CN113072371A - 一种高饱和磁化强度低温烧结LiZn铁氧体材料及其制备方法 - Google Patents

一种高饱和磁化强度低温烧结LiZn铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN113072371A
CN113072371A CN202110324931.7A CN202110324931A CN113072371A CN 113072371 A CN113072371 A CN 113072371A CN 202110324931 A CN202110324931 A CN 202110324931A CN 113072371 A CN113072371 A CN 113072371A
Authority
CN
China
Prior art keywords
ferrite material
saturation magnetization
lizn ferrite
lizn
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110324931.7A
Other languages
English (en)
Other versions
CN113072371B (zh
Inventor
徐秉川
张怀武
李颉
马永祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110324931.7A priority Critical patent/CN113072371B/zh
Publication of CN113072371A publication Critical patent/CN113072371A/zh
Application granted granted Critical
Publication of CN113072371B publication Critical patent/CN113072371B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2616Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing lithium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明属于电子信息功能陶瓷材料与电子器件技术领域,提供一种高饱和磁化强度低温烧结LiZn铁氧体材料及其制备方法,用以提升LiZn铁氧体材料的饱和磁化强度,进而使之能够适应更多频段的移相器,使微波器件能够满足小型化、集成化、高性能化的趋势。本发明通过Zr离子部分取代的LiZn铁氧体中的Zn离子,得到LiZn铁氧体材料:Li0.43Zn0.27Zr0.13Fe2.17O4,其在保持较低铁磁共振线宽和较低矫顽力的同时、显著提升饱和磁化强度,最高可到高达102.4emu/g;并且,采用Bi2O3作为助烧剂实现该LiZn铁氧体材料的低温烧结,满足LTCC技术的要求;另外,本发明LiZn铁氧体材料的制备工艺简单、制备成本低,利于工业化生产。

Description

一种高饱和磁化强度低温烧结LiZn铁氧体材料及其制备方法
技术领域
本发明属于电子信息功能陶瓷材料与电子器件技术领域,涉及用于LTCC微波旋磁器件等领域的旋磁材料,具体提供一种高饱和磁化强度低温烧结LiZn铁氧体材料及其制备方法。
背景技术
由于微波、毫米波技术的提升,现代雷达系统、反导系统、卫星通信系统正向着微系统和一体化方向发展,微波元器件和电子元器件的高频化、小型化、集成化、高性能化以及稳定性和可靠性成为必然。为了满足电子信息产业的发展,业界已经涌现出许多电子元器件整合技术,例如低温共烧陶瓷技术(LTCC)、芯片封装技术(CPS)等,其中,LTCC技术以其低成本、高集成度和高频品质特性等优异的电学、热学、机械及工艺特性成为了目前电子元件大规模集成的主流制造方式。而LiZn铁氧体材料凭借其优秀的性能成为了移相器的主要旋磁材料,LTCC技术的发展为其烧结温度降低到了960℃以下以便与银电极共烧提供了无限的可能,运用合适的方法在降低其烧结温度的同时保持其较高的饱和磁化强度、低铁磁共振线宽和低矫顽力成为了当前亟需解决的问题。
如文献“TingchuanZhou,HuaiwuZhang,LijunJia,YulongLiao,ZhiyongZhong,FeimingBai,Hua Su,JieLi,LichuanJin,Cheng Liu.Enhanced ferromagneticproperties of low temperature sinteri ng LiZnTi ferrites with Li2O–B2O3–SiO2–CaO–Al2O3glass addition[J].Journal of Alloys and Compounds,2015,620.”中公开了LiZn铁氧体材料的Ti掺杂改性,采用LBSCA(Li2O–B2O3–SiO2–CaO–Al2O3)玻璃做为助烧剂实现低温烧结,通过Ti掺杂,使得LiZnTi铁氧体材料的铁磁共振线宽与矫顽力两个性能指标得到了进一步优化,并保持了与LiZn铁氧体材料相当的饱和磁化强度性能,最终,LiZnTi铁氧体材料的饱和磁化强度为57.86~66.43emu/g、矫顽力约为160A/m。但是,饱和磁化强度作为LiZn铁氧体材料的一项重要的性能指标,饱和磁化强度的值越高,铁氧体就具有越强的旋磁性能;例如法拉第旋转角θF就跟饱和磁化强度值成正比例关系,单位长度的相移也随着饱和磁化强度的升高而增加,因此提高饱和磁化强度是减小器件体积和降低器件正向损耗的有效方法。
基于此,为了适应更多频段的移相器,使微波器件能够满足小型化、集成化、高性能化的趋势,在满足低温烧结的条件下,尽量保持较低的铁磁共振线宽和较低的矫顽力的同时,如何尽可能的提高材料的饱和磁化强度显得尤为重要。
发明内容
本发明的目的在于提供一种高饱和磁化强度低温烧结LiZn(Li0.43Zn0.4Fe2.17O4)铁氧体材料及其制备方法,用以提升LiZn铁氧体材料的饱和磁化强度。本发明通过Zr离子部分取代的LiZn铁氧体中的Zn离子,得到LiZn铁氧体材料:Li0.43Zn0.27Zr0.13Fe2.17O4,其在保持较低铁磁共振线宽和较低矫顽力的同时、显著提升饱和磁化强度;并且,采用Bi2O3作为助烧剂实现该LiZn铁氧体材料的低温烧结,满足LTCC技术的要求。
为实现上述目的,本发明采用的技术方案为:
一种高饱和磁化强度低温烧结LiZn铁氧体材料,其特征在于,所述LiZn铁氧体材料的化学式为:Li0.43Zn0.27Zr0.13Fe2.17O4
上述高饱和磁化强度低温烧结LiZn铁氧体材料的制备方法,包括以下步骤:
步骤1.以碳酸锂(Li2CO3)、氧化锌(ZnO)、氧化锆(ZrO2)及氧化铁(Fe2O3)为原料,按照摩尔比:Li:Zn:Zr:Fe=0.43:0.27:0.13:2.17进行配料;
步骤2.以去离子水为分散剂、钢球为球磨介质,采用湿磨法对原料进行混合;出料后依次进行烘干、研磨、过筛,得到混合粉体;
步骤3.将步骤2得混合粉体装于氧化铝坩埚并放入马弗炉中,以2℃/min的升温速率由室温升温至900~1000℃,保温3~6小时,然后自然降温至室温,得到Li0.43Zn0.27Zr0.13Fe2.17O4预烧料;
步骤4.采用步骤2相同工艺对Li0.43Zn0.27Zr0.13Fe2.17O4预烧料与Bi2O3粉末进行混合,其中,Bi2O3粉末的含量为Li0.43Zn0.27Zr0.13Fe2.17O4预烧料的0.5wt%~2wt%;
步骤5.在步骤4得混合粉体中加入6wt%~10wt%的聚乙烯醇(PVA)粘合剂进行造粒,过筛后放入模具中,在8~10Mpa的压力下压制成坯体;
步骤6.将胚体放入马弗炉内,以2℃/min的升温速率由室温升温至900~950℃,保温3~6小时,然后自然降温至室温,制备得LiZn铁氧体陶瓷材料。
进一步的,所述步骤2中,湿磨时间为10~16小时,钢球的直径为3~15mm。
进一步的,所述步骤2中,烘干温度为60~120℃,过筛采用80目筛。
进一步的,所述步骤5中,过筛采用100目筛。
本发明的有益效果在于:
本发明提供一种高饱和磁化强度低温烧结LiZn(Li0.43Zn0.4Fe2.17O4)铁氧体材料及其制备方法,通过Zr离子掺杂LiZn铁氧体与Bi2O3助烧,使得Li0.43Zn0.4Fe2.17O4铁氧体材料具有如下优点:
1)本发明中LiZn铁氧体材料能够满足LTCC技术的要求,在较低的温度(900℃~950℃)下完成烧结;
2)本发明中LiZn铁氧体材料在较低的温度(925℃)下烧结完成时能够保证较高的烧结密度,925℃烧结时样品密度能够达到4.76g/cm3
3)本发明中LiZn铁氧体材料在保持较低铁磁共振线宽和较低矫顽力的同时、显著提升饱和磁化强度;尤其是Bi2O3助烧剂的用量为1.5wt%时,饱和磁化强度高达102.4emu/g、、矫顽力为192A/m、铁磁共振线宽为205oe,显著优于现有技术;
4)本发明中LiZn铁氧体材料的制备工艺简单、制备成本低,利于工业化生产。
附图说明
图1为本发明实施例1~4中高饱和磁化强度低温烧结LiZn铁氧体材料的XRD图谱。
图2为本发明实施例1~4中高饱和磁化强度低温烧结LiZn铁氧体材料的SEM照片,其中,(a)~(d)依次对应实施例1~4。
图3为本发明实施例1~4中高饱和磁化强度低温烧结LiZn铁氧体材料的性能测试结果图,其中,(a)为密度、(b)为饱和磁化强度、(c)铁磁共振线宽、(d)矫顽力。
具体实施方式
下面结合附图和实施例对本发明进行详细说明。
实施例1
本实施例提供一种高饱和磁化强度低温烧结LiZn铁氧体材料,其化学式为:Li0.43Zn0.27Zr0.13Fe2.17O4;以掺杂氧化铋(Bi2O3)为助烧剂,实现所述LiZn铁氧体材料在925℃的低温烧结;所述LiZn铁氧体材料的制备过程包括以下步骤:
步骤1.以纯度为99%的碳酸锂(Li2CO3)、氧化锌(ZnO)、氧化锆(ZrO2)及氧化铁(Fe2O3)为原料,按照摩尔比:Li:Zn:Zr:Fe=0.43:0.27:0.13:2.17进行配料;
步骤2.以去离子水为分散剂、直径为3~15mm的钢球为球磨介质,采用湿磨法将原料混合12h;出料后放入95℃烘箱中烘干,并研磨成细粉后过80目筛,得到混合粉;
步骤3.将步骤2得混合粉体装于氧化铝坩埚并放入马弗炉中,以2℃/min的升温速率由室温升温至1000℃,保温4小时,然后自然降温至室温,得到Li0.43Zn0.27Zr0.13Fe2.17O4预烧料;
步骤4.采用步骤2相同工艺对Li0.43Zn0.27Zr0.13Fe2.17O4预烧料与Bi2O3粉末进行混合,其中,Bi2O3粉末的含量x为Li0.43Zn0.27Zr0.13Fe2.17O4预烧料的0.5wt%;
步骤5.在步骤4得混合粉体中加入8wt%的聚乙烯醇(PVA)粘合剂进行造粒,用100目筛进行过筛,过筛后放入模具中,采用液压机在8~10Mpa的压力下压制成圆柱状坯体及圆环形胚体;
步骤6.将胚体放入马弗炉内,以2℃/min的升温速率由室温升温至925℃,保温4小时,然后自然降温至室温,制备得LiZn铁氧体陶瓷材料。
实施例2
本实施例与实施例1相比,唯一区别在于:Bi2O3粉末的含量为:x=1wt%。
实施例3
本实施例与实施例1相比,唯一区别在于:Bi2O3粉末的含量为:x=1.5wt%。
实施例4
本实施例与实施例1相比,唯一区别在于:Bi2O3粉末的含量为:x=2wt%。
对上述4个实施例制备得到的LiZn铁氧体材料分别进行测试,结果如下:
XRD图谱如图1所示,由图可见,实施例1~实施例4中,通过加入氧化铋(Bi2O3)做为助烧剂之后,确实能起到降低烧结温度的作用,并无生成杂相。
SEM照片如图2所示,由图可见,随着氧化铋掺入量的增加,晶粒尺寸明显长大,且晶粒间气孔变少,均匀致密的微观结构一方面提高了样品的烧结密度和饱和磁化强度,另一方面由于孔隙率的降低,也使得样品的铁磁共振线宽降低。
密度、饱和磁化强度、铁磁共振线宽、矫顽力等性能分别如图3中(a)~(d)所示,更为具体的讲:
实施例1制备得LiZn铁氧体的性能为:饱和磁化强度为82.25emu/g,密度为4.63g/cm3,矫顽力为267A/m,铁磁共振线宽为357oe;
实施例2制备得LiZn铁氧体的性能为:饱和磁化强度为90.12emu/g,密度为4.71g/cm3,矫顽力为241A/m,铁磁共振线宽为265oe;
实施例3制备得LiZn铁氧体的性能为:饱和磁化强度为102.4emu/g,密度为4.76g/cm3,矫顽力为192A/m,铁磁共振线宽为205oe。
实施例4制备得LiZn铁氧体的性能为:饱和磁化强度为95.37emu/g,密度为4.69g/cm3,矫顽力为219A/m,铁磁共振线宽为235oe;
综上可见,本发明提供高饱和磁化强度低温烧结LiZn(Li0.43Zn0.4Fe2.17O4)铁氧体材料均能实现低温(925℃)烧结,其材料在保持较低铁磁共振线宽和较低矫顽力的同时、显著提升饱和磁化强度至82.25emu/g~102.4emu/g,能够满足LTCC技术的要求。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (5)

1.一种高饱和磁化强度低温烧结LiZn铁氧体材料,其特征在于,所述LiZn铁氧体材料的化学式为:Li0.43Zn0.27Zr0.13Fe2.17O4
2.按权利要求1所述高饱和磁化强度低温烧结LiZn铁氧体材料的制备方法,包括以下步骤:
步骤1.以碳酸锂(Li2CO3)、氧化锌(ZnO)、氧化锆(ZrO2)及氧化铁(Fe2O3)为原料,按照摩尔比:Li:Zn:Zr:Fe=0.43:0.27:0.13:2.17进行配料;
步骤2.以去离子水为分散剂、钢球为球磨介质,采用湿磨法对原料进行混合;出料后依次进行烘干、研磨、过筛,得到混合粉体;
步骤3.将步骤2得混合粉体装于氧化铝坩埚并放入马弗炉中,以2℃/min的升温速率由室温升温至900~1000℃,保温3~6小时,然后自然降温至室温,得到Li0.43Zn0.27Zr0.13Fe2.17O4预烧料;
步骤4.采用步骤2相同工艺对Li0.43Zn0.27Zr0.13Fe2.17O4预烧料与Bi2O3粉末进行混合,其中,Bi2O3粉末的含量为Li0.43Zn0.27Zr0.13Fe2.17O4预烧料的0.5wt%~2wt%;
步骤5.在步骤4得混合粉体中加入6wt%~10wt%的聚乙烯醇(PVA)粘合剂进行造粒,过筛后放入模具中,在8~10Mpa的压力下压制成坯体;
步骤6.将胚体放入马弗炉内,以2℃/min的升温速率由室温升温至900~950℃,保温3~6小时,然后自然降温至室温,制备得LiZn铁氧体陶瓷材料。
3.按权利要求1所述高饱和磁化强度低温烧结LiZn铁氧体材料的制备方法,其特征在于,所述步骤2中,湿磨时间为10~16小时,钢球的直径为3~15mm。
4.按权利要求1所述高饱和磁化强度低温烧结LiZn铁氧体材料的制备方法,其特征在于,所述步骤2中,烘干温度为60~120℃,过筛采用80目筛。
5.按权利要求1所述高饱和磁化强度低温烧结LiZn铁氧体材料的制备方法,其特征在于,所述步骤5中,过筛采用100目筛。
CN202110324931.7A 2021-03-26 2021-03-26 一种高饱和磁化强度低温烧结LiZn铁氧体材料及其制备方法 Active CN113072371B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110324931.7A CN113072371B (zh) 2021-03-26 2021-03-26 一种高饱和磁化强度低温烧结LiZn铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110324931.7A CN113072371B (zh) 2021-03-26 2021-03-26 一种高饱和磁化强度低温烧结LiZn铁氧体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113072371A true CN113072371A (zh) 2021-07-06
CN113072371B CN113072371B (zh) 2022-06-03

Family

ID=76610703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110324931.7A Active CN113072371B (zh) 2021-03-26 2021-03-26 一种高饱和磁化强度低温烧结LiZn铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113072371B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403366A (zh) * 2022-08-24 2022-11-29 厦门大学 一种掺杂锂的镍锌铁氧体材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090050840A1 (en) * 2005-09-13 2009-02-26 Yasuharu Miyoshi Ferrite material
CN104496448A (zh) * 2014-11-27 2015-04-08 电子科技大学 一种LiZnTi旋磁铁氧体材料及其制备方法
CN105272242A (zh) * 2015-10-18 2016-01-27 桂林理工大学 温度稳定型超低介电常数微波介电陶瓷LiZnNdV2O8

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090050840A1 (en) * 2005-09-13 2009-02-26 Yasuharu Miyoshi Ferrite material
CN104496448A (zh) * 2014-11-27 2015-04-08 电子科技大学 一种LiZnTi旋磁铁氧体材料及其制备方法
CN105272242A (zh) * 2015-10-18 2016-01-27 桂林理工大学 温度稳定型超低介电常数微波介电陶瓷LiZnNdV2O8

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A.A.SATTAR ET.AL.: ""Magnetic Properties and Electrical Resistivity of Zr4+ Substituted Li-Zn Ferrite"", 《AMERICAN JOURNAL OF APPLIED SCIENCES》 *
曹万强等编: "《材料物理专业实验教程》", 29 February 2016, 冶金工业出版社 *
邱华: ""LiZnTi铁氧体的低温烧结与X波段移相器应用研究"", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
韩志全编著: "《铁氧体及其磁性物理》", 31 July 2010, 航空工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403366A (zh) * 2022-08-24 2022-11-29 厦门大学 一种掺杂锂的镍锌铁氧体材料及其制备方法
CN115403366B (zh) * 2022-08-24 2023-05-12 厦门大学 一种掺杂锂的镍锌铁氧体材料及其制备方法

Also Published As

Publication number Publication date
CN113072371B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
CN111848149B (zh) 一种高介电常数微波铁氧体材料、制备方法和器件
CN111116192B (zh) 一种微波铁氧体材料、制备方法及微波通信器件
CN105884342B (zh) Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法
CN108863336B (zh) 一种镍系微波铁氧体基片材料及其制备方法
CN108706968B (zh) 一种低温烧结抗直流偏置NiCuZn铁氧体及制备方法
CN111574212A (zh) 一种低温烧结低介微波陶瓷材料及制备方法
CN111517789A (zh) 一种低介电微波介质陶瓷材料及其制备方法
CN113501708A (zh) 一种Li系尖晶石微波铁氧体材料及其制备方法
CN113072371B (zh) 一种高饱和磁化强度低温烧结LiZn铁氧体材料及其制备方法
CN113233885B (zh) 一种低温烧结yig旋磁铁氧体材料及其制备方法
CN114477995A (zh) 一种中饱和磁化强度功率型高介电常数石榴石材料及其制备方法
CN110483032B (zh) 基于ltcc技术的低温烧结yig铁氧体及制备方法
CN112898008A (zh) 一种低损耗yig铁氧体及其制备方法
CN113603472B (zh) 一种基于LTCC技术的NiCuZn铁氧体制备方法
CN112194482B (zh) 一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用
CN108774057B (zh) 一种用于LTCC环形器的NiCuZn旋磁铁氧体材料及其制备方法
CN114702310B (zh) 低损耗尖晶石微波铁氧体材料及其制备方法
CN114956800A (zh) 一种高性能微波多晶铁氧体材料
CN113004031B (zh) 一种微波铁氧体材料及其制备与应用方法
EP0724549A1 (en) Magnetodielectric ceramic composite material, method of manufacturing same, application, and a multifunctional component
CN111205066A (zh) 一种微波介质陶瓷的制备方法
CN109053180A (zh) 一种低温烧结低损耗LiZn铁氧体材料及制备方法
CN113968730B (zh) 一种z型铁氧体复合材料及其制备方法与应用
CN116789448B (zh) 一种中温烧结高q值微波介质材料及其制备方法和应用
CN117819956A (zh) 一种LTCC高居里温度NiZn铁氧体基板材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant