CN113214644A - 一种聚酰亚胺复合薄膜和石墨膜 - Google Patents

一种聚酰亚胺复合薄膜和石墨膜 Download PDF

Info

Publication number
CN113214644A
CN113214644A CN202110553924.4A CN202110553924A CN113214644A CN 113214644 A CN113214644 A CN 113214644A CN 202110553924 A CN202110553924 A CN 202110553924A CN 113214644 A CN113214644 A CN 113214644A
Authority
CN
China
Prior art keywords
film
polyimide
copper
polyamic acid
composite film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110553924.4A
Other languages
English (en)
Inventor
王启民
蔡云飞
张腾飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202110553924.4A priority Critical patent/CN113214644A/zh
Publication of CN113214644A publication Critical patent/CN113214644A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及导热材料技术领域,尤其涉及一种聚酰亚胺复合薄膜和石墨膜。本发明公开了一种聚酰亚胺复合薄膜,该薄膜由聚酰亚胺和所述聚酰亚胺复合的金属铜组成。聚酰亚胺复合薄膜在制备过程中,金属铜可以引导聚聚酰胺酸溶液的固化过程,增加分子链的塑性和促使亚胺化时分子链沿二维排布定向排列,利于聚酰亚胺复合薄膜高温烧结时六角二维碳平面生长,使高温烧结后得到的石墨膜表面平整、结构致密,定向程度高,导热性能优异。

Description

一种聚酰亚胺复合薄膜和石墨膜
技术领域
本发明涉及导热材料技术领域,尤其涉及一种聚酰亚胺复合薄膜和石墨膜。
背景技术
在航空航天、高精尖军工装备以及5G产业中,微电子元器件和功率器件集成度越来越高,发热问题日趋严峻,散热材料成为电子封装和集成电路产业的关键材料。石墨材料具有较高的热导率,优良的机械性能,低密度、低热膨胀系数等,因此石墨材料的研发备受关注。
聚酰亚胺薄膜高温石墨化是获得优异性能石墨膜的重要材料。聚酰亚胺分子在高温下经过分解、链重排,再结晶生成六方碳结构,并形成规整的三维石墨结构。但高温烧结不可避免的会造成聚酰亚胺薄膜在释放气体与链重排、再结晶过程中的横向和纵向的热膨胀、收缩不均匀,使得制备的石墨膜的内部结构不规整形成孔洞、断层,定向程度不高等现象,进而造成石墨膜表面质量不高,导热性能差。
发明内容
有鉴于此,本发明提供了一种聚酰亚胺复合薄膜和石墨膜,该聚酰亚胺复合薄膜中的铜可以增加分子链的塑性和促使亚胺化时分子链沿二维排布定向排列,利于聚酰亚胺复合薄膜高温烧结时六角二维碳平面生长,使高温烧结后得到的石墨膜表面平整、结构致密,定向程度高,导热性能优异。
其具体技术方案如下:
本发明提供了一种聚酰亚胺复合薄膜,由聚酰亚胺和所述聚酰亚胺复合的金属铜组成。
本发明还提供了一种聚酰亚胺复合薄膜的制备方法,包括以下步骤:
步骤1:将二胺单体和二酐单体在极性溶剂中进行反应,得到聚酰胺酸溶液;
步骤2:待所述聚酰胺酸溶液粘度上升至爬杆现象后,加入铜粉末进行搅拌,得到聚酰胺酸与铜的复合溶液;
步骤3:将所述聚酰胺酸与铜的复合溶液进行脱泡处理后,涂布形成液膜,干燥后进行热酰亚胺化反应,得到聚酰亚胺复合薄膜。
本发明聚酰亚胺复合薄膜的制备机理为:将二胺单体与二酐单体聚合形成聚酰亚胺酸的过程中加入铜粉,铜粉能引导聚酰胺酸溶液的固化过程,增加分子链的塑性和促使亚胺化时分子链沿二维排布定向排列,利于聚酰亚胺薄膜高温烧结时六角二维碳平面生长,使高温烧结后得到的石墨膜表面平整、结构致密,定向程度高,导热性能优异。本发明中,聚酰亚胺复合薄膜金属铜以单质的形式存在。
本发明步骤1具体为:先将二胺单体一次性加入极性溶剂中进行分散溶解后,再分批等量加入二酐单体进行反应;
所述二胺单体为二氨基二苯醚、丙二胺、对苯二胺、联苯胺和二氨基二苯酮中的一种或两种以上;
所述二酐单体为均苯四甲酸二酐、联苯四甲酸二酐、二苯酮四酸二酐和氧双邻苯二甲酸酐中的一种或两种以上;
所述极性溶剂为N-甲基吡咯烷酮(NMP)、N,N-二甲基甲酰胺(DMF)和N,N-二甲基乙酰胺(DMAc)中的一种或两种以上;
本发明中,极性溶剂的用量标准为:使反应的溶液体系的固含量不大于15wt%,即固体的质量占整个溶液体系质量的比列不超过15wt%,从而保证溶液的粘度不会过大或过小;
所述二胺单体与所述二酐单体的摩尔比为1:(1-1.02);
所述反应的温度为-10℃-10℃,时间为3-6h。
本发明步骤2具体为:待所述聚酰胺酸溶液粘度上升至爬杆现象后,加入铜粉末,搅拌使其分散均匀,得到聚酰胺酸与铜的复合溶液;
铜粉末优选经乙醇超声清洗并干燥后投入使用
所述铜粉的粒径为10~200nm,优选为10nm;
本发明中,铜粉过少会使其作用效果降低,过多会导致反应溶液的粘度增加,难以成膜,因此,所述聚酰胺酸与铜的复合溶液中铜粉的质量含量为0.5%-2wt%,优选为0.5wt%;
所述搅拌的速率为150rpm-550rpm,时间为1h~2h;时间短混合不均匀,时间长聚酰胺酸溶液可能会发生水解
制备聚酰胺酸与铜的复合溶液的过程中保持温度为20-30℃。
本发明步骤3中,所述脱泡处理优选在低压真空中进行;
所述涂布具体为:将聚酰胺酸与铜的复合溶液用刮涂、旋涂或辊涂等方式以一定的涂布厚度均匀的涂覆在光滑的玻璃板上,形成液膜;
所述液膜的厚度优选为500μm~1200μm,更优选为1000μm;
所述干燥用于脱除溶剂;所述干燥具体为:50℃~150℃保持60~120min,使干燥后的液膜中的溶剂含量为干燥前溶剂含量的30%-60%;
所述干燥后,所述热酰亚胺化反应前,还包括:将干燥后的薄膜用拉伸夹具固定后,以1:(1.1-1.2)的拉伸宽度进行热酰亚胺化反应;
所述热酰亚胺化反应优选在通有保护气体的真空炉中进行,所述热酰亚胺化反应的过程为:以150℃~260℃保持40~60min,然后以5℃/min的升温速率升温380-400℃反应1~3h;所述保护气体优选为氮气。
本发明还提供了上述聚酰亚胺复合薄膜或上述制备方法制得的聚酰亚胺复合薄膜在制备石墨膜中的应用。
本发明还提供了一种石墨膜,将上述聚酰亚胺复合薄膜或上述制备方法制得的聚酰亚胺复合薄膜进行烧结得到。
本发明中,所述石墨膜的厚度为25μm-40μm。所述石墨膜的厚度取决于聚酰亚胺复合薄膜制备步骤3中液膜的厚度。
本发明提供的石墨膜具有高定向大分子长芳香链,结构规整有序,晶粒尺寸较大。
本发明中,所述烧结具体为:在氮气或负压真空的环境下,以2-5℃/min的升温速率升温至1200-1500℃碳化,再以10-20℃/min的升温速率升温至2800-3000℃后,通入氩气进行保护,得到石墨膜。
从以上技术方案可以看出,本发明具有以下优点:
本发明提供了一种聚酰亚胺复合薄膜,该薄膜由聚酰亚胺和所述聚酰亚胺复合的金属铜组成。聚酰亚胺复合薄膜在制备过程中,金属铜可以引导聚聚酰胺酸溶液的固化过程,增加分子链的塑性和促使亚胺化时分子链沿二维排布定向排列,利于聚酰亚胺复合薄膜高温烧结时六角二维碳平面生长,使高温烧结后得到的石墨膜表面平整、结构致密,定向程度高,导热性能优异。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例1石墨膜的制备流程图;
图2为本发明实施例1、对比例1和对比例3制得的石墨膜的XRD谱图;
图3为本发明实施例1、对比例1和对比例3制得的石墨膜的Raman谱图;
图4为本发明对比例1制得的石墨膜的SEM图;
图5为本发明实施例1制得的石墨膜的SEM图;
图6为本发明实施例2制得的石墨膜的SEM图;
图7为本发明实施例3制得的石墨膜的SEM图;
图8为本发明对比例3制得的石墨膜的SEM图。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
本实施例为石墨膜的制备(如图1所示),具体制备步骤如下:
取4,4'-二氨基二苯醚(ODA)10g溶于150ml N,N-二甲基乙酰胺(DMAc)中,搅拌充分溶解后再取11.9g均苯四甲酸二酐(PMDA)分三批次等量加入到均匀分散溶液中,再加入30ml DMAc冲洗残余PMDA,在恒温0℃水浴锅中持续搅拌3h,待聚酰胺酸溶液粘度上升至爬杆现象出现后向其中加入粒径10nm的铜金属粉末1g,搅拌使其均匀分散至溶液中,利用水浴锅保持铜粉的混合过程温度为20℃,经过200rpm的高速搅拌2h后铜粉均匀分散至聚酰胺酸溶液中,获得聚酰胺酸-铜复合溶液。
将制备出的聚酰胺酸-铜复合溶液在低压真空中脱泡处理后,将溶液用刮刀刮涂在光滑的玻璃板上,形成厚度为1000μm的液膜,并送入干燥箱中在120℃中脱溶剂干燥处理1h,得到部分脱溶剂的聚酰胺酸-铜复合薄膜。将制得的薄膜用拉伸夹具固定后,以1:1.1的拉伸宽度在通有氮气的真空炉中,以150℃保持40min,后以5℃/min的升温速率加热至390℃持续2h,使其完全亚胺化,制得经过双向拉伸取向的聚酰亚胺-铜复合薄膜。
将聚酰亚胺复合薄膜送入高温石墨炉中进行热处理:在低于1500℃时炉内保持负压真空,以5℃/min的升温速率升温至1500℃,然后以20℃/min升温速率升温至2800℃时向炉内通入氩气,即得石墨膜,厚度为30μm。
图4是未掺杂是两种石墨膜的SEM照片,从图4能够看出掺杂铜聚酰亚胺薄膜制备出的石墨膜的层状结构明显且均匀,截面整体均匀而致密,所以具有更优异的性能。
实施例2
本实施例为石墨膜的制备,具体制备步骤如下:
取4,4'-二氨基二苯醚(ODA)5g溶于80ml N-甲基吡咯烷酮(NMP)中,搅拌充分溶解后再取7.34g联苯四甲酸二酐(BPDA)分三批次等量加入到均匀分散溶液中,再用20ml NMP冲洗残余的二酐粉末,在恒温10℃水浴锅中持续搅拌4h,待聚酰胺酸溶液粘度上升至爬杆现象出现后向其中加入粒径20nm的铜金属粉末1g,搅拌使其均匀分散至溶液中,利用水浴锅保持铜粉的混合过程温度为20℃,经过300rpm高速搅拌1h后铜粉均匀分散至聚酰胺酸溶液中,获得聚酰胺酸-铜复合溶液。
将制备出的铜掺杂的聚酰胺酸溶液在低压真空中脱泡处理后,将溶液用刮刀刮涂在光滑的玻璃板上,形成厚度为1000μm的液膜,并送入干燥箱中在80℃中脱溶剂干燥处理2h,得到部分脱溶剂的聚酰胺酸-铜复合薄膜。将制得的薄膜用拉伸夹具固定后,以1:1.1的拉伸宽度在真空炉中以200℃保持50min,后以5℃/min的升温速率加热至380℃持续1.5h,使其完全亚胺化,制得经过双向拉伸取向的聚酰亚胺-铜复合薄膜。
将聚酰亚胺复合薄膜送入高温石墨炉中进行热处理:低于1300℃时炉内并持续通入氮气,以3℃/min升温速率升温至1300℃,然后以15℃/min的升温速率升温至3000℃时炉内通有氩气,即得石墨膜,厚度为30μm。
实施例3
取5.4g对苯二胺(PDA)溶于100ml N,N-二甲基甲酰胺(DMF)中,搅拌充分溶解后再取11.9g联苯四甲酸二酐(BPDA)分三批次等量加入到均匀分散溶液中,再加入20ml DMA冲洗残余BPDA,在恒温3℃水浴锅中持续搅拌2h,待聚酰胺酸溶液粘度上升至爬杆现象出现后向其中加入粒径20nm的铜金属粉末0.8g,搅拌使其均匀分散至溶液中,利用水浴锅保持铜粉的混合过程温度为15℃,经过400rpm高速搅拌1h后铜粉均匀分散至聚酰胺酸溶液中,获得聚酰胺酸-铜复合溶液。
将制备出的聚酰胺酸-铜复合溶液在低压真空中脱泡处理后,将溶液用刮刀刮涂在光滑的玻璃板上,形成厚度为1000μm的液膜,并送入干燥箱中在100℃中脱溶剂干燥处理2h,得到部分脱溶剂的聚酰胺酸-铜复合薄膜。将制得的薄膜用拉伸夹具固定后,以1:1.2的拉伸宽度在真空炉中以180℃保持60min,后以5℃/min的升温速率加热至400℃持续2h,使其完全亚胺化,制得经过双向拉伸取向的聚酰亚胺-铜复合薄膜。
将聚酰亚胺复合薄膜送入高温石墨炉中进行热处理:在低于1500℃时炉内保持负压真空,以3℃/min的升温速率升温至1500℃,然后以10℃/min升温速率升温至2900℃时炉内通有氩气,即得石墨膜,厚度为30μm。
对比例1
本对比例为石墨膜的制备
本对比例与实施例1的区别仅在于:未加铜粉,其具体制备步骤如下:
取4,4'-二氨基二苯醚(ODA)10g溶于150ml N,N-二甲基乙酰胺(DMAc)中,搅拌充分溶解后再取11.9g均苯四甲酸二酐(PMDA)分三批次等量加入到均匀分散溶液中,再加入30ml DMAc冲洗参与PMDA,在恒温0℃水浴锅中持续搅拌3h,获得聚酰胺酸复合溶液。
将制备出聚酰胺酸溶液在低压真空中脱泡处理后,将溶液用刮刀刮涂在光滑的玻璃板上,形成厚度为1000μm的液膜,并送入干燥箱中在120℃中脱溶剂干燥处理1h,得到部分脱溶剂的聚酰胺酸薄膜。将制得的薄膜用拉伸夹具固定后,以1:1.1的拉伸宽度在真空炉中以150℃保持40min,后以5℃/min的升温速率加热至390℃持续2h,使其完全亚胺化,制得经过双向拉伸取向的聚酰亚胺薄膜;
将聚酰亚胺复合薄膜送入高温石墨炉中进行热处理:在低于1500℃时炉内保持负压真空,以5℃/min的升温速率升温至1500℃,然后以20℃/min升温速率升温至2800℃时炉内通有氩气,即得石墨膜,厚度为30μm。
对比例2
本对比例与实施例1的区别仅在于:铜粉的含量,其具体制备步骤如下:
取4,4'-二氨基二苯醚(ODA)10g溶于150ml N,N-二甲基乙酰胺(DMAc)中,搅拌充分溶解后再取11.9g均苯四甲酸二酐(PMDA)分三批次等量加入到均匀分散溶液中,再加入30ml DMAc冲洗残余PMDA,在恒温0℃水浴锅中持续搅拌3h,待聚酰胺酸溶液粘度上升至爬杆现象出现后向其中加入粒径10nm的铜金属粉末10g,搅拌使其均匀分散至溶液中,利用水浴锅保持铜粉的混合过程温度为20℃,经过高速搅拌2h后铜粉均匀分散至聚酰胺酸溶液中,此时获得的聚酰胺酸-铜复合溶液粘度极大,再将制备出的聚酰胺酸-铜复合溶液经干燥、高温亚胺化后不能获得完整的聚酰亚胺复合薄膜,薄膜破裂严重,不能继续完成石墨化。
对比例3
本对比例与实施例1的区别仅在于:铜粉的粒度,其具体制备步骤如下:
取4,4'-二氨基二苯醚(ODA)10g溶于150ml N,N-二甲基乙酰胺(DMAc)中,搅拌充分溶解后再取11.9g均苯四甲酸二酐(PMDA)分三批次等量加入到均匀分散溶液中,再加入30ml DMAc冲洗残余PMDA,在恒温0℃水浴锅中持续搅拌3h,待聚酰胺酸溶液粘度上升至爬杆现象出现后向其中加入粒径5μm的铜金属粉末1g,搅拌使其均匀分散至溶液中,利用水浴锅保持铜粉的混合过程温度为20℃,经过高速搅拌2h后铜粉均匀分散至聚酰胺酸溶液中,获得聚酰胺酸-铜复合溶液。
将制备出的聚酰胺酸-铜复合溶液在低压真空中脱泡处理后,将溶液用刮刀刮涂在光滑的玻璃板上,形成厚度为1000μm的液膜,并送入干燥箱中在120℃中脱溶剂干燥处理1h,得到部分脱溶剂的聚酰胺酸-铜复合薄膜。将制得的薄膜用拉伸夹具固定后,以1:1.1的拉伸宽度在真空炉中以150℃保持40min,后以5℃/min的升温速率加热至390℃持续2h,使其完全亚胺化,制得经过双向拉伸取向的聚酰亚胺-铜复合薄膜。
将聚酰亚胺复合薄膜送入高温石墨炉中进行热处理:在低于1500℃时炉内保持负压真空,以5℃/min的升温速率升温至1500℃,然后以20℃/min升温速率升温至2800℃时炉内通有氩气,即得石墨膜,厚度为30μm。
试验例
1、利用XRD与Raman检测实施例1和对比例1制得的石墨膜的性能。
图2为实施例1和对比例1、对比例3制得的石墨膜的XRD谱图,图3为实施例1和对比例1、对比例3制得的石墨膜的Raman谱图。从XRD谱图可知,掺杂10nm铜的聚酰亚胺薄膜制备出的石墨膜相比未掺杂的石墨膜在石墨的特征吸收峰(002)处有更高的强度,并且半高宽也越大,说明其具有更好的结晶度、更大的晶粒尺寸和更高的石墨化程度;Raman谱图显示在1580cm-1处(石墨结构中的G峰)有更高的强度,与XRD的结果互相印证,表面其结构更加的完善、性能更佳。
2、利用SEM观测实施例1-3和对比例1和对比例3制得的石墨膜结构。
图4为对比例1制得的石墨膜的SEM图,图5为实施例1制得的石墨膜的SEM图。从图4-图8可以看出,实施例1-3和对比例1、对比例3制得的石墨膜均具有一定的层状结构,但实施例1-3掺杂铜聚酰亚胺薄膜制备出的石墨膜的层状结构明显且均匀,截面整体均匀而致密,所以具有更优异的性能。
3、利用激光闪闪射法测量实施例1~3和对比例1、对比例3制得的石墨膜的导热系数。
实施例1~3、对比例1和对比例3的石墨膜的导热系数分别为1460W/(m·K)、1450W/(m·K)、1395W/(m·K)、980W/(m·K)、960W/(m·K)。
需要说明的是,对比例3制备出的石墨膜因为铜粉的粒度过大,其在石墨化过程中从薄膜中脱除会更容易破坏内部结构,从而造成石墨膜质量不佳,导热性能下降为960W/(m·K),图8中也清楚的发现被破坏后的产生的空洞。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种聚酰亚胺复合薄膜,其特征在于,由聚酰亚胺和所述聚酰亚胺复合的金属铜组成。
2.一种聚酰亚胺复合薄膜的制备方法,其特征在于,包括以下步骤:
步骤1:将二胺单体和二酐单体在极性溶剂中进行反应,得到聚酰胺酸溶液;
步骤2:待所述聚酰胺酸溶液粘度上升至爬杆现象后,加入铜粉末进行搅拌,得到聚酰胺酸与铜的复合溶液;
步骤3:将所述聚酰胺酸与铜的复合溶液进行脱泡处理后,涂布形成液膜,干燥后进行热酰亚胺化反应,得到聚酰亚胺复合薄膜。
3.根据权利要求2所述的制备方法,其特征在于,所述二胺单体为二氨基二苯醚、丙二胺、对苯二胺、联苯胺和二氨基二苯酮中的一种或两种以上;
所述二酐单体为均苯四甲酸二酐、联苯四甲酸二酐、二苯酮四酸二酐和氧双邻苯二甲酸酐中的一种或两种以上;
所述极性溶剂为N-甲基吡咯烷酮、N,N-二甲基甲酰胺和N,N-二甲基乙酰胺中的一种或两种以上。
4.根据权利要求2所述的制备方法,其特征在于,所述二胺单体与所述二酐单体的摩尔比为1-1.02所述聚酰胺酸与铜的复合溶液中铜粉的质量含量为0.5%-2wt%。
5.根据权利要求2所述的制备方法,其特征在于,所述聚酰胺酸与铜的复合溶液中固含量不大于15wt%。
6.根据权利要求2所述的制备方法,其特征在于,步骤1所述反应的温度为-10℃-10℃,时间为3-6h。
7.根据权利要求2所述的制备方法,其特征在于,所述铜粉的粒径为10~200nm。
8.权利要求1所述的聚酰亚胺复合薄膜或权利要求2至8任意一项所述的制备方法制得的聚酰亚胺复合薄膜在制备石墨膜中的应用。
9.一种石墨膜,其特征在于,将权利要求1所述的聚酰亚胺复合薄膜或权利要求2至8任意一项所述的制备方法制得的聚酰亚胺复合薄膜进行烧结,得到石墨膜。
10.根据权利要求9所述的石墨膜,其特征在于,所述烧结具体为:
在氮气或负压真空的环境下,以2-5℃/min的升温速率升温至1200-1500℃碳化,再以10-20℃/min的升温速率升温至2800-3000℃后,通入氩气进行保护,得到石墨膜。
CN202110553924.4A 2021-05-20 2021-05-20 一种聚酰亚胺复合薄膜和石墨膜 Pending CN113214644A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110553924.4A CN113214644A (zh) 2021-05-20 2021-05-20 一种聚酰亚胺复合薄膜和石墨膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110553924.4A CN113214644A (zh) 2021-05-20 2021-05-20 一种聚酰亚胺复合薄膜和石墨膜

Publications (1)

Publication Number Publication Date
CN113214644A true CN113214644A (zh) 2021-08-06

Family

ID=77093443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110553924.4A Pending CN113214644A (zh) 2021-05-20 2021-05-20 一种聚酰亚胺复合薄膜和石墨膜

Country Status (1)

Country Link
CN (1) CN113214644A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162878A (ja) * 2003-12-02 2005-06-23 Toyobo Co Ltd ポリイミドフィルム、その製造方法およびそれを用いたベース基板
US20160333238A1 (en) * 2014-12-01 2016-11-17 James B. Fraivillig A-staged Thermoplastic-Polyimide (TPI) Adhesive Compound and Method of Use
CN110272552A (zh) * 2019-06-20 2019-09-24 青岛科思姆新材料有限公司 一种石墨烧结用聚酰亚胺薄膜的制备方法
WO2021091117A1 (ko) * 2019-11-08 2021-05-14 피아이첨단소재 주식회사 그라파이트 시트용 폴리이미드 필름, 이의 제조방법, 및 이로부터 제조된 그라파이트 시트

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162878A (ja) * 2003-12-02 2005-06-23 Toyobo Co Ltd ポリイミドフィルム、その製造方法およびそれを用いたベース基板
US20160333238A1 (en) * 2014-12-01 2016-11-17 James B. Fraivillig A-staged Thermoplastic-Polyimide (TPI) Adhesive Compound and Method of Use
CN110272552A (zh) * 2019-06-20 2019-09-24 青岛科思姆新材料有限公司 一种石墨烧结用聚酰亚胺薄膜的制备方法
WO2021091117A1 (ko) * 2019-11-08 2021-05-14 피아이첨단소재 주식회사 그라파이트 시트용 폴리이미드 필름, 이의 제조방법, 및 이로부터 제조된 그라파이트 시트

Similar Documents

Publication Publication Date Title
JP6865687B2 (ja) 気孔を有する粒子を用いたポリイミドフィルムの製造方法および低誘電率のポリイミドフィルム
TWI649353B (zh) 聚醯亞胺膜、用其製備的石墨片材、以及石墨片材的製備方法
KR102063215B1 (ko) 향상된 열전도도를 가지는 그라파이트 시트용 폴리이미드 필름, 이의 제조방법 및 이를 이용하여 제조된 그라파이트 시트
TWI775102B (zh) 用於石墨片之聚醯亞胺膜及此聚醯亞胺膜之製造方法
CN110903505B (zh) 石墨烯增强的聚酰亚胺复合薄膜及其制备方法和人工石墨膜
JP2003165715A (ja) 炭素フィルムの製造方法およびそれから得られる炭素フィルム
JP7430787B2 (ja) グラファイトシート用ポリイミドフィルムおよびこれから製造されたグラファイトシート
CN113717524A (zh) 一种用于制备石墨膜的聚酰亚胺薄膜及其制备方法
TW201821360A (zh) 聚醯亞胺膜的製造方法與使用其之石墨膜的製造方法
CN113233453B (zh) 高导电导热石墨材料及其制备方法
CN111002668A (zh) 人造石墨复合膜及其制备方法
CN114651037A (zh) 石墨片用聚酰亚胺膜、其制备方法和由其制备的石墨片
CN113214644A (zh) 一种聚酰亚胺复合薄膜和石墨膜
CN114989429B (zh) 聚酰亚胺膜、石墨片及相应的制备方法、树脂组合物
CN112585198A (zh) 包含结晶性聚酰亚胺树脂和导热性填料的聚酰亚胺薄膜以及其制备方法
JP7385028B2 (ja) グラファイトシート用ポリイミドフィルム、その製造方法、およびこれから製造されたグラファイトシート
CN114456381A (zh) 单向拉伸制备聚酰亚胺薄膜的方法
CN114144390B (zh) 石墨片及包含其的电子装置
CN110358134A (zh) 一种低介电常数聚酰亚胺薄膜及其制备方法
JP4159090B2 (ja) 多孔質膜の製造方法
CN110253904B (zh) 一种聚酰亚胺厚膜或超厚膜及其制备方法
CN114410111A (zh) 一种石墨化多壁碳纳米管提高复合薄膜介电常数的方法
CN115505151A (zh) 用于高频下的低介电常数超交联聚合物/聚酰亚胺复合薄膜、制备方法及应用
CN113402288A (zh) 一种碳纤维增强的高强度、高导热复合膜制备方法
CN116622106A (zh) 一种聚酰亚胺薄膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210806