CN113161522B - 一种非晶氧化钒/碳复合材料及其制备方法和应用 - Google Patents

一种非晶氧化钒/碳复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN113161522B
CN113161522B CN202110269400.2A CN202110269400A CN113161522B CN 113161522 B CN113161522 B CN 113161522B CN 202110269400 A CN202110269400 A CN 202110269400A CN 113161522 B CN113161522 B CN 113161522B
Authority
CN
China
Prior art keywords
vanadium oxide
composite material
carbon composite
amorphous vanadium
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110269400.2A
Other languages
English (en)
Other versions
CN113161522A (zh
Inventor
张海燕
张尚尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202110269400.2A priority Critical patent/CN113161522B/zh
Publication of CN113161522A publication Critical patent/CN113161522A/zh
Application granted granted Critical
Publication of CN113161522B publication Critical patent/CN113161522B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种非晶氧化钒/碳复合材料及其制备方法和应用。所述非晶氧化钒/碳复合材料的制备方法包括如下步骤:S1.称取1~10g阳离子型有机聚合物溶于水,并调节pH值小于等于7;S2.将10~100mmol/L的钒酸盐水溶液滴加入到步骤S1溶液中反应,分离、干燥、研磨后,在惰性气氛下,300~800℃煅烧60~300min。所述非晶氧化钒/碳复合材料具有较长的循环寿命,在经过活化处理后具有较高的稳定性和比容量。

Description

一种非晶氧化钒/碳复合材料及其制备方法和应用
技术领域
本发明涉及电池材料技术领域,更具体地,涉及一种非晶氧化钒/碳复合材料及其制备方法和应用。
背景技术
由于石油、煤炭等化石能源的枯竭,新型能源的开发、利用成为了全世界的焦点。智能时代的到来,电子、数码终端产品广泛的使用以及社会层面对大规模电网的建设,对电池储存装置的高效、安全和成本提出了更苛刻的要求。2013年波音(Boeing)787锂电导致飞机起火,2016年三星(Samsung)Note 7手机发生爆炸,以及2019年特斯拉(Tesla)Model S汽车动力电池起火等因电解液的泄露、燃烧而导致的安全事故,为电池的使用安全敲响警钟。开发钠、钾离子电池,虽然可以缓解因锂电池矿资源短缺而导致的材料成本上涨,然而作为传统的二次电池,其安全性能仍不容忽视。水系电池的开发为替代传统的锂离子电池、钠离子电池和钾离子电池提供了更多的可能性,水系电池具有电极材料价格低廉、矿产资源丰富、材料及电解液对环境友好等特点,水系电解液具有更快的离子传输能力适合快充、高能量密度电池的使用,并且即使电池发生故障、破坏时其自身仍不会产生安全问题。
水系电池相比于有机电解液二次电池,其成本、制备工艺、能量密度、安全性能具有明显的优势。迄今为止,镍-铁、镍-镉以及铅酸蓄电池均得到广泛应用。最近,随着科技和环保理念的发展,对二次电池的性能、成本、安全及环保性提出了更高的要求。近十年来,水系离子电池迎来了蓬勃发展,其中水系锌离子电池引起较低的氧化/还原电位,更符合水系电解液的电压窗口更加匹配,引起了科技工作者的广泛关注。然而能量密度的不足以及循环寿命的衰减制约着水系电池的发展。例如中国专利(CN107221665A)公开了一种锌离子电池钒氧化物复合电极材料的制备方法,直接采用偏钒酸铵和碳材料混合后经过高温煅烧得到,得到的是晶型的钒氧化物,晶型的钒氧化物在电池的充放电过程中,容易被破坏,导致循环寿命变短,比容量下降。
发明内容
本发明为克服上述现有技术所述循环寿命短的缺陷,提供一种非晶氧化钒/碳复合材料的制备方法,所述制备方法制备得到的钒氧化物/碳复合材料经过循环活化后比容量能够得到显著提升。
本发明的另一目的在于提供所述钒氧化物/碳复合材料。
本发明的另一目的在于提供所述钒氧化物/碳复合材料的应用。
为实现上述目的,本发明采用的技术方案是:
一种非晶氧化钒/碳复合材料的制备方法,包括如下步骤:
S1.称取1~10g阳离子型有机聚合物溶于水,并调节pH值小于等于7;S2.将10~100mmol/L的钒酸盐水溶液滴加入到步骤S1溶液中反应,分离、干燥、研磨后,在惰性气氛下,300~800℃煅烧60~300min。
一般地,直接采用钒酸盐与碳材料混合后高温煅烧或者水热反应得到的钒氧化物或钒酸盐是结晶化合物,结晶化合物在电池的充放电过程中,其晶体结构容易被破坏,导致循环寿命变短,比容量下降。
本发明公开了一种非晶氧化钒/碳复合材料的制备方法,通过调节阳离子型有机聚合物的pH值小于等于7,采用滴加的方式,将钒酸盐溶液滴加至备好的阳离子型有机聚合物中,有利于带有负电荷的聚钒酸根离子与带有正电荷的阳离子型有机聚合物发生共沉淀反应,形成有机-无机杂化的产物;通过惰性气氛焙烧,可以得到负载有非晶氧化钒的碳材料。所述负载有氧化钒的碳材料具有较长的循环寿命,在经过循环活化后材料的比容量有了显著提升。
优选地,步骤S2中阳离子型有机聚合物溶于水调节pH值至2~3。将pH值调节至2~3,钒酸盐能够更好的与阳离子型有机聚合物反应。
优选地,所述水溶性钒酸盐为偏钒酸铵、偏钒酸钠、偏钒酸钾中的一种或几种。
优选地,所述阳离子型有机聚合物为聚乙烯亚胺、聚酰胺-胺、阴离子交换树脂中的一种或几种。
优选地,步骤S2中的干燥的温度为60~120℃。
优选地,所述惰性气氛是氮气或氩气。
所述方法制备的非晶氧化钒/碳复合材料。
所述钒酸盐溶液配制方法如下:称取水溶性钒酸盐加入到水中,搅拌并加热,即得钒酸盐溶液。
优选地,加热的反应温度为30~90℃。
优选地,所述加热的反应时间为30~180min。
所述非晶氧化钒/碳复合材料在水系锌离子电池、钠系电池中的应用。
一种水系锌离子电池正极,包括正极材料,所述正极材料含有所述非晶氧化钒/碳复合材料。
所述水系锌离子电池正极,由所述正极材料制备的电池需要经过活化处理。
所述活化处理为经过多次小电流充放电循环或者经过恒压充电,经过活化处理后的电池相比未活化的电池的比容量高且稳定性好。
所述水性锌离子纽扣电池采用CR2032纽扣式电池壳外壳,负极为锌板,正极为所述非晶氧化钒/碳复合材料、炭黑和聚四氟乙烯混合物的钛箔,电解液为2.0mol/L的三氟甲磺酸锌水溶液,电池隔膜为玻璃纤维膜。
优选地,所述负极为直径10mm、厚度为50μm的锌片,电极材料混合物中聚四氟乙烯的质量分数为10%,电解液为2mol/L的三氟甲烷磺酸锌水溶液。
与现有技术相比,本发明的有益效果是:
本发明通过控制pH值、反应时间、温度来控制钒酸盐的聚合程度,通过调节阳离子型有机聚合物的pH值,采用滴加的方式,将聚钒酸根溶液滴加至备好的阳离子型有机聚合物中,有利于带有负电荷的聚钒酸根离子与带有正电荷的阳离子型有机聚合物发生共沉淀反应,形成有机-无机杂化的产物;通过惰性气氛焙烧,可以得到负载有氧化钒的碳材料。所述负载有氧化钒的碳材料具有较长的循环寿命,在经过循环活化后材料的比容量有了显著提升。
附图说明
图1为实施例1的SEM和元素分布图。
图2为实施例1的XRD和TG曲线图。
图3为实施例1作为电极材料所制备电池在1.0mA s-1扫描速度下的循环伏安图。
图4为实施例1作为电极材料所制备水系锌离子电池分别在1000mA g-1电流密度下的充放电循环曲线图。
图5为实施例1的电极材料所制备电池分别在1.6V、1.8V、2.0V电压下恒压活化2小时及其充放电曲线图。
图6为实施例1的电极材料所制备有机系钠离子电池在100mA g-1电流密度下的充放电循环曲线图。
图7为对比例1的电极材料在所制备水系锌离子电池分别在1000mA g-1电流密度下的充放电循环曲线图。
图8为对比例2的电极材料在所制备水系锌离子电池分别在1000mA g-1电流密度下的充放电循环曲线图。
图9对比例2的XRD谱图。
具体实施方式
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,以下实施例所用试剂和材料均为市购。
实施例1
本实施例提供一种非晶氧化钒/碳复合材料的制备方法,所述步骤如下:
S1.将4.3g聚乙烯亚胺(平均分子量600)溶于30mL水中并调节pH值至2.5;
S2.将50mmol/L的钒酸盐溶液滴加入到步骤S2中反应,在80℃的条件下搅拌30min,产物分离,在80℃下干燥24h、研磨后,在惰性气氛下600℃下煅烧180min,得到非晶氧化钒/碳复合材料。
实施例2
本实施例的制备方法同实施例1,与实施例1不同的是,称取1g聚乙烯亚胺,钒酸盐溶于水中形成浓度为10mmol/L的溶液。
实施例3
本实施例的制备方法同实施例1,与实施例1不同的是,称取10g聚乙烯亚胺以及钒酸盐溶于水中形成浓度为100mmol/L的溶液。
实施例4
本实施例的制备方法同实施例1,与实施例1不同的是将聚乙烯亚胺替换成阴离子交换树脂。
实施例5
本实施例的制备方法同实施例1,与实施例1不同的是步骤S1中调节pH值为7。
实施例6
本实施例的制备方法同实施例1,与实施例1不同的是步骤S1中调节pH值为2。
实施例7
本实施例的制备方法同实施例1,与实施例1不同的是步骤S1中调节pH值为5。
实施例8
本实施例的制备方法同实施例1,与实施例1不同的是步骤S1中调节pH值为3。
对比例1
本对比例制备的是晶型氧化钒,本对比例的制备方法同实施例1,与实施例1不同的是步骤S2中焙烧气氛为空气。空气气氛下,阳离子型有机聚合物煅烧后不存在。
对比例2
本对比例制备的是晶型氧化钒/碳复合材料,本对比例的制备方法同实施例1,与实施例1不同的是采用钒酸盐溶液与碳纳米管共混、烘干、煅烧得到晶型氧化钒/碳复合材料。
对比例3
本对比例与实施例1的制备方法相同,只是步骤S1中阳离子型有机聚合物的调节pH至8,发现不能形成有机-无机沉淀,方案不能实现。
对比例4
本对比例与实施例1的制备方法相同,只是步骤S1中阳离子型有机聚合物的调节pH至11,发现不能形成有机-无机沉淀,方案不能实现。
图1为实施例1制备的非晶氧化钒/碳复合材料的SEM和元素分布照片,其产物为块状固体,通过SEM和元素分布来看,其中的C、N、V、O均匀的分布在材料当中。
图2为实施例1制备的非晶氧化钒/碳复合材料的XRD与TG(空气气氛)曲线,由图可知材料为非晶物质,其含碳量约为13.35wt%,当温度超过580℃是,材料的曲线上升是因为在产物合成焙烧的焙烧过程部分钒元素被还原成+4价,在空气气氛下又被氧化为+5价吸收氧气出现部分增重现象。
图3为实施例1制备的非晶氧化钒/碳复合材料作为电极材料所制备水系锌离子电池在1.0mA s-1扫描速度下的循环伏安图,在循环过程中,材料的氧化还原峰逐渐增强、峰位置逐渐固定。由此可知,材料需要多次循环材能的到充分活化,经活化后材料的电化学性能较为稳定。
图4为实施例1制备的非晶氧化钒/碳复合材料作为电极材料所制备水系锌离子电池分别在1000mA g-1电流密度下的充放电循环曲线,在1000mA·g-1的电流密度下其初始放电比容量仅为12.4mAh·g-1,在后续循环过程中循环库伦效率大于100%,其比容量在80次循环后上升至371.3mAh·g-1,在330圈时容量仍保持在340.1mAh·g-1
从图7可以看出,对比例1制备的晶型氧化钒材料1000mA·g-1的电流密度下其初始放电比容量仅为150mAh·g-1,且随着循环次数的增加,容量呈下降趋势,下降到130mAh·g-1
对比例2的XRD图可以看出,制备得到的是晶型氧化钒/碳复合材料,从图8可以看出,其效果远差于实施例1,初始放电比容量不足100mAh·g-1,循环200圈还是不足100mAh·g-1
实施例1,6和8的放电比容量要好于实施例5和7。
图5为实施例1制备的非晶氧化钒/碳复合材料为电极材料所制备电池分别在1.6V、1.8V、2.0V电压下恒压活化2小时充放电曲线,由图可知在恒压2小时活化后,不同的恒压电压对材料的活化程度不同,在1.6V时其充电比容量为300mAh·g-1,放电比容量为180mAh·g-1;在1.8V时其充电比容量为450mAh·g-1,放电比容量为380mAh·g-1;在2.0V时其充电比容量为880mAh·g-1,放电比容量为431mAh·g-1
图6为实施例1制备的非晶氧化钒/碳复合材料为电极材料所制备有机系钠离子电池在100mA g-1电流密度下的充放电循环曲线,在100mA·g-1的电流密度下其初始放电比容量仅为102.4mAh·g-1,其比容量经150次活化循环后上升至221.3mAh·g-1。说明所述非晶氧化钒/碳复合材料在钠离子电池中也可以应用。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (8)

1.一种非晶氧化钒/碳复合材料的制备方法,其特征在于,包括如下步骤:
S1. 称取1~10 g阳离子型有机聚合物溶于水,并调节pH值小于等于7,所述阳离子型有机聚合物为聚乙烯亚胺、聚酰胺-胺、阴离子交换树脂中的一种或几种;
S2. 将10~100mmol/L的钒酸盐水溶液滴加入到步骤S1溶液中在80℃下共沉淀反应30min,分离、干燥、研磨后,在惰性气氛下,300~800℃煅烧60~300min,所述钒酸盐为偏钒酸铵、偏钒酸钠、偏钒酸钾中的一种或几种。
2.根据权利要求1所述非晶氧化钒/碳复合材料的制备方法,其特征在于,步骤S2中阳离子型有机聚合物溶于水调节pH值至2~3。
3.根据权利要求1所述非晶氧化钒/碳复合材料的制备方法,其特征在于,步骤S2中的干燥的温度为60~120℃。
4.根据权利要求1所述非晶氧化钒/碳复合材料的制备方法,其特征在于,所述惰性气氛是氮气或氩气。
5.由权利要求1~4任一项所述方法制备的非晶氧化钒/碳复合材料。
6.根据权利要求5所述非晶氧化钒/碳复合材料在有机系钠离子电池或水系锌离子电池中的应用。
7.一种水系锌离子电池正极,其特征在于,包括正极材料,所述正极材料含有权利要求5所述非晶氧化钒/碳复合材料。
8.根据权利要求7所述水系锌离子电池正极,其特征在于,由所述正极材料制备的电池需要经过活化处理,所述活化处理为经过多次小电流充放电循环或者经过恒压充电。
CN202110269400.2A 2021-03-12 2021-03-12 一种非晶氧化钒/碳复合材料及其制备方法和应用 Active CN113161522B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110269400.2A CN113161522B (zh) 2021-03-12 2021-03-12 一种非晶氧化钒/碳复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110269400.2A CN113161522B (zh) 2021-03-12 2021-03-12 一种非晶氧化钒/碳复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113161522A CN113161522A (zh) 2021-07-23
CN113161522B true CN113161522B (zh) 2022-07-19

Family

ID=76887314

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110269400.2A Active CN113161522B (zh) 2021-03-12 2021-03-12 一种非晶氧化钒/碳复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113161522B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347164A (ja) * 2000-04-11 2001-12-18 Dmc 2 Degussa Metals Catalysts Cerdec Ag チタニア上に担持されたバナジアscr触媒の製造方法
KR20030043403A (ko) * 2001-11-28 2003-06-02 한국전자통신연구원 비정질 바나듐 산화물의 합성 방법과 이를 포함하는 리튬이차 전지 및 그 제조 방법
CN1618516A (zh) * 2004-09-28 2005-05-25 北京联合大学生物化学工程学院 用于净化空气的纳米复合光催化剂
CN1672796A (zh) * 2004-03-23 2005-09-28 三星Sdi株式会社 载体上的催化剂及其制备方法
CN102794165A (zh) * 2012-07-25 2012-11-28 大连交通大学 一种炭载氧化钒的制备方法
CN106159225A (zh) * 2016-07-25 2016-11-23 北京科技大学 一种生产碳复合无定形氧化钒粉末的方法
CN106450219A (zh) * 2016-11-10 2017-02-22 武汉理工大学 一种多维度组装的三维三氧化二钒/碳复合纳米材料及其制备方法和应用
CN106935860A (zh) * 2017-03-24 2017-07-07 华中科技大学 一种碳插层v2o3纳米材料、其制备方法和应用
CN107221665A (zh) * 2017-06-26 2017-09-29 南开大学 一种锌离子电池钒氧化物复合电极材料的制备方法
CN110474044A (zh) * 2019-09-05 2019-11-19 山东大学 一种高性能水系锌离子电池正极材料及其制备方法与应用
CN110589797A (zh) * 2019-10-09 2019-12-20 广东工业大学 一种金属氧化物三维蜂窝状碳材料及其制备方法
CN110707383A (zh) * 2019-10-22 2020-01-17 哈尔滨理工大学 一种用于锂硫电池的无定形氧化钒/碳纤维材料的制备方法及其使用方法
CN111900406A (zh) * 2020-08-03 2020-11-06 常州工学院 一种碳包覆硅酸锰材料的制备方法与应用
CN112421017A (zh) * 2020-10-29 2021-02-26 湘潭大学 一种无粘结剂水系锌离子电池正极复合材料的制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8530554B1 (en) * 2000-07-31 2013-09-10 Los Alamos National Security, Llc Precursors for the polymer-assisted deposition of films
JP6448191B2 (ja) * 2010-09-13 2019-01-09 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツングChemetall GmbH 表面をコーティングする方法と、この方法でコーティングされた対象物の使用
JP5987471B2 (ja) * 2011-05-24 2016-09-07 日本ゼオン株式会社 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
CN104903242B (zh) * 2012-10-29 2017-09-15 学校法人神奈川大学 手性金属氧化物结构体的制造方法及手性多孔结构体
CN105304885B (zh) * 2014-07-15 2019-03-26 北京理工大学 一种铝二次电池钒氧化物正极材料及其制备方法
CN104167303B (zh) * 2014-07-29 2017-03-22 上海应用技术学院 一种介孔氧化钒/碳复合纳米材料及其制备方法
CN104637697A (zh) * 2015-02-11 2015-05-20 中国科学院新疆理化技术研究所 一种金属氧化物/碳纳米管复合电极材料的制备方法
CN108091836B (zh) * 2017-11-21 2021-04-09 中山大学 一种碳原位复合二氧化钛纤维锂离子电池负极材料的制备方法
CN108735519A (zh) * 2018-06-04 2018-11-02 广东工业大学 一种石墨烯/五氧化二钒复合材料的制备方法及其应用
CN108847476A (zh) * 2018-06-07 2018-11-20 哈尔滨工业大学(威海) 一种锌离子电池正极的制备方法
CN109244410B (zh) * 2018-09-20 2022-05-03 哈尔滨工业大学 一种以聚合物为载体制备无定型锡基硫化物锂离子电池负极材料的方法
CN111276694A (zh) * 2020-01-30 2020-06-12 吉林师范大学 一种聚酰亚胺衍生碳/二硫化钼负极材料的制备方法及其在钾离子电池中的应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347164A (ja) * 2000-04-11 2001-12-18 Dmc 2 Degussa Metals Catalysts Cerdec Ag チタニア上に担持されたバナジアscr触媒の製造方法
KR20030043403A (ko) * 2001-11-28 2003-06-02 한국전자통신연구원 비정질 바나듐 산화물의 합성 방법과 이를 포함하는 리튬이차 전지 및 그 제조 방법
CN1672796A (zh) * 2004-03-23 2005-09-28 三星Sdi株式会社 载体上的催化剂及其制备方法
CN1618516A (zh) * 2004-09-28 2005-05-25 北京联合大学生物化学工程学院 用于净化空气的纳米复合光催化剂
CN102794165A (zh) * 2012-07-25 2012-11-28 大连交通大学 一种炭载氧化钒的制备方法
CN106159225A (zh) * 2016-07-25 2016-11-23 北京科技大学 一种生产碳复合无定形氧化钒粉末的方法
CN106450219A (zh) * 2016-11-10 2017-02-22 武汉理工大学 一种多维度组装的三维三氧化二钒/碳复合纳米材料及其制备方法和应用
CN106935860A (zh) * 2017-03-24 2017-07-07 华中科技大学 一种碳插层v2o3纳米材料、其制备方法和应用
CN107221665A (zh) * 2017-06-26 2017-09-29 南开大学 一种锌离子电池钒氧化物复合电极材料的制备方法
CN110474044A (zh) * 2019-09-05 2019-11-19 山东大学 一种高性能水系锌离子电池正极材料及其制备方法与应用
CN110589797A (zh) * 2019-10-09 2019-12-20 广东工业大学 一种金属氧化物三维蜂窝状碳材料及其制备方法
CN110707383A (zh) * 2019-10-22 2020-01-17 哈尔滨理工大学 一种用于锂硫电池的无定形氧化钒/碳纤维材料的制备方法及其使用方法
CN111900406A (zh) * 2020-08-03 2020-11-06 常州工学院 一种碳包覆硅酸锰材料的制备方法与应用
CN112421017A (zh) * 2020-10-29 2021-02-26 湘潭大学 一种无粘结剂水系锌离子电池正极复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Amorphous V2O5 Positive Electrode Materials by Precipitation Method in Magnesium Rechargeable Batteries;Duri Kim et al.;《ELECTRONIC MATERIALS LETTERS》;20190325;第15卷(第4期);第415-420页 *

Also Published As

Publication number Publication date
CN113161522A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN105958131B (zh) 一种长循环寿命和高能量密度的可充水系锌离子电池
US20180145324A1 (en) Lithium ion battery and positive electrode material thereof
CN109950538A (zh) 一种锌离子电池用的钒基正极材料
CN105633369A (zh) 一种碳包覆磷酸铁锂材料的制备方法
WO2017000219A1 (zh) 掺杂的导电氧化物以及基于此材料的改进电化学储能装置极板
CN107093739B (zh) 钾离子电池正极材料用钾锰氧化物及其制备方法
CN101719545A (zh) 一种锂硫电池正极复合材料及其制备方法
CN112281258B (zh) 一种Li3VO4/C纤维锂离子电池负极材料及制备方法
CN112599770B (zh) 一种锂/钠离子电池负极材料及其制备方法
CN103730649A (zh) 一种锂电池用碳包覆钛酸锂负极材料的制备方法
CN110828802A (zh) 一种高功率水系锌离子电池正极材料的制备方法
CN107946564B (zh) 富钠锰基Na4Mn2O5/Na0.7MnO2复合材料及其制备方法和应用
CN108400320B (zh) 一种在尖晶石镍锰酸锂正极材料表面硫化的方法
CN112054174A (zh) 一种钾离子电池负极材料及其制备方法和应用
CN104157851A (zh) 以硫化亚锡为锚定中心的锂硫电池及其正极的制备方法
CN111129465A (zh) 一种用于高效提升三元正极材料储锂性能的正极材料制备方法
CN114335534A (zh) 磷酸锆锂快离子导体包覆改性的钴酸锂正极材料及其制备方法与应用
CN112670495A (zh) 一种铁掺杂二氧化锰复合碳纳米管材料及其制备和应用
CN108565397B (zh) 锂金属电极表面氧化复合保护层结构及制备方法
CN108539160B (zh) 一种CoO/rGO复合物及其制备方法与用途
CN105958027A (zh) 一种锰基复合正极材料及其制备方法
CN103413935A (zh) 一种掺杂Mo的富锂正极材料及其制备方法
CN112259722A (zh) 一种水系混合离子二次电池及其制备方法和应用
CN113161522B (zh) 一种非晶氧化钒/碳复合材料及其制备方法和应用
CN103296251B (zh) 钛酸锂包覆硫复合的锂离子电池正极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant