CN113233885B - 一种低温烧结yig旋磁铁氧体材料及其制备方法 - Google Patents
一种低温烧结yig旋磁铁氧体材料及其制备方法 Download PDFInfo
- Publication number
- CN113233885B CN113233885B CN202110324952.9A CN202110324952A CN113233885B CN 113233885 B CN113233885 B CN 113233885B CN 202110324952 A CN202110324952 A CN 202110324952A CN 113233885 B CN113233885 B CN 113233885B
- Authority
- CN
- China
- Prior art keywords
- yig
- low
- ferrite
- temperature
- gyromagnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2608—Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/342—Oxides
- H01F1/344—Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
- H01F1/346—[(TO4) 3] with T= Si, Al, Fe, Ga
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0246—Manufacturing of magnetic circuits by moulding or by pressing powder
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3239—Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3298—Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/762—Cubic symmetry, e.g. beta-SiC
- C04B2235/764—Garnet structure A3B2(CO4)3
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Abstract
本发明属于电子陶瓷技术领域,具体提供一种低温烧结YIG旋磁铁氧体材料及其制备方法,用以解决现有低温烧结YIG旋磁铁氧体材料在LTCC工艺下均难以满足低温烧结以及旋磁性能优异要求的问题。本发明提供一种低温烧结YIG旋磁铁氧体材料:Y2.1Bi0.9Fe5‑3xZn2xVxO12、0<x≤0.06,具有单一石榴石结构,Bi3+离子占据石榴石晶格十二面体、取代一部分Y3+离子,V5+离子占据八面体、取代一部分Fe3+离子,同时引入金属离子Zn2+离子,实现多离子取代活化YIG铁氧体晶格,促进YIG铁氧体900~960℃下低温烧结的同时,改善材料的微波特性:较高的饱和磁化强度、较低的矫顽力、较低的微波介电损耗和磁损耗,使之满足LTCC技术要求,对集成度要求高、体积要求小的微波铁氧体器件的制造提供基础材料。
Description
技术领域
本发明属于电子陶瓷技术领域,具体涉及一种低温烧结YIG旋磁铁氧体材料及其制备方法。
背景技术
随着信息产业和通信技术的发展,小型化、集成化、高频化以及便捷化,成为发展的趋势。相应的,元器件和系统为了满足需求,需要做到更小的尺寸、更好的兼容性、更高的频率、更好的稳定性、更复杂的结构、更高的安全性。LTCC技术的出现为元器件和系统的封装和制备工艺提供了新的思路,利用LTCC技术制造高集成、小尺寸、低损耗的微波铁氧体器件成为重要的研究方向。YIG是一种重要的低损耗微波旋磁材料,在电子、磁性、磁光、生物医学和微波器件中有许多应用;其具有显著的特性,如高电阻率、高相对介电常数、良好的饱和磁化强度、中等矫顽力、低介电损耗和微波区的低铁磁共振线宽;但YIG材料的烧结温度一般在1450℃,远远超出了LTCC的加工温度上限,因而,实现与LTCC技术兼容的YIG铁氧体材料并改善低温烧结YIG铁氧体的旋磁性能成为迫切需要解决的问题。
目前,针对YIG旋磁铁氧体低温烧结方法的研究主要集中在加入低温软化玻璃、低熔点氧化物、采用不同的制备工艺以及离子取代等。专利号为201610804889.8、发明名称为“一种低温烧结细小晶粒钇铁石榴石粉体的制备方法”的中国专利,公开了一种使用热等静压技术生产细小晶粒钇铁石榴石粉体的制备工艺,该发明采用将取向压制后的粉体置于热等静压炉内,冲入150Mpa惰性气体Ar,以10℃/min的升温速率将样品加热到700℃,并在700℃的条件下保温2h后以20℃/min的速度降温至500℃,然后随炉冷却得到样品,然而,该工艺过程要求的取向压制以及热等静压烧结难以与现有的LTCC工艺技术兼容。孙可为等人在文献“低温烧结B2O3掺杂Y1.05Bi0.75Ca1.2Fe4.4V0.6O12铁氧体的微结构研究”中引入低熔点氧化物B2O3掺杂Y1.05Bi0.75Ca1.2Fe4.4V0.6O12铁氧体,并对其低温烧结特性进行了研究,烧结温度对B2O3掺杂的Y1.05Bi0.75Ca1.2Fe4.4V0.6O12铁氧体的密度影响显著,样品在1040℃下烧结,固相反应完全,晶粒大小均匀,但其密度较低仅4.94g/cm3,由于采用缺铁配方,缺铁过多,有少量的YFeO3钙钛矿存在。宗波等人在文献“掺Li2O-B2O3-ZnO玻璃低温烧结钇铁氧体及其磁性能研究”中引入Li2O-B2O3-ZnO(LBZ)掺杂YIG样品,在1100℃下烧结生成了YIG铁氧体单相,晶粒生长较好,但掺杂玻璃后的样品饱和磁化强度4πMs降低,铁磁共振线宽ΔH增大。T.Ramesh等人在其文献“Low Temperature Sintering of YIG Using MicrowaveSintering Method”以及JunliangLiu等人在文献“Microwave-Assisted Synthesis ofYttrium Iron Garnet Nano Powders for Low Temperature Sintering”中研究了低温烧结钇铁石榴石粉体的微波辅助合成,发现致密的YIG陶瓷在1050-1100℃的温度下烧结,这远低于传统固相反应(~1450℃)粉末的烧结温度,但仍不能实现与银电极共烧。综合分析上述关于低温烧结YIG旋磁铁氧体材料的文献发现,无论是添加低熔点氧化物、低温软化玻璃、离子取代或者微波辅助合成等方案,在LTCC工艺下均难以满足低温烧结以及旋磁性能优异的要求。
发明内容
本发明的目的在于针对现有低温烧结YIG旋磁铁氧体材料在LTCC工艺下均难以满足低温烧结以及旋磁性能优异要求的问题,提供一种低温烧结YIG旋磁铁氧体材料及其制备方法;本发明在保证低温烧结的情况下,提高YIG旋磁铁氧体的饱和磁化强度以及密度,降低矫顽力。
为实现上述目的,本发明采用的技术方案如下:
一种低温烧结YIG旋磁铁氧体材料,其特征在于,所述低温烧结YIG铁氧体材料的化学式为:Y2.1Bi0.9Fe5-3xZn2xVxO12,其中,0<x≤0.06。
进一步的,所述所述低温烧结YIG铁氧体材料具有单一石榴石结构,采用适量的Bi3+离子取代YIG铁氧体晶格结构十二面体位的Y3+离子,Zn2+和V5+分别取代YIG铁氧体晶格结构八面体位和四面体位的Fe3+离子。
上述低温烧结YIG旋磁铁氧体的制备方法,包括以下步骤:
步骤1、预烧料的制备:
步骤1.1、以氧化钇(Y2O3)、三氧化二铁(Fe2O3)、三氧化二铋(Bi2O3)、氧化锌(ZnO)、五氧化二钒(V2O5)为原料,按照化学式Y2.1Bi0.9Fe5-3xZn2xVxO12称量原料,采用湿磨法对原料进行一次球磨,得到一次球磨料;
步骤1.2、将一次球磨料烘干、过筛后放入坩埚里,在800~850℃、氧气气氛下预烧2~4h,随炉冷却至室温,得到YIG铁氧体预烧料;
步骤2、二次球磨:
将步骤1得到的YIG铁氧体预烧料粉末过筛,采用湿磨法对过筛后YIG铁氧体预烧料进行二次球磨,并将二次球磨料烘干;
步骤3、成型与烧结:
步骤3.1、将二次球磨料过筛后,加入相当于粉料质量8~10wt%的聚乙烯醇(PVA)粘合剂进行造粒,然后在8~10Mpa的压力下压制成环形样品;
步骤3.2、将样品放入烧结炉中,以2℃/min的速率升温至400℃、保温1~2h,再以相同速率升温至500℃、保温1~2h,再以相同的速率升温至900-960℃、保温2~4h,随后以2℃/min的速率降温到600℃后随炉自然冷却至室温,得到所述低温烧结的YIG铁氧体材料。
进一步的,所述步骤1与步骤2中,湿磨法的具体过程为:以去离子水作为球磨介质,将原料放入球磨罐后按照原料:去离子水的质量比1:1.2的比例加入去离子水,采用行星式球磨机进行一次球磨6~12h,球磨转速为240~260转/min。
与现有的技术相比,本发明的有益效果在于:
1、本发明提供一种低温烧结YIG旋磁铁氧体材料:Y2.1Bi0.9Fe5-3xZn2xVxO12、0<x≤0.06,其中,Bi3+离子占据石榴石晶格十二面体、取代一部分Y3+离子,V5+离子占据八面体、取代一部分Fe3+离子,同时引入金属离子Zn2+离子,实现多离子取代活化YIG铁氧体晶格,促进YIG铁氧体低温烧结的同时还改善了材料的微波特性。
2、本发明提供YIG旋磁铁氧体材料在较低的烧结温度900~960℃下制备,除了较低的烧结温度外,还具备较高的饱和磁化强度(>20emu/g),以及较低的矫顽力,这些都能满足低温共烧陶瓷技术(LTCC)的要求,对集成度要求高、体积要求小的微波铁氧体器件的制造提供基础材料。
3、本发明提供YIG旋磁铁氧体除具有较高饱和磁化强度、较低矫顽力外,还具备较低的微波介电损耗和磁损耗,如实施例1中介电损耗为1.85×10-3、磁损耗为5.95×10-2。
4、本发明提供YIG旋磁铁氧体在低温烧结的情况下,不仅有较好的旋磁性能,还有较好的致密性,930℃烧结密度达到5.689g/cm3,其余密度都在5.5g/cm3以上。
附图说明
图1为本发明实施例5所得YIG旋磁铁氧体样品的XRD图。
图2(a)、(b)、(c)分别为对比例、实施例1、实施例5所得的YIG旋磁铁氧体样品的SEM图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例1
本实施例提供一种低温烧结YIG旋磁铁氧体材料,在掺入Bi3+部分取代十二面体c位的Y3+的基础上,又引入Zn2+和V5+分别部分取代八面体a位的Fe3+和四面体d位的Fe3+,得到低温烧结YIG旋磁铁氧体:Y2.1Bi0.9Fe5-3xZn2xVxO12、x=0.02,在降低YIG旋磁铁氧体烧结温度的同时、获得较高饱和磁化强度、较高密度、较低矫顽力和较低微波损耗的优异性能。
本实施例中,上述低温烧结的YIG旋磁铁氧体材料的制备方法,具体步骤如下:
步骤1、预烧料制备:
步骤1.1、以分析纯的氧化钇(Y2O3)、三氧化二铁(Fe2O3)、三氧化二铋(Bi2O3)、氧化锌(ZnO)、五氧化二钒(V2O5)作为原料,按照化学式Y2.1Bi0.9Fe5-3xZn2xVxO12(x=0.02)称量原料,把原料放入球磨罐后按照原料与去离子水的质量比1:1.2的比例加入去离子水作为球磨介质,然后采用行星式球磨机进行一次球磨12h,球磨转速为250转/min;
步骤1.2、将步骤1.1得到的一次球磨料烘干、过筛后放入坩埚里,在850℃、氧气气氛下预烧3h,随炉冷却至室温,取出,得到YIG铁氧体预烧料;
步骤2、二次球磨:
将步骤1得到的YIG铁氧体预烧料粉末过80目筛后,放入球磨罐中,并按照预烧料与去离子水质量比1:1.2的比例加入去离子水,采用行星式球磨机进行二次球磨12h,球磨完成后取出二次球磨料并烘干;
步骤3、成型、烧结:
步骤3.1、将步骤2得到的二次球磨料过筛后,加入相当于粉料质量10wt%的聚乙烯醇(PVA)粘合剂进行造粒,然后用液压机在9Mpa的压力下压制成环形样品;
步骤3.2、将步骤3.1得到的样品放入烧结炉中,以2℃/min的速率升温至400℃,保温1h进行排水蒸气,再以相同速率升温至500℃,保温1h进行排胶,再以相同的速率升温至960℃,保温3h烧结完成,随后以2℃/min的速率降温到600℃后随炉自然冷却至室温,得到所述低温烧结的YIG铁氧体材料。
本实施例中低温烧结YIG旋磁铁氧体材料的性能参数为:饱和磁化强度4πMs为22.278emu/g,密度为5.609g/cm3,铁磁共振线宽ΔH为389.268Oe@9.55GHz,矫顽力Hc为15.561Oe,磁损耗为5.95×10-2@20MHz,介电损耗为1.85×10-3@20MHz,介电常数为20.9@20MHz。
实施例2
本实施例与实施例1相比,唯一区别在于:低温烧结YIG旋磁铁氧体:Y2.1Bi0.9Fe5- 3xZn2xVxO12、x=0.06。
本实施例中低温烧结YIG旋磁铁氧体材料的性能参数为:饱和磁化强度4πMs为20.632emu/g,密度为5.609g/cm3,铁磁共振线宽ΔH为594.363Oe@9.55GHz,矫顽力Hc为14.464Oe,磁损耗为9.08×10-2@20MHz,介电损耗为2.75×10-3@20MHz,介电常数为17.6@20MHz。
实施例3
本实施例与实施例1相比,唯一区别在于:步骤3.2中的烧结温度变为930℃。
本实施例中低温烧结YIG旋磁铁氧体材料的性能参数为:饱和磁化强度4πMs为22.740emu/g,密度为5.689g/cm3,铁磁共振线宽ΔH为502.632Oe@9.55GHz,矫顽力Hc为17.553Oe,磁损耗为8.57×10-2@20MHz,介电损耗为1.72×10-3@20MHz,介电常数为19.6@20MHz。
实施例4
本实施例与实施例2相比,唯一区别在于:步骤3.2中的烧结温度变为930℃。
本实施例4中低温烧结YIG旋磁铁氧体材料的性能参数为:饱和磁化强度4πMs为21.102emu/g,密度为5.583g/cm3,铁磁共振线宽ΔH为607.145Oe@9.55GHz,矫顽力Hc为18.935Oe,磁损耗为7.46×10-2@20MHz,介电损耗为2.52×10-3@20MHz,介电常数为18.9@20MHz。
实施例5
本实施例与实施例1相比,唯一区别在于:步骤3.2中的烧结温度变为900℃。
本实施例中低温烧结YIG旋磁铁氧体材料的性能参数为:饱和磁化强度4πMs为22.578emu/g,密度为5.526g/cm3,铁磁共振线宽ΔH为484Oe@9.55GHz,矫顽力Hc为18.935Oe,磁损耗是1.38×10-1@20MHz,介电损耗为1.69×10-3@20MHz,介电常数为16.9@20MHz。
实施例6
本实施例与实施例2相比,唯一区别在于:步骤3.2中的烧结温度变为900℃。
本实施例中低温烧结YIG旋磁铁氧体材料的性能参数为:饱和磁化强度4πMs为21.047emu/g,密度为5.618g/cm3,铁磁共振线宽ΔH为583.995Oe@9.55GHz,矫顽力Hc为17.131Oe,磁损耗为2.31×10-1@20MHz,介电损耗为2.46×10-3@20MHz,介电常数为17.8@20MHz。
对比例
本对比例与实施例1相比,唯一区别在于:低温烧结YIG旋磁铁氧体:Y2.1Bi0.9Fe5O12。
对比例中低温烧结YIG旋磁铁氧体材料的性能参数为:饱和磁化强度4πMs为22.571em u/g,密度为5.320g/cm3,铁磁共振线宽ΔH为463.742Oe@9.55GHz,矫顽力Hc为18.399Oe,磁损耗为8.85×10-2@20MHz,介电损耗为1.64×10-3@20MHz,介电常数为14.9@20MHz。
更进一步的,如图1所示为实施例5所得YIG旋磁铁氧体样品的XRD图,由图可知,本发明得到的低温烧结YIG铁氧体呈现了完整的石榴石相,几乎没有杂相出现,离子取代成功。如图2(a)、(b)、(c)分别为对比例、实施例1、实施例5所得的YIG旋磁铁氧体SEM图,由图可知,本发明中低温烧结YIG铁氧体晶粒间气孔较少,离子取代降低了样品的空隙率,提高了烧结密度,在低温烧结的情况下也得到了饱和磁化强度较高的YIG旋磁铁氧体材料。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。
Claims (3)
1.一种低温烧结YIG旋磁铁氧体材料,其特征在于,所述低温烧结YIG旋磁铁氧体材料的化学式为:Y2.1Bi0.9Fe5-3xZn2xVxO12,其中,0<x≤0.06;所述低温烧结YIG旋磁铁氧体材料具有单一石榴石结构,采用Bi3+离子取代YIG铁氧体晶格结构十二面体位的Y3+离子,采用Zn2 +离子和V5+离子分别取代YIG铁氧体晶格结构八面体位和四面体位的Fe3+离子。
2.按权利要求1所述低温烧结YIG旋磁铁氧体材料的制备方法,包括以下步骤:
步骤1、预烧料的制备:
步骤1.1、以氧化钇、三氧化二铁、三氧化二铋、氧化锌、五氧化二钒为原料,按照化学式Y2.1Bi0.9Fe5-3xZn2xVxO12称量原料,采用湿磨法对原料进行一次球磨,得到一次球磨料;
步骤1.2、将一次球磨料烘干、过筛后放入坩埚里,在800~850℃、氧气气氛下预烧2~4h,随炉冷却至室温,得到YIG铁氧体预烧料;
步骤2、二次球磨:
将步骤1得到的YIG铁氧体预烧料粉末过筛,采用湿磨法对过筛后YIG铁氧体预烧料进行二次球磨,并将二次球磨料烘干;
步骤3、成型与烧结:
步骤3.1、将二次球磨料过筛后,加入相当于粉料质量8~10wt%的聚乙烯醇粘合剂进行造粒,然后在8~10Mpa的压力下压制成环形样品;
步骤3.2、将样品放入烧结炉中,以2℃/min的速率升温至400℃、保温1~2h,再以相同速率升温至500℃、保温1~2h,再以相同的速率升温至900-960℃、保温2~4h,随后以2℃/min的速率降温到600℃后随炉自然冷却至室温,得到所述低温烧结YIG旋磁铁氧体材料。
3.按权利要求2所述低温烧结YIG旋磁铁氧体材料的制备方法,其特征在于,所述步骤1与步骤2中,湿磨法的具体过程为:以去离子水作为球磨介质,将原料放入球磨罐后按照原料:去离子水的质量比1:1.2的比例加入去离子水,采用行星式球磨机进行一次球磨6~12h,球磨转速为240~260转/min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110324952.9A CN113233885B (zh) | 2021-03-26 | 2021-03-26 | 一种低温烧结yig旋磁铁氧体材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110324952.9A CN113233885B (zh) | 2021-03-26 | 2021-03-26 | 一种低温烧结yig旋磁铁氧体材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113233885A CN113233885A (zh) | 2021-08-10 |
CN113233885B true CN113233885B (zh) | 2022-11-08 |
Family
ID=77130539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110324952.9A Active CN113233885B (zh) | 2021-03-26 | 2021-03-26 | 一种低温烧结yig旋磁铁氧体材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113233885B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115385680B (zh) * | 2022-09-14 | 2023-04-07 | 电子科技大学 | 一种高介低线宽微波旋磁铁氧体材料及其制备方法 |
CN115537924B (zh) * | 2022-10-11 | 2024-10-15 | 安徽科瑞思创晶体材料有限责任公司 | 一种yig微波滤波晶体及其生长方法 |
CN116535204A (zh) * | 2023-05-06 | 2023-08-04 | 电子科技大学 | Ltcc环形器用低矫顽力yig基板材料及其制备方法 |
CN116903358A (zh) * | 2023-08-10 | 2023-10-20 | 上海阖煦微波技术有限公司 | 一种微波旋磁铁氧体材料及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111825441A (zh) * | 2020-07-27 | 2020-10-27 | 中国电子科技集团公司第九研究所 | 高介电常数、高饱和磁化强度石榴石铁氧体材料、其制备方法及应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112390637A (zh) * | 2020-11-23 | 2021-02-23 | 深圳顺络微波器件有限公司 | 无钇配方的高介电常数微波铁氧体材料及其制备方法和器件 |
-
2021
- 2021-03-26 CN CN202110324952.9A patent/CN113233885B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111825441A (zh) * | 2020-07-27 | 2020-10-27 | 中国电子科技集团公司第九研究所 | 高介电常数、高饱和磁化强度石榴石铁氧体材料、其制备方法及应用 |
Non-Patent Citations (2)
Title |
---|
"微波/毫米波复合YIG低温共烧技术及应用基础研究";贾宁;《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅱ辑》;20200115;C042-20 * |
R. Peña-Garcia等.R. Peña-Garcia等.《Physica E: Low-dimensional Systems and Nanostructures》.2018,第354-360页. * |
Also Published As
Publication number | Publication date |
---|---|
CN113233885A (zh) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113233885B (zh) | 一种低温烧结yig旋磁铁氧体材料及其制备方法 | |
CN111848149B (zh) | 一种高介电常数微波铁氧体材料、制备方法和器件 | |
WO2009148883A2 (en) | Enhanced hexagonal ferrite material and methods of preparation and use thereof | |
CN101880167A (zh) | 水体系化学包覆制备贱金属内电极多层陶瓷片式电容器介质材料 | |
CN111116192B (zh) | 一种微波铁氧体材料、制备方法及微波通信器件 | |
CN105884342B (zh) | Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法 | |
JP2011213578A (ja) | フェライト組成物および電子部品 | |
CN108863336B (zh) | 一种镍系微波铁氧体基片材料及其制备方法 | |
CN110483032B (zh) | 基于ltcc技术的低温烧结yig铁氧体及制备方法 | |
CN113603472B (zh) | 一种基于LTCC技术的NiCuZn铁氧体制备方法 | |
CN114874004A (zh) | 一种高熵六角铁氧体陶瓷及其制备方法 | |
CN108774057B (zh) | 一种用于LTCC环形器的NiCuZn旋磁铁氧体材料及其制备方法 | |
CN110229004B (zh) | 一种低温烧结微波介质陶瓷材料及其制备方法 | |
CN113248265A (zh) | 一种叠层高频电感用材料及其制备方法 | |
JP4204329B2 (ja) | 酸化物磁性材料の製造方法 | |
US5817250A (en) | Magnetodielectric ceramic composite material, method of manufacturing same | |
CN115028443B (zh) | 一种叠层铁氧体电感材料及其制备方法 | |
CN111943691A (zh) | 一种钡钴锌铌体系微波介质陶瓷烧结退火工艺 | |
CN113072371B (zh) | 一种高饱和磁化强度低温烧结LiZn铁氧体材料及其制备方法 | |
CN114890786B (zh) | 一种近零温漂5g陶瓷滤波器材料及其制备方法 | |
JPH0630297B2 (ja) | フェライト焼結体およびチップ部品 | |
CN114956800A (zh) | 一种高性能微波多晶铁氧体材料 | |
JP4587758B2 (ja) | ガラスセラミック基板 | |
CN112794368A (zh) | 一种高磁导率低介电常数的复合材料及其制备方法和用途 | |
CN109053180A (zh) | 一种低温烧结低损耗LiZn铁氧体材料及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |