CN115403366B - 一种掺杂锂的镍锌铁氧体材料及其制备方法 - Google Patents

一种掺杂锂的镍锌铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN115403366B
CN115403366B CN202211019137.2A CN202211019137A CN115403366B CN 115403366 B CN115403366 B CN 115403366B CN 202211019137 A CN202211019137 A CN 202211019137A CN 115403366 B CN115403366 B CN 115403366B
Authority
CN
China
Prior art keywords
lithium
zinc ferrite
ferrite material
doped nickel
citric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211019137.2A
Other languages
English (en)
Other versions
CN115403366A (zh
Inventor
张洪良
李文婷
丁兴雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202211019137.2A priority Critical patent/CN115403366B/zh
Publication of CN115403366A publication Critical patent/CN115403366A/zh
Application granted granted Critical
Publication of CN115403366B publication Critical patent/CN115403366B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2616Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing lithium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种掺杂锂的镍锌铁氧体材料及其制备方法,本发明掺杂锂的镍锌铁氧体材料其化学式为Ni0.3LixZn0.7‑xFe2O4,其中x=0.025~0.5,本发明方法以Ni0.3Zn0.7Fe2O4铁氧体为基础,通过Li+取代部分Zn2+以改善材料的磁性能。其制备方法为:先采用溶胶凝胶自蔓延燃烧法制备前驱体,经过预烧、研磨、成型和特定的烧结程序最终形成。本工艺可精确控制化学成分,操作简单,无废料污染问题,所得材料可以同时获得高磁导率和高饱和磁化强度,为功率电感器件提供关键材料,对进一步促进器件的小型化、集成化发展具有重要意义。

Description

一种掺杂锂的镍锌铁氧体材料及其制备方法
技术领域
本发明属于软磁铁氧体材料技术领域,具体涉及一种掺杂锂的镍锌铁氧体材料的制备方法。
背景技术
随着5G时代的到来,工业4.0和汽车电动化的继续推进,新一代宽禁带半导体在电子电力器件的应用将越来越广泛,涵盖智能家居、智能手机、可穿戴设备和新能源汽车等生活的方方面面。与此同时,这也对与其协同工作的电感器件提出了更高的要求,即小型化、高频化和高功率。
电感器件的核心是软磁材料。在目前的软磁材料中,镍锌铁氧体由于使用频率较高、损耗低以及制备简单等优点,被广泛应用于功率电感器件中。但镍锌铁氧体也存在磁导率低、饱和磁化强度低的缺点。材料的高磁导率对减小器件尺寸意义深远,而饱和磁通密度决定了功率转换器件传输的功率上限。因此,亟需对镍锌铁氧体进行改性研究,以满足电子通讯、5G应用的小型化、高功率、高效率的持续需求。此外,材料性能也会受到制备方法、工艺条件等因素的影响。
发明内容
本发明的目的在于提供一种掺杂锂的镍锌铁氧体材料及其制备方法,
本发明掺杂锂的镍锌铁氧体材料,其化学式为Ni0.3LixZn0.7-xFe2O4,其中x=0.025~0.5。
优选的,本发明掺杂锂的镍锌铁氧体材料,其化学式为Ni0.3LixZn0.7-xFe2O4,其中x=0.025~0.3。
进一步地,本发明掺杂锂的镍锌铁氧体材料,其化学式为Ni0.3LixZn0.7-xFe2O4,其中x=0.05~0.1。
本发明掺杂锂的镍锌铁氧体材料的制备方法,包括如下步骤:
(1)称取硝酸铁、硝酸镍、硝酸锌、硝酸锂溶于去离子水,充分搅拌后加入柠檬酸,控制柠檬酸与溶液中金属离子的摩尔比为1-2:1-2,继续搅拌0.5~1h;
(2)量取氨水,逐滴加入,搅拌0.5~1h,氨水与柠檬酸的摩尔比为2.5-3.5:0.5-1.5;在90~100℃的油浴中加热至自蔓延燃烧,生成蓬松的棕褐色粉体;
(3)将上述棕褐色粉体置于马弗炉中预烧;预烧升温速率为8~10℃/min,预烧温度为200~400℃,预烧时间为6~12h;
(4)研磨,造粒,压制成型;
(5)将压制好的材料置于马弗炉中烧结,烧结升温速率为5~10℃/min,烧结温度为1000~1300℃,烧结时间为6~8h,即得掺杂锂的镍锌铁氧体材料。
作为优选方案,步骤(1)中,柠檬酸与溶液中金属离子的摩尔比为1:1。
作为优选方案,步骤(2)当中,氨水与柠檬酸的摩尔比为3:1。
优选的,步骤(3)当中,预烧升温速率为8~10℃/min,预烧温度为200~400℃,预烧时间为6~12h。
优选的,步骤(4)中,研磨后的粉体加入含有酚醛环氧树脂的胶水造粒。
优选的,步骤(4)当中,含有酚醛环氧树脂的胶水为15ml酚醛环氧树脂F51、10ml固化剂和25ml乙醇的混合溶液。
优选的,胶水与粉体的比例为5~10%,压制的压力为2~4MPa。
本发明原理为:因镍锌铁氧体中存在易变价的Ni和Fe离子,若采用低价离子(一价离子)掺杂可引入空穴,促使八面体位点的Fe2+转变为磁矩更大的Fe3+,增强了四面体、八面体位点的交换作用,有利于饱和磁化强度的增大。而且,部分空穴与晶体中的磁性离子也存在超交换作用。因此,本发明提出在不改变原有磁性离子的情况下,以同样非磁性的Li+代替部分Zn2+,可能会提高材料的饱和磁化强度。同时,采用溶胶凝胶自蔓延燃烧法,实现原子级混合,可精确控制化学计量比,合成过程无废料无污染,且工艺过程简单。
与现有技术相比,本发明具有的有益效果是:磁导率在烧结温度为1200℃、Li掺杂量为0.05时达到1793.0,此时饱和磁化强度为57.8emu/g,成功制备了一种具有高磁导率、高饱和磁化强度的镍锌铁氧体材料,与国内外代表性企业的镍锌铁氧体产品相比富有竞争力。且制备工艺简单环保,可用于制备功率电感器件,有望实现器件的小型化和高功率的应用。
附图说明
图1为本发明实施例与对比例的XRD谱图;
图2为本发明实施例1制备的掺锂镍锌铁氧体标准环的SEM形貌图;
图3为本发明实施例2制备的掺锂镍锌铁氧体标准环的SEM形貌图;
图4为本发明对比例1制备的纯镍锌铁氧体标准环的SEM形貌图;
图5为本发明实施例与对比例的磁频谱图;
图6为本发明实施例与对比例的磁滞回线。
具体实施方式
下面根据具体的实施例详细的描述本发明。
实施例1
(1)按掺锂镍锌铁氧体Ni0.3Li0.05Zn0.65Fe2O4的化学计量摩尔比称取Ni(NO3)2·6H2O、Zn(NO3)2·6H2O、Fe(NO3)3·9H2O、LiNO3溶于去离子水中,搅拌0.5h后加入柠檬酸,控制柠檬酸与溶液中金属离子的摩尔比为1:1,继续搅拌1h;
(2)量取一定量的氨水,控制氨水与柠檬酸的摩尔比为3:1,逐滴加入,搅拌1h,在90~100℃的油浴中加热至自蔓延燃烧,生成蓬松的棕褐色粉体;
(3)将上述棕褐色粉体置于马弗炉中预烧,以10℃/min的速度升温到200℃保温12h,得到锂掺杂镍锌铁氧体的预烧粉料;
(4)将此预烧粉料进行研磨,加入5%的酚醛环氧树脂胶水(含有酚醛环氧树脂的胶水为15ml酚醛环氧树脂F51、10ml固化剂(环氧树脂固化剂594)和25ml乙醇的混合溶液)混合均匀,在2.5MPa的压力下压制成型;
(5)将压制好的环形磁芯置于马弗炉中烧结,以10℃/min的速度升温到1200℃保温7h,即得掺杂锂的镍锌铁氧体材料。所制备材料的表征及性能如图1、图2、图5和图6所示。可见100kHz下,锂掺杂量x=0.05的镍锌铁氧体磁导率为1793.0,与在相同条件下制备的纯Ni0.3Zn0.7Fe2O4相比提高了约32%,饱和磁化强度也有提升。
实施例2
(1)按掺锂镍锌铁氧体Ni0.3Li0.1Zn0.6Fe2O4的化学计量摩尔比称取Ni(NO3)2·6H2O、Zn(NO3)2·6H2O、Fe(NO3)3·9H2O、LiNO3溶于去离子水中,搅拌0.5h后加入柠檬酸,控制柠檬酸与溶液中金属离子的摩尔比为1:1,继续搅拌1h;
(2)量取一定量的氨水,控制氨水与柠檬酸的摩尔比为3:1,逐滴加入,搅拌1h,在90~100℃的油浴中加热至自蔓延燃烧,生成蓬松的棕褐色粉体;
(3)将上述棕褐色粉体置于马弗炉中预烧,以10℃/min的速度升温到200℃保温12h,得到锂掺杂镍锌铁氧体的预烧粉料;
(4)将此预烧粉料进行研磨,加入5%的酚醛环氧树脂胶水(同实施例1)混合均匀,在2.5MPa的压力下压制成型;
(5)将压制好的环形磁芯置于马弗炉中烧结,以10℃/min的速度升温到1200℃保温7h,即得掺杂锂的镍锌铁氧体材料。所制备材料的表征及性能如图1、图3、图5和图6所示。可见100kHz下,锂掺杂量x=0.1的镍锌铁氧体磁导率为1396.9,与纯Ni0.3Zn0.7Fe2O4相比有提升,而饱和磁化强度提高了约39%。
对比例1
(1)按镍锌铁氧体Ni0.3Zn0.7Fe2O4的化学计量摩尔比称取Ni(NO3)2·6H2O、Zn(NO3)2·6H2O、Fe(NO3)3·9H2O溶于去离子水中,搅拌0.5h后加入柠檬酸,控制柠檬酸与溶液中金属离子的摩尔比为1:1,继续搅拌1h;
(2)量取一定量的氨水,控制氨水与柠檬酸的摩尔比为3:1,逐滴加入,搅拌1h,在90~100℃的油浴中加热至自蔓延燃烧,生成蓬松的棕褐色粉体;
(3)将上述棕褐色粉体置于马弗炉中预烧,以10℃/min的速度升温到200℃保温12h,得到纯镍锌铁氧体的预烧粉料;
(4)将此预烧粉料进行研磨,加入5%的酚醛环氧树脂胶水(同实施例1)混合均匀,在2.5MPa的压力下压制成型;
(5)将压制好的环形磁芯置于马弗炉中烧结,以10℃/min的速度升温到1200℃保温7h,即得纯镍锌铁氧体材料。所制备材料的表征及性能如图1、图4、图5和图6所示。

Claims (10)

1.一种掺杂锂的镍锌铁氧体材料,其化学式为Ni0.3LixZn0.7-xFe2O4,其中x=0.025~0.5;所述掺杂锂的镍锌铁氧体材料的制备方法,包括如下步骤:
(1)称取硝酸铁、硝酸镍、硝酸锌、硝酸锂溶于去离子水,充分搅拌后加入柠檬酸,控制柠檬酸与溶液中金属离子的摩尔比为1-2:1-2,继续搅拌0.5~1h;
(2)量取氨水,逐滴加入,搅拌0.5~1h,氨水与柠檬酸的摩尔比为2.5-3.5:0.5-1.5;在90~100℃的油浴中加热至自蔓延燃烧,生成蓬松的棕褐色粉体;
(3)将上述棕褐色粉体置于马弗炉中预烧;预烧升温速率为8~10℃/min,预烧温度为200~400℃,预烧时间为6~12h;
(4)研磨,造粒,压制成型;
(5)将压制好的材料置于马弗炉中烧结,烧结升温速率为5~10℃/min,烧结温度为1000~1300℃,烧结时间为6~8h,得掺杂锂的镍锌铁氧体材料。
2.如权利要求1所述的一种掺杂锂的镍锌铁氧体材料,其化学式为Ni0.3LixZn0.7-xFe2O4,其中x=0.025~0.3。
3.如权利要求1所述的一种掺杂锂的镍锌铁氧体材料,其化学式为Ni0.3LixZn0.7-xFe2O4,其中x=0.05~0.1。
4.如权利要求1或2或3所述的一种掺杂锂的镍锌铁氧体材料在制备功率转换器件中的应用。
5.如权利要求1或2或3所述的掺杂锂的镍锌铁氧体材料的制备方法,包括如下步骤:
(1)称取硝酸铁、硝酸镍、硝酸锌、硝酸锂溶于去离子水,充分搅拌后加入柠檬酸,控制柠檬酸与溶液中金属离子的摩尔比为1-2:1-2,继续搅拌0.5~1h;
(2)量取氨水,逐滴加入,搅拌0.5~1h,氨水与柠檬酸的摩尔比为2.5-3.5:0.5-1.5;在90~100℃的油浴中加热至自蔓延燃烧,生成蓬松的棕褐色粉体;
(3)将上述棕褐色粉体置于马弗炉中预烧;预烧升温速率为8~10℃/min,预烧温度为200~400℃,预烧时间为6~12h;
(4)研磨,造粒,压制成型;
(5)将压制好的材料置于马弗炉中烧结,烧结升温速率为5~10℃/min,烧结温度为1000~1300℃,烧结时间为6~8h,得掺杂锂的镍锌铁氧体材料。
6.根据权利要求5所述的掺杂锂的镍锌铁氧体材料的制备方法,其特征在于:步骤(1)中,柠檬酸与溶液中金属离子的摩尔比为1:1。
7.根据权利要求5所述的掺杂锂的镍锌铁氧体材料的制备方法,其特征在于:步骤(2)当中,氨水与柠檬酸的摩尔比为3:1。
8.根据权利要求5所述的掺杂锂的镍锌铁氧体材料的制备方法,其特征在于:步骤(4)中,研磨后的粉体加入含有酚醛环氧树脂的胶水造粒。
9.根据权利要求8所述的掺杂锂的镍锌铁氧体材料的制备方法,其特征在于:步骤(4)中,含有酚醛环氧树脂的胶水为15mL酚醛环氧树脂 F51、10mL固化剂和25mL乙醇的混合溶液。
10.根据权利要求9所述的掺杂锂的镍锌铁氧体材料的制备方法,其特征在于:混合溶液与粉体的比例为5~10%,压制的压力为2~4MPa。
CN202211019137.2A 2022-08-24 2022-08-24 一种掺杂锂的镍锌铁氧体材料及其制备方法 Active CN115403366B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211019137.2A CN115403366B (zh) 2022-08-24 2022-08-24 一种掺杂锂的镍锌铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211019137.2A CN115403366B (zh) 2022-08-24 2022-08-24 一种掺杂锂的镍锌铁氧体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115403366A CN115403366A (zh) 2022-11-29
CN115403366B true CN115403366B (zh) 2023-05-12

Family

ID=84160953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211019137.2A Active CN115403366B (zh) 2022-08-24 2022-08-24 一种掺杂锂的镍锌铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115403366B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221363A (ja) * 1984-04-17 1985-11-06 富士電気化学株式会社 酸化物磁性材料
WO1998012151A1 (en) * 1996-09-18 1998-03-26 Minnesota Mining And Manufacturing Company Method for making abrasive grain using impregnation, and abrasive articles
CN102603279A (zh) * 2012-03-07 2012-07-25 天通控股股份有限公司 一种高强度高Bs镍锌铁氧体及其制备方法
CN102875140A (zh) * 2012-10-12 2013-01-16 中国航空工业集团公司北京航空材料研究院 一种镍锌铁氧体粉末及其制备方法
CN108373327A (zh) * 2018-04-18 2018-08-07 成都信息工程大学 一种镍锌铈铁氧体软磁材料及其制备方法
CN110395976A (zh) * 2019-08-22 2019-11-01 安阳师范学院 一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法
CN112159219A (zh) * 2020-09-29 2021-01-01 成都信息工程大学 掺杂钇的镍锌钴铁氧体及其制备方法
CN113072371A (zh) * 2021-03-26 2021-07-06 电子科技大学 一种高饱和磁化强度低温烧结LiZn铁氧体材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835463B2 (en) * 2002-04-18 2004-12-28 Oakland University Magnetoelectric multilayer composites for field conversion
CN100480187C (zh) * 2006-11-07 2009-04-22 浙江大学 一种镍锌铁氧体材料及其制备方法
CN101475368A (zh) * 2009-01-09 2009-07-08 东华大学 一种醇热法制备镍锌铁氧体(NixZn1-xFe2O4)磁性纳米粉体的方法
CN104788089B (zh) * 2014-05-30 2019-07-02 安徽华林磁电科技有限公司 一种纳米LiZn铁氧体材料
CN106410186B (zh) * 2016-11-17 2019-01-25 天津理工大学 一种富锂层状氧化物正极材料的制备方法及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221363A (ja) * 1984-04-17 1985-11-06 富士電気化学株式会社 酸化物磁性材料
WO1998012151A1 (en) * 1996-09-18 1998-03-26 Minnesota Mining And Manufacturing Company Method for making abrasive grain using impregnation, and abrasive articles
CN102603279A (zh) * 2012-03-07 2012-07-25 天通控股股份有限公司 一种高强度高Bs镍锌铁氧体及其制备方法
CN102875140A (zh) * 2012-10-12 2013-01-16 中国航空工业集团公司北京航空材料研究院 一种镍锌铁氧体粉末及其制备方法
CN108373327A (zh) * 2018-04-18 2018-08-07 成都信息工程大学 一种镍锌铈铁氧体软磁材料及其制备方法
CN110395976A (zh) * 2019-08-22 2019-11-01 安阳师范学院 一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法
CN112159219A (zh) * 2020-09-29 2021-01-01 成都信息工程大学 掺杂钇的镍锌钴铁氧体及其制备方法
CN113072371A (zh) * 2021-03-26 2021-07-06 电子科技大学 一种高饱和磁化强度低温烧结LiZn铁氧体材料及其制备方法

Also Published As

Publication number Publication date
CN115403366A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
CN105418072B (zh) 铁氧体材料与MXenes的复合材料、其制备方法及应用
CN104505209B (zh) 一种金属软磁复合粉芯及其制备方法
CN103058643B (zh) 宽温高叠加低功耗Mn-Zn软磁铁氧体材料及制备方法
CN104891982A (zh) 一种稀土高磁导率软磁铁氧体及其制备方法
CN108558385B (zh) 宽温高效率软磁铁氧体材料及磁芯制备方法和应用
CN103725951B (zh) 一种微波烧结制备纳米晶软磁材料的方法
CN102745982B (zh) 一种纳米ato/纳米铁氧体复合吸波材料的制备方法
CN104891977A (zh) 一种高频细晶粒软磁铁氧体磁体材料及其制备方法
CN106571205B (zh) 低损耗铁硅镍磁粉芯复合材料的制备方法
CN110668806A (zh) 一种高频率用软磁铁氧体的制备方法
CN112408970A (zh) 一种高频宽温低损耗软磁铁氧体材料及其制备方法
CN101266859A (zh) 快速烧结微晶铁氧体磁芯器件的方法
CN104817317A (zh) 一种柔性好不易损坏软磁铁氧体材料及其制备方法
CN116013631A (zh) 一种FeSiAl复合软磁粉芯及其制备方法、应用
CN101183582A (zh) 高饱和磁通密度低损耗NiMnZn功率铁氧体及其制备方法
CN115403366B (zh) 一种掺杂锂的镍锌铁氧体材料及其制备方法
CN105016395A (zh) 一种纳米铁氧体材料及其制备方法
KR101541880B1 (ko) 마이크로웨이브를 이용한 자성분말 제조방법
CN117612818A (zh) 一种模压电感用纳米晶混合磁粉芯及其制备方法
CN110783091B (zh) 一种纳米晶FeSiBCr磁粉芯的制备方法
CN111161934A (zh) 一种非晶纳米Fe-Ni磁粉芯及其制备方法与应用
CN111081466A (zh) 一种非晶纳米晶软磁复合材料及其制备方法与应用
CN102543345A (zh) 磁导率μ=26的低功耗铁硅铝合金材料及其制备方法
CN108435179B (zh) 一种双活性单原子氨合成催化剂的制备方法
CN109704744B (zh) 一种无线充电用rx端铁氧体材料和磁片、及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant