发光强度比的值为:关于绝缘被膜中的B/Al的值中的通过所述辉光放电发光分光分析法而在所述绝缘被膜中测定的1秒平均的B/Al值,从其前1秒平均的值起的变化为0.001以下的区域整体的平均值。
2.一种方向性电磁钢板的制造方法,其具有以下工序:
将包含以Al2O3/B2O3换算的质量比为1.8~2.6的硼源及铝源的涂布液涂布于钢板表面;
在露点为0~40℃且包含0~25体积%的氢的不活泼气体气氛中,将所述钢板以2~5℃/秒的平均的升温速度加热至处于450~600℃的范围的规定的温度后,以冷却速度为10℃/秒以上的冷却速度冷却至200℃以下;和
将所述钢板以平均为10~100℃/秒的升温速度升温至750℃,在750~1000℃的温度区域中进行20~120秒钟热处理。
CN202080008246.7A 2019-01-08 2020-01-08 方向性电磁钢板及方向性电磁钢板的制造方法 Active CN113272473B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019000926 2019-01-08
JP2019-000926 2019-01-08
PCT/JP2020/000341 WO2020145317A1 (ja) 2019-01-08 2020-01-08 方向性電磁鋼板及び方向性電磁鋼板の製造方法

Publications (2)

Publication Number Publication Date
CN113272473A CN113272473A (zh) 2021-08-17
CN113272473B true CN113272473B (zh) 2023-07-07

Family

ID=71521644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080008246.7A Active CN113272473B (zh) 2019-01-08 2020-01-08 方向性电磁钢板及方向性电磁钢板的制造方法

Country Status (7)

Country Link
US (1) US20220056585A1 (zh)
EP (1) EP3910093A4 (zh)
JP (1) JP7124892B2 (zh)
KR (1) KR102628699B1 (zh)
CN (1) CN113272473B (zh)
BR (1) BR112021012749A2 (zh)
WO (1) WO2020145317A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7481628B2 (ja) 2020-10-08 2024-05-13 日本製鉄株式会社 方向性電磁鋼板の張力被膜形成用塗布剤及びその製造方法並びにこれを用いた方向性電磁鋼板の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306628A (ja) * 1993-04-19 1994-11-01 Nippon Steel Corp 低鉄損一方向性珪素鋼板
JPH09272983A (ja) * 1996-04-09 1997-10-21 Nippon Steel Corp 耐食性に優れた低鉄損一方向性珪素鋼板の製造方法
US6461741B1 (en) * 1999-09-14 2002-10-08 Nippon Steel Corporation Grain-oriented electromagnetic steel sheet with excellent coating properties and process for its manufacture
JP2002309381A (ja) * 2001-04-13 2002-10-23 Nippon Steel Corp 方向性電磁鋼板の絶縁皮膜形成方法
CN105555984A (zh) * 2013-09-19 2016-05-04 杰富意钢铁株式会社 方向性电磁钢板及其制造方法
CN105593393A (zh) * 2013-10-30 2016-05-18 杰富意钢铁株式会社 磁特性和被膜密合性优异的方向性电磁钢板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE789262A (fr) 1971-09-27 1973-01-15 Nippon Steel Corp Procede de formation d'un film isolant sur un feuillard d'acierau silicium oriente
JPS5518566A (en) 1978-07-26 1980-02-08 Nippon Steel Corp Improving method for iron loss characteristic of directional electrical steel sheet
JPS6286175A (ja) 1985-10-14 1987-04-20 Nippon Steel Corp 方向性電磁鋼板の処理方法
JP2688147B2 (ja) 1992-08-21 1997-12-08 新日本製鐵株式会社 低鉄損方向性電磁鋼板の製造方法
JP3162570B2 (ja) * 1994-04-13 2001-05-08 新日本製鐵株式会社 低鉄損一方向性珪素鋼板およびその製造方法
DE60139222D1 (de) * 2000-04-24 2009-08-27 Nippon Steel Corp Kornorientiertes Elektroblech mit ausgezeichneten magnetischen Eigenschaften
KR101596446B1 (ko) 2014-08-07 2016-03-07 주식회사 포스코 포스테라이트 피막이 제거된 방향성 전기강판용 예비 코팅제 조성물, 이를 이용하여 제조된 방향성 전기강판 및 상기 방향성 전기강판의 제조방법
JP7027925B2 (ja) * 2018-02-06 2022-03-02 日本製鉄株式会社 方向性電磁鋼板とその製造方法
EP3922754A4 (en) * 2019-02-08 2023-01-11 Nippon Steel Corporation CORNORATED ELECTRICAL STEEL SHEET, METHOD FOR FORMING AN INSULATING COATING FILM FOR GRAINED ELECTRIC STEEL SHEET, AND METHOD FOR MANUFACTURING GRAINED ELECTRICAL STEEL SHEET

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306628A (ja) * 1993-04-19 1994-11-01 Nippon Steel Corp 低鉄損一方向性珪素鋼板
JPH09272983A (ja) * 1996-04-09 1997-10-21 Nippon Steel Corp 耐食性に優れた低鉄損一方向性珪素鋼板の製造方法
US6461741B1 (en) * 1999-09-14 2002-10-08 Nippon Steel Corporation Grain-oriented electromagnetic steel sheet with excellent coating properties and process for its manufacture
JP2002309381A (ja) * 2001-04-13 2002-10-23 Nippon Steel Corp 方向性電磁鋼板の絶縁皮膜形成方法
CN105555984A (zh) * 2013-09-19 2016-05-04 杰富意钢铁株式会社 方向性电磁钢板及其制造方法
CN105593393A (zh) * 2013-10-30 2016-05-18 杰富意钢铁株式会社 磁特性和被膜密合性优异的方向性电磁钢板

Also Published As

Publication number Publication date
KR102628699B1 (ko) 2024-01-25
US20220056585A1 (en) 2022-02-24
WO2020145317A1 (ja) 2020-07-16
EP3910093A1 (en) 2021-11-17
BR112021012749A2 (pt) 2021-09-08
KR20210097180A (ko) 2021-08-06
JP7124892B2 (ja) 2022-08-24
EP3910093A4 (en) 2022-08-03
CN113272473A (zh) 2021-08-17
JPWO2020145317A1 (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
RU2550675C1 (ru) Способ изготовления листа из текстурированной электротехнической стали
US7981223B2 (en) Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same
EP3178965B1 (en) Pre-coating agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet comprising same, and manufacturing method therefor
JP6915689B2 (ja) 方向性電磁鋼板及びその製造方法
JP7010305B2 (ja) 方向性電磁鋼板
KR20160057753A (ko) 방향성 전기강판용 절연피막 조성물, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조방법
CN113272473B (zh) 方向性电磁钢板及方向性电磁钢板的制造方法
US9536657B2 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP7027925B2 (ja) 方向性電磁鋼板とその製造方法
JPH0867913A (ja) 鉄損の小さい珪素鋼板及びその製造法及び使用法
JP7352108B2 (ja) 方向性電磁鋼板
JPWO2019013352A1 (ja) 方向性電磁鋼板
RU2780701C1 (ru) Лист анизотропной электротехнической стали и способ его производства
JP6885206B2 (ja) レーザー磁区制御用方向性電磁鋼板とその製造方法
JP7356017B2 (ja) 方向性電磁鋼板及び方向性電磁鋼板の製造方法
KR102080165B1 (ko) 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 그의 제조방법
JP2020111816A (ja) 方向性電磁鋼板及びその製造方法
RU2773479C1 (ru) Лист анизотропной электротехнической стали, способ его изготовления и отжиговый сепаратор
US20230047863A1 (en) Annealing separator composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and manufacturing method therefor
JP2022035230A (ja) 方向性電磁鋼板およびその製造方法
JP4448287B2 (ja) 一方向性電磁鋼板の絶縁被膜形成方法
JPWO2020149342A1 (ja) 方向性電磁鋼板
JP2022062529A (ja) 方向性電磁鋼板の張力被膜形成用塗布剤及びその製造方法並びにこれを用いた方向性電磁鋼板の製造方法
KR20240098444A (ko) 무방향성 전기강판 및 그 제조방법
JP2001200317A (ja) 良好な被膜を有する低鉄損方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant