CN117819956A - 一种LTCC高居里温度NiZn铁氧体基板材料及其制备方法 - Google Patents

一种LTCC高居里温度NiZn铁氧体基板材料及其制备方法 Download PDF

Info

Publication number
CN117819956A
CN117819956A CN202410048349.6A CN202410048349A CN117819956A CN 117819956 A CN117819956 A CN 117819956A CN 202410048349 A CN202410048349 A CN 202410048349A CN 117819956 A CN117819956 A CN 117819956A
Authority
CN
China
Prior art keywords
temperature
substrate material
curie temperature
nizn ferrite
ferrite substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410048349.6A
Other languages
English (en)
Inventor
贾利军
曾甜甜
陈言川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202410048349.6A priority Critical patent/CN117819956A/zh
Publication of CN117819956A publication Critical patent/CN117819956A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明属于电子信息功能材料及微电子器件领域,涉及微波铁氧体材料,具体提供一种LTCC高居里温度NiZn铁氧体基板材料及其制备方法,用以解决现有低温烧结NiCuZn铁氧体基板材料存在的居里温度较低、微波磁损耗与介电损耗偏高、饱和磁化强度与介电常数偏低等缺陷;本发明以Cu掺杂的高Ni/Zn比NiZn铁氧体作为主料,以Bi2O3‑CuO复合低共熔混合物作为辅料,二者低温共烧形成基板材料,不仅具有较低的烧结温度(~900℃),同时还具有优异的微波特性:高的居里温度(~302℃)、低铁磁共振线宽(~100Oe)、低介电损耗(损耗正切值~8×10‑4)以及高饱和磁化强度(~4959Guass),既满足了LTCC工艺要求,又具备微波铁氧体器件所需关键基板材料的优良磁性能。

Description

一种LTCC高居里温度NiZn铁氧体基板材料及其制备方法
技术领域
本发明属于电子信息功能材料及微电子器件领域,涉及微波铁氧体材料,具体提供一种LTCC高居里温度NiZn铁氧体基板材料及其制备方法,可以应用于无线通信技术中微波介质基板、集成基板、微波天线、微波环形器等领域。
背景技术
随着微波和毫米波集成技术的快速发展,无源相控阵系统对微波铁氧体器件高频化、小型化和集成化的要求日益提高,NiZn铁氧体因具有低的微波磁损耗与介电损耗、合适的饱和磁化强度与介电常数等出色的旋磁性能成为制备微波铁氧体器件的关键材料。为了进一步增加NiZn铁氧体在不同工作环境中的应用场景,尤其是温度比较高的时候能够具有足够的稳定性,这就需要NiZn铁氧体材料具有较高的居里温度。目前,对NiZn铁氧体的研究主要集中在射频波段,对微波性能的研究相对较少;理想的微波铁氧体材料通常需要满足以下条件:(a)高居里温度,有利于微波器件的稳定性,使其在高功率的情况下也能稳定工作(b)低的微波磁损耗与介电损耗,可以有效降低微波铁氧体器件的插入损耗,从而抑制信号衰减;(c)高的饱和磁化强度与介电常数,有利于微波器件的小型化。
与此同时,低温共烧陶瓷技术(LTCC技术)作为新一代电子器件的主流制备工艺,在电子器件的高集成化、小型化和模块化方面发挥着重要作用,为了采用低温共烧陶瓷技术(LTCC)实现微波铁氧体器件的小型集成化,通常在NiZn铁氧体中掺杂一定量的低熔点氧化物或玻璃将其烧结温度降低至900℃左右。
目前,围绕NiZn铁氧体材料的低温烧结和微波损耗性能的研究主要集中在低熔点氧化物掺杂改性和基本配方优化方面。如申请号为202211716865.9的发明专利,公开了一种高磁导率高居里温度NiCuZn软磁铁氧体材料及其制备方法,该材料的组分包括主成分和掺杂成分,以质量百分数计,主成分包含有:Fe2O3:66.22wt%~68.65wt%;ZnO:18.30wt%~22.15wt%;NiO:7.75wt%~9.85wt%;余量为CuO;掺杂成分包含Y2O3、MoO3、V2O5和MnCO3,其中,Y2O3、MoO3、V2O5、MnCO3含量分别为主成分质量的0.05wt%~0.10wt%、0.06wt%~0.18wt%、0.05wt%~0.15wt%以及0.04wt%~0.12wt%;该高磁导率高居里温度NiCuZn软磁铁氧体材料磁导率高达2011,居里温度高达145℃,且0.1MHz下,比损耗系数为~28.78×10-6,饱和磁通密度Bs=352mT(4000A/m、10kHz);该方法制得的材料磁学性能较好,但未见微波损耗的相关报导。又如申请号为202311186546.6的发明专利,公开了一种高功率低损耗NiCuZn微波铁氧体材料,所述尖晶石铁氧体包括主配方和添加剂,所述化学通式为:Ni(1-a-b)CuaZnbCocHodFe(2-c-d)O4,其中,0.05≤a≤0.40,0.10≤b≤0.70,0.01≤c≤0.06,0.01≤d≤0.10。添加剂的质量百分比,以氧化物计算为:0.05~0.20wt%Bi2O3,0.05~0.20wt%CaO,0.05~0.20wt%BaTiO3;该发明属于微波铁氧体材料制备技术领域,通过进行快弛豫离子Co2+和Ho3+取代,制备的高功率低损耗NiCuZn微波铁氧体饱和磁化强度4πMs稳定在4.9kGs±5%,有较小的铁磁共振线宽ΔH:120~235Oe,较低的介电损耗tanδε:≤3.81×10-4,自旋波线宽ΔHk在24.8~33.0Oe范围内,兼具高自旋波线宽ΔHk、低铁磁共振线宽ΔH以及更低的介电损耗tanδε,但未涉及材料居里温度特性的报道。再如文献“Reimann T,Capraro B,Bartsch H et al.Ni-Cu-Zn ferrites with high Curietemperature for multilayer inductors with increased operating temperatures[J].International Journal of Applied Ceramic Technology,2020,18(1):129-137”中通过调整配方中镍铜的比例实现了高居里温度(307℃),起始磁导率为135~250,该方法制得样品的起始磁导率偏低,且未见微波损耗以及烧结过程的报道;文献“X.R.Ji,C.Shen,Y.Zhao,H.Zheng,Q.Wu,Q.Y.Zhang,L.Zheng,P.Zheng,Y.Zhang,Enhancedelectromagnetic properties of low-temperature sintered NiCuZn ferrites bydoping with Bi2O3,Ceramics International,48(2022)20315-20323”中通过在NiCuZn铁氧体中掺杂适量Bi2O3,获得了比磁化强度60.35emu/g,居里温度为155℃的材料,但其并未对材料的微波磁损耗进行报道。
综上所述,适应LTCC环形器小型集成化、高性能应用需求,改善铁氧体基板的综合性能指标(高居里温度、高饱和磁感应强度、低微波损耗等)亟需更优的解决方案;因此,本发明提供一种LTCC高居里温度NiZn铁氧体基板材料及其制备方法,在实现低铁磁共振线宽、低介电损耗及高饱和磁化强度的目标下,显著提高NiZn铁氧体的居里温度,并将烧结温度降至银电极熔点以下,使其满足LTCC的应用。
发明内容
本发明的目的在于提供一种LTCC高居里温度NiZn铁氧体基板材料及其制备方法,用以解决现有低温烧结NiCuZn铁氧体基板材料存在的居里温度较低、微波磁损耗与介电损耗偏高、饱和磁化强度与介电常数偏低等缺陷;本发明以Cu掺杂的高Ni/Zn比NiZn铁氧体作为主料,以Bi2O3-CuO复合低共熔混合物作为辅料,二者低温共烧形成所述LTCC高居里温度NiZn铁氧体基板材料,该基板材料不仅具有较低的烧结温度(~900℃),同时还具有优异的微波特性:高的居里温度(302℃)、低铁磁共振线宽(100Oe)、低介电损耗(损耗正切值8×10-4)以及高饱和磁化强度(4959Guass),既满足了LTCC工艺要求,又具备微波铁氧体器件所需关键基板材料的优良磁性能。
为实现上述目的,本发明采用的技术方案为:
一种LTCC高居里温度NiZn铁氧体基板材料,由主料A与辅料B低温共烧而成,其特征在于:
所述主料A的分子式为:(Ni0.55-xCuxZn0.45O)1.03(Fe2O3)0.97,其中,0.0≤x≤0.15;
所述辅料B为Bi2O3-CuO复合低共熔混合物,其中,Bi2O3的含量为42wt%,CuO的含量为58wt%;
所述辅料B占主料A的质量百分比为:0.5wt%。
进一步的,上述LTCC高居里温度NiZn铁氧体基板材料的制备方法,其特征在于,包括以下步骤:
步骤1、以氧化铁(Fe2O3)、氧化锌(ZnO)、氧化镍(NiO)、氧化铜(CuO)作为原料,按照分子式(Ni0.55-xCuxZn0.45O)1.03(Fe2O3)0.97、0.0≤x≤0.15的化学计量比进行称料,经过一次球磨后得到一次混合浆料,再依次经过烘干、过筛后得到原料混合粉体;
步骤2、将步骤1所得原料混合粉体于850℃~900℃下预烧1.5h~2.5h,随炉冷却至室温后得到预烧粉料;
步骤3、向步骤2所得预烧粉料中加入0.5wt%的Bi2O3-CuO复合低共熔混合物,经过二次球磨后得到二次混合浆料,再依次经过烘干、研磨、造粒、过筛、成型得到环形素坯样品;
步骤4、将步骤3所得环形素坯样品置于烧结炉中,在880℃~920℃温度下烧结4~6小时,随炉自然冷却至室温后得到LTCC高居里温度NiZn铁氧体基板材料。
更进一步的,步骤1中,一次球磨采用行星式球磨机,球磨机转速为200~350rad/min,球磨时间为5~6h。
更进一步的,步骤1与步骤3中烘干的温度为60~150℃。
更进一步的,步骤3中,二次球磨采用行星式球磨机,球磨机转速为200~350rad/min,球磨时间为8~12h。
更进一步的,步骤3中,造粒过程为:向研磨所得粉料中加入占粉料8~10wt%的聚乙烯醇(PVA)水溶液进行造粒。
更进一步的,步骤3中,成型过程为:采用液压机在8~10Mpa压力下压制成环形素坯样品。
更进一步的,步骤4中,烧结的温度变化速率为1~5℃/min。
与现有技术相比,本发明的有益效果在于:
本发明提供一种LTCC高居里温度NiZn铁氧体基板材料,由主料NiZn铁氧体和Bi2O3-CuO复合低共熔混合物低温共烧而成;在NiCuZn铁氧体中,Cu2+和Ni2+对八面体B位有强烈的偏好,Zn2+对四面体A位有强烈的偏好,减少非磁性Zn2+的加入可以有效增强A-B位的超交换作用,从而有效提高材料的居里温度和饱和磁化强度;在此理论基础上,本发明采用高Ni/Zn比的主配方,可以大大提高所制备的铁氧体材料的居里温度;同时,通过调控Cu2+的掺杂量,Cu2+不仅作为掺杂离子,可以直接影响NiZn铁氧体的晶格结构,同时CuO还可促进固相反应的完成。
Bi2O3-CuO作为复合低共熔混合物,两者具有不同熔点,在烧结过程中Bi2O3-CuO混合物会率先形成共晶化合物并熔化形成液相,促进了晶粒在烧结过程中的运动、排列,不仅可以有效降低铁氧体的烧结温度,同时适量的Bi2O3-CuO混合物还可有效促进固相反应的完成,使得铁氧体材料产生双重致密的显微结构,该结构可有效提高材料的致密度,进而有效降低材料的微波损耗;最终实现材料获得高居里温度、高饱和磁化强度和低微波损耗的综合优良旋磁性能,为微波电子元器件向高频化、轻量化发展提供了一种有效的解决方案。
综上所述,本发明具有如下优点:
1、本发明采用高Ni/Zn比的主配方,可以有效增强A-B位的超交换作用,从而有效提高材料的居里温度和饱和磁化强度;同时,通过调控Cu2+的取代量,可以有效促进了NiZn铁氧体固相反应完成和致密化过程;
2、本发明通过在NiCuZn铁氧体中掺杂适量的Bi2O3-CuO复合低共熔混合物,不仅有效降低了材料的烧结温度,同时还促进了NiCuZn铁氧体固相反应完成和致密化过程,使得NiCuZn铁氧体获得了均匀致密的双重显微结构,该结构可有效降低材料微波的损耗;
3、本发明制备得到的LTCC高居里温度NiZn铁氧体基板材料,除了具有较低的烧结温度(~900℃)外,同时还具有良好的微波特性:高的居里温度(302℃)、低铁磁共振线宽(100Oe)、低介电损耗(损耗正切值8×10-4)和高饱和磁化强度(4959Guass),既满足了LTCC工艺要求,又具备微波铁氧体器件所需关键基板材料的优良磁性能;尤其是居里温度,相对于现有低温烧结NiCuZn铁氧体基板材料,由145℃提升至300℃左右,居里温度的大幅度提升能够使得NiZn铁氧体在温度比较高的工作环境中具有足够的稳定性;
4、本发明还提供上述高居里温度NiZn铁氧体基板材料的制备方法,其制备工艺简单,并且原料丰富、成本低廉、密度较小,有利于工业化应用;
5、本发明提供的高居里温度、高饱和磁化强度的NiZn铁氧体材料可作为K波段环形器的关键材料,在微波通信、雷达系统、卫星通信等领域具有重要应用前景。
附图说明
图1为本发明实施例1制备得到的NiZn铁氧体材料的SEM图。
图2为本发明实施例2制备得到的NiZn铁氧体材料的SEM图。
图3为本发明实施例3制备得到的NiZn铁氧体材料的SEM图。
图4为本发明对比例1制备得到的NiZn铁氧体材料的SEM图。
具体实施方式
为使本发明目的、技术方案与有益效果更加清楚明白,下面结合附图和实施例对本发明做进一步详细说明。
实施例1
本发明提供一种LTCC高居里温度NiZn铁氧体基板材料,用以作为LTCC环形器用复合铁氧体基板材料;具体由由主料A与辅料B低温共烧而成,所述主料A的分子式为:(Ni0.55- xCuxZn0.45O)1.03(Fe2O3)0.97,x=0.07;所述辅料B为Bi2O3-CuO复合低共熔混合物,其中,Bi2O3的含量为42wt%,CuO的含量为58wt%;所述辅料B占主料A的质量百分比为:0.5wt%。
上述LTCC高居里温度NiZn铁氧体基板材料由以下步骤制备:
步骤1、以分析纯的氧化铁(Fe2O3)、氧化锌(ZnO)、氧化镍(NiO)、氧化铜(CuO)作为原料,按照分子式计算出各原料的质量后进行称料,然后将称好的粉料放入行星式球磨机中进行一次球磨,球磨机转速为200~350rad/min,一次球磨时间为5~6h;将一次球磨料于60~150℃下烘干,再过筛得到原料混合粉体;
步骤2、将步骤1所得原料混合粉体放入刚玉坩埚中,在850℃~900℃下预烧1.5h~2.5h,随炉冷却至室温后得到预烧粉料;
步骤3、向步骤2所得预烧粉料中加入0.5wt%的Bi2O3-CuO复合低共熔混合物,并放入行星式球磨机中进行二次球磨,球磨机转速为200~350rad/min,二次球磨时间为8~12h;将二次球磨料于60~150℃下烘干,再过筛后加入相当于粉料8~10wt%的聚乙烯醇(PVA)水溶液进行造粒,然后用液压机在8~10Mpa压力下压制成环形素坯样品;
步骤4、将步骤3所得环形素坯样品放入烧结炉中,以1~5℃/min的速率升温至880℃~920℃,保温4~6h,烧结完成后随炉自然冷却至室温,得到LTCC高居里温度NiZn铁氧体基板材料。
对本实施例制备得到的LTCC高居里温度NiZn铁氧体基板材料进行测试,其SEM图如图1所示,具体性能为:居里温度为308℃,饱和磁化强度为4748Guass,铁磁共振线宽为198Oe,介电损耗为2.4×10-3
实施例2
本实施例与实施例1的唯一区别在于:x=0.11;对本实施例制备得到的LTCC高居里温度NiZn铁氧体基板材料进行测试,其SEM图如图2所示,具体性能为:居里温度为302℃,饱和磁化强度为4959Guass,铁磁共振线宽为100Oe,介电损耗为8×10-4
实施例3
本实施例与实施例1的唯一区别在于:x=0.13;对本实施例制备得到的LTCC高居里温度NiZn铁氧体基板材料进行测试,其SEM图如图3所示,具体性能为:居里温度为299℃,饱和磁化强度为4843Guass,铁磁共振线宽为116Oe,介电损耗为1.7×10-3
对比例1
本对比例与实施例1的唯一区别在于:x=0;对本实施例制备得到的LTCC高居里温度NiZn铁氧体基板材料进行测试,其SEM图如图4所示,具体性能为:居里温度为323℃,饱和磁化强度为3786Guass,铁磁共振线宽为808Oe,介电损耗为5.6×10-3
下面对实施例1~3与对比例1中NiZn铁氧体材料进行对比说明,其结果如下:
如图1~图4为实施例1~3与对比例1中NiZn铁氧体材料的SEM图,由图可见,适量的Cu2+取代可以有效提高样品的致密度,促进NiZn铁氧体晶粒的生长。
如表1所示为实施例1~3与对比例1制备得到的NiZn铁氧体材料的居里温度、饱和磁化强度、铁磁共振线宽、介电损耗的对比表;
表1
实例 居里温度(Tc) 4πMs ΔH(Oe) tanδε
实施例1 308 4748 198 2.4×10-3
实施例2 320 4959 100 8×10-4
实施例3 299 4843 116 1.7×10-3
对比例 323 3786 808 5.6×10-3
由表1可见,通过掺杂适量的Cu2+离子,促进了NiZn铁氧体固相反应的完成,有效降低了材料的气孔率,在保障材料具有较高具有较高居里温度的前提下,使得材料获得了高的饱和磁化强度、低的铁磁共振线宽和低的介电损耗。
综合考量后认为实施例2中NiZn铁氧体材料的综合性能最佳,但相较于现有低温烧结NiCuZn铁氧体基板材料,本发明中任一实施例的性能都显著提升,尤其是居里温度;由此可见,本发明为微波电子元器件向高频化、轻量化、集成化发展提供了一种新的解决方案。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (8)

1.一种LTCC高居里温度NiZn铁氧体基板材料,由主料A与辅料B低温共烧而成,其特征在于:
所述主料A的分子式为:(Ni0.55-xCuxZn0.45O)1.03(Fe2O3)0.97,其中,0.0≤x≤0.15;
所述辅料B为Bi2O3-CuO复合低共熔混合物,其中,Bi2O3的含量为42wt%,CuO的含量为58wt%;
所述辅料B占主料A的质量百分比为:0.5wt%。
2.按权利要求1所述LTCC高居里温度NiZn铁氧体基板材料的制备方法,其特征在于,包括以下步骤:
步骤1、以氧化铁(Fe2O3)、氧化锌(ZnO)、氧化镍(NiO)、氧化铜(CuO)作为原料,按照分子式(Ni0.55-xCuxZn0.45O)1.03(Fe2O3)0.97、0.0≤x≤0.15的化学计量比进行称料,经过一次球磨后得到一次混合浆料,再依次经过烘干、过筛后得到原料混合粉体;
步骤2、将步骤1所得原料混合粉体于850℃~900℃下预烧1.5h~2.5h,随炉冷却至室温后得到预烧粉料;
步骤3、向步骤2所得预烧粉料中加入0.5wt%的Bi2O3-CuO复合低共熔混合物,经过二次球磨后得到二次混合浆料,再依次经过烘干、研磨、造粒、过筛、成型得到环形素坯样品;
步骤4、将步骤3所得环形素坯样品置于烧结炉中,在880℃~920℃温度下烧结4~6小时,随炉自然冷却至室温后得到LTCC高居里温度NiZn铁氧体基板材料。
3.按权利要求2所述LTCC高居里温度NiZn铁氧体基板材料的制备方法,其特征在于,步骤1中,一次球磨采用行星式球磨机,球磨机转速为200~350rad/min,球磨时间为5~6h。
4.按权利要求2所述LTCC高居里温度NiZn铁氧体基板材料的制备方法,其特征在于,步骤1与步骤3中烘干的温度为60~150℃。
5.按权利要求2所述LTCC高居里温度NiZn铁氧体基板材料的制备方法,其特征在于,步骤3中,二次球磨采用行星式球磨机,球磨机转速为200~350rad/min,球磨时间为8~12h。
6.按权利要求2所述LTCC高居里温度NiZn铁氧体基板材料的制备方法,其特征在于,步骤3中,造粒过程为:向研磨所得粉料中加入占粉料8~10wt%的聚乙烯醇(PVA)水溶液进行造粒。
7.按权利要求2所述LTCC高居里温度NiZn铁氧体基板材料的制备方法,其特征在于,步骤3中,成型过程为:采用液压机在8~10Mpa压力下压制成环形素坯样品。
8.按权利要求2所述LTCC高居里温度NiZn铁氧体基板材料的制备方法,其特征在于,步骤4中,烧结的温度变化速率为1~5℃/min。
CN202410048349.6A 2024-01-12 2024-01-12 一种LTCC高居里温度NiZn铁氧体基板材料及其制备方法 Pending CN117819956A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410048349.6A CN117819956A (zh) 2024-01-12 2024-01-12 一种LTCC高居里温度NiZn铁氧体基板材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410048349.6A CN117819956A (zh) 2024-01-12 2024-01-12 一种LTCC高居里温度NiZn铁氧体基板材料及其制备方法

Publications (1)

Publication Number Publication Date
CN117819956A true CN117819956A (zh) 2024-04-05

Family

ID=90517439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410048349.6A Pending CN117819956A (zh) 2024-01-12 2024-01-12 一种LTCC高居里温度NiZn铁氧体基板材料及其制备方法

Country Status (1)

Country Link
CN (1) CN117819956A (zh)

Similar Documents

Publication Publication Date Title
Xu et al. Investigation of grain boundary diffusion and grain growth of lithium zinc ferrites with low activation energy
CN109867518B (zh) 一种高温度稳定性的石榴石铁氧体及其制备方法
CN111825441A (zh) 高介电常数、高饱和磁化强度石榴石铁氧体材料、其制备方法及应用
CN111499369B (zh) 一种Ku波段用高功率旋矩铁氧体材料及其制备方法
CN115385680B (zh) 一种高介低线宽微波旋磁铁氧体材料及其制备方法
CN101723657A (zh) 一种NiCuZn微波铁氧体材料的制备方法
CN105236948B (zh) Ka波段环行器用NiCuZn铁氧体厚膜材料制备方法
CN105884342A (zh) Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法
CN111517789A (zh) 一种低介电微波介质陶瓷材料及其制备方法
CN112898008A (zh) 一种低损耗yig铁氧体及其制备方法
CN110483032B (zh) 基于ltcc技术的低温烧结yig铁氧体及制备方法
CN113501708A (zh) 一种Li系尖晶石微波铁氧体材料及其制备方法
CN106946559B (zh) 尖晶石复合铁氧体材料及制备方法
CN108774057B (zh) 一种用于LTCC环形器的NiCuZn旋磁铁氧体材料及其制备方法
CN115057697B (zh) 一种低线宽的w型六角晶系微波铁氧体材料的制备方法
CN115477534B (zh) Ku波段自偏置器件用双相复合铁氧体材料及其制备方法
CN115180935B (zh) 一种毫米波ltcf生瓷带制备方法
CN114702310B (zh) 低损耗尖晶石微波铁氧体材料及其制备方法
CN113072371B (zh) 一种高饱和磁化强度低温烧结LiZn铁氧体材料及其制备方法
Huo et al. Microstructure, magnetic, and power loss characteristics of low‐sintered NiCuZn ferrites with La2O3‐Bi2O3 additives
CN117819956A (zh) 一种LTCC高居里温度NiZn铁氧体基板材料及其制备方法
Xie et al. Low-firing Li 0.42 Zn 0.27 Ti 0.11 Mn 0.1 Fe 2.1 O 4 ceramics modified with V 2 O 5–ZnO–B 2 O 3 glass addition for microwave device application
CN109053180A (zh) 一种低温烧结低损耗LiZn铁氧体材料及制备方法
CN116396069B (zh) 一种非磁场取向的织构化六角铁氧体材料的制备方法
CN116813322B (zh) 一种高介电常数旋矩铁氧体材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination