CN113066871A - 具有变k介质槽复合终端的氧化镓结势垒肖特基二极管 - Google Patents

具有变k介质槽复合终端的氧化镓结势垒肖特基二极管 Download PDF

Info

Publication number
CN113066871A
CN113066871A CN202110317636.9A CN202110317636A CN113066871A CN 113066871 A CN113066871 A CN 113066871A CN 202110317636 A CN202110317636 A CN 202110317636A CN 113066871 A CN113066871 A CN 113066871A
Authority
CN
China
Prior art keywords
dielectric layer
dielectric
layer
gallium oxide
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110317636.9A
Other languages
English (en)
Inventor
罗小蓉
鲁娟
魏雨夕
杨可萌
魏杰
蒋卓林
王元刚
吕元杰
冯志红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
CETC 13 Research Institute
Original Assignee
University of Electronic Science and Technology of China
CETC 13 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China, CETC 13 Research Institute filed Critical University of Electronic Science and Technology of China
Priority to CN202110317636.9A priority Critical patent/CN113066871A/zh
Publication of CN113066871A publication Critical patent/CN113066871A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • H01L29/8725Schottky diodes of the trench MOS barrier type [TMBS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明属于功率半导体技术领域,涉及一种具有变K介质槽复合终端的氧化镓结势垒肖特基二极管(JBSD)。本发明的主要特征是新器件引入了变K介质槽复合终端,且复合终端主要包含:与氧化镓相比具有更小介电常数和更高临界击穿电场强度的凹槽形状介质层,填充在凹槽形状介质层上且介电常数更大的介质层,与阳极金属连接的倾斜场板。反向阻断时,凹槽形状介质层使器件能在较短终端长度下承受高外加电压;倾斜场板和填充介质层能吸引电位移线,从而大幅缓解有源区边界PN结的电场尖峰,提高器件耐压。相较于采用常规终端结构的氧化镓JBSD,本发明可在更短的终端长度下提高器件耐压,增强器件可靠性。

Description

具有变K介质槽复合终端的氧化镓结势垒肖特基二极管
技术领域
本发明属于功率半导体技术领域,涉及一种具有变K介质槽复合终端的氧化镓结势垒肖特基二极管(Junction Barrier Schottky Diode,JBSD)。
背景技术
氧化镓(Ga2O3)作为一种新兴的宽禁带半导体材料正逐渐得到越来越多国内外研究者的认可。其中,β-Ga2O3具有超大禁带宽度(4.9eV)和高临界击穿电场强度(8MV/cm),且β-Ga2O3的Baliga优值分别是GaN的4倍,4H-SiC的10倍,Si的3444倍,因此β-Ga2O3非常适合用于制作具有高耐压、高开关频率的功率二极管。
JBSD结合了肖特基二极管正向导通电压小和PiN二极管反向耐压能力强的优点,并且可以在这两种状态之间快速变化,十分适用于高压高频电力领域。从结构上看,JBSD是在肖特基二极管的漂移区集成多个PN结。文献Yuanjie Lv,Yuangang Wang,Xingchang Fu,et al,[Demonstration ofβ-Ga2O3 Junction Barrier Schottky Diodes with a Baliga’s Figure of Merit of 0.85GW/cm2 or a 5A/700 V Handling Capabilities]报道了一种具有高耐压、低导通电阻、强电流处理能力的JBSD,但其Baliga优值仍远小于氧化镓材料的预期值,其中一个重要原因是在常规JBSD的结的边、角处存在电场集中效应,使得器件反向阻断时会在这些区域提前击穿,漏电增大。因此,设计合适的终端结构来缓解JBSD器件的电场集中效应,降低泄漏电流对提高器件耐压能力尤为重要。
由于在氧化镓材料中P型掺杂困难,使得常规的结终端扩展、场限环等结终端技术不适用于氧化镓器件,目前氧化镓器件多采用场板技术来缓解电场集中效应,但这必将造成器件的终端面积占比较大。为了降低了芯片成本,减小边缘终端长度十分必要。
发明内容
本发明针对上述问题,提出一种具有变K介质槽复合终端的氧化镓结势垒肖特基二极管,以达到在较小终端长度下提高器件耐压,增强器件可靠性的目的,从而进一步发挥氧化镓材料的优势。
本发明的技术方案为:
一种具有变K介质槽复合终端的氧化镓结势垒肖特基二极管,包括阴极金属1、位于阴极金属1上表面的N+氧化镓衬底2、位于N+氧化镓衬底2上表面的N-氧化镓外延层3;所述N-氧化镓外延层3上层两侧具有变K介质槽复合终端,两侧的变K介质槽复合终端之间的区域为有源区;所述有源区上层具有与N-氧化镓外延层3上部相接触的P型氧化物半导体层8;所述P型氧化物半导体层8由两个或两个以上深度相同且等间距排列的P型氧化物半导体区构成;所述有源区上表面覆盖有阳极金属层6并形成肖特基接触,且阳极金属层6向两侧延伸至部分覆盖变K介质槽复合终端;
其特征是,所述变K介质槽复合终端包括具有凹槽形状的第一介质层4、填充在第一介质层4上的第二介质层5、倾斜场板6、位于N-氧化镓外延层3顶部边界的N+区7。所述第一介质层4上表面与第二介质层5上表面齐平;所述第一介质层4的两侧分别与N+区7和P型氧化物半导体层8相接触,且其顶部延伸至完全覆盖N+区7和部分覆盖P型氧化物半导体层8;所述倾斜场板6位于变K介质槽复合终端内靠近有源区一侧,且其深度大于P型氧化物半导体层8及N+区7的深度;所述倾斜场板6靠近有源区一侧的顶部与阳极金属9连接;所述第一介质层4的K值小于第二介质层5及氧化镓材料的K值,且第一介质层4的临界击穿电场强度大于氧化镓材料的临界击穿电场强度。
进一步的,所述第一介质层4下方设有位于N-氧化镓外延层3内的第三介质层10,且二者相接触;所述第三介质层10的K值小于第一介质层4的K值,且第三介质层10的临界击穿电场强度大于氧化镓材料的临界击穿电场强度。
进一步的,所述倾斜场板6位于第一介质层4与第二介质层5的交界面,且倾斜场板6从阳极金属9底部延伸至第二介质层5的垂直中线。
进一步的,所述倾斜场板6位于第二介质层5的内部。
本发明的有益效果为,相比于采用常规终端结构的氧化镓JBSD,本发明通过引入变K介质槽复合终端,可以在更短的终端长度下,提高器件耐压,增强器件可靠性。
附图说明
图1为本发明实施例1的剖面结构示意图;
图2为本发明实施例2的剖面结构示意图;
图3为本发明实施例3的剖面结构示意图;
具体实施方式
下面结合附图和实施例,详细描述本发明的技术方案:
实施例1
如图1所示,本例包括阴极金属1、位于阴极金属1上表面的N+氧化镓衬底2和位于N+氧化镓衬底2上表面的N-氧化镓外延层3;其特征在于,所述N-氧化镓外延层3上层两端具有变K介质槽复合终端,两侧的变K介质槽复合终端之间的N-氧化镓外延层3上层具有P型氧化物半导体区;所述P型氧化物半导体区由多个结深相同且等间距排列的P型氧化物半导体层8构成,P型氧化物半导体层8及P型氧化物半导体层8之间的N-氧化镓外延层3构成有源区;变K介质槽复合终端包括N+区7和介质槽,N+区7位于N-氧化镓外延层3上层两端,介质槽位于N+区7和P型氧化物半导体区之间,且介质槽的两侧分别与N+区7和P型氧化物半导体层8接触;所述介质槽包括第一介质层4、第二介质层5和倾斜场板6,所述第一介质层4填充在介质槽底部和侧面,且第一介质层4还沿N+区7和与介质槽相邻的P型氧化物半导体层8上表面向两侧延伸至完全覆盖N+区7的上表面和部分覆盖P型氧化物半导体层8的上表面,所述第二介质层5填充在第一介质层4中且第二介质层5上表面与第一介质层4上表面齐平,所述倾斜场板6位于介质槽中靠近有源区一侧;所述有源区上表面具有阳极金属9,阳极金属9覆盖有源区形成肖特基接触,且阳极金属9沿与P型氧化物半导体层8接触的第一介质层4上表面向两侧延伸至覆盖倾斜场板6上表面和部分第二介质层5上表面;所述第一介质层4的K值小于第二介质层5和氮化镓的K值,且第一介质层4的临界击穿电场强度大于氧化镓的临界击穿电场强度。
本例的工作原理为:外加正向偏置电压时,JBSD中的肖特基势垒较低,先于PN结进入导通状态,因此,相比于常规氧化镓异质PN结二极管,新器件具有更小的导通压降。外加反向偏置电压时,新器件从以下两方面提高器件耐压:变K介质槽复合终端中的具有低介电常数和高临界击穿电场强度的第一介质层4使器件能在较短终端长度下承担高外加电压;倾斜场板6和具有高介电常数的第二介质层5具有吸引电位移线的作用,因而可大幅缓解靠近有源区边界的P型氧化物半导体层8/N-漂移区3结处的电场尖峰,优化器件电场分布,进一步提高器件耐压。
实施例2
如图2所示,本例与实施例1的区别在于,所述第一介质层4的底部与N-氧化镓外延层3之间通过第三介质层10隔离,所述第三介质层10的K值小于第一介质层4的K值,且第三介质层10的临界击穿电场强度大于氧化镓的临界击穿电场强度。
与实施例1相比,器件反向阻断时,第三介质层10可承担变K介质槽复合终端上的大部分耐压;此外,有源区中N-漂移区3内靠近第一介质层4与第三介质层10介质突变的区域还将引入一个新的电场尖峰,能进一步优化器件的体内电场分布,提高器件耐压。
实施例3
如图3所示,本例与实施例2的区别在于,所述倾斜场板6位于所述第二介质层5的内部,且倾斜场板6从阳极金属9底部延伸至第二介质层5的垂直中线。
与实施例2相比,器件反向阻断时,由于倾斜场板6位于第二介质层5的内部,使得有源区中N-漂移区3的耗尽区中电离施主所产生的电位移线更多流向第二介质层5,并最终终止于倾斜场板6,进一步缓解了有源区边界的P型氧化物半导体层8/N-漂移区3结处的电场集中效应,使得相同器件尺寸下该实施例能获得更高的耐压。

Claims (4)

1.具有变K介质槽复合终端的氧化镓结势垒肖特基二极管,包括阴极金属(1)、位于阴极金属(1)上表面的N+氧化镓衬底(2)、位于N+氧化镓衬底(2)上表面的N-氧化镓外延层(3);所述N-氧化镓外延层(3)上层两侧具有变K介质槽复合终端,两侧的变K介质槽复合终端之间的区域为有源区;所述有源区上层具有与N-氧化镓外延层(3)上部相接触的P型氧化物半导体层(8);所述P型氧化物半导体层(8)由两个或两个以上深度相同且等间距排列的P型氧化物半导体区构成;所述有源区上表面覆盖有阳极金属层(6)并形成肖特基接触,且阳极金属层(6)向两侧延伸至部分覆盖变K介质槽复合终端;
其特征在于,所述变K介质槽复合终端包括具有凹槽形状的第一介质层(4)、填充在第一介质层(4)凹槽中的第二介质层(5)、倾斜场板(6)、位于N-氧化镓外延层(3)顶部边界的N+区(7);所述第一介质层(4)上表面与第二介质层(5)上表面齐平;所述第一介质层(4)的两侧分别与N+区(7)和P型氧化物半导体层(8)相接触,且其顶部延伸至完全覆盖N+区(7)和部分覆盖P型氧化物半导体层(8);所述倾斜场板(6)位于变K介质槽复合终端内靠近有源区一侧,且其深度大于P型氧化物半导体层(8)及N+区(7)的深度;所述倾斜场板(6)靠近有源区一侧的顶部与阳极金属(9)连接;所述第一介质层(4)的K值小于第二介质层(5)及氧化镓材料的K值,且第一介质层(4)的临界击穿电场强度大于氧化镓材料的临界击穿电场强度。
2.根据权利要求1所述的具有变K介质槽复合终端的氧化镓结势垒肖特基二极管,其特征在于,所述第一介质层(4)下方设有位于N-氧化镓外延层(3)内的第三介质层(10),且二者相接触;所述第三介质层(10)的K值小于第一介质层(4)的K值,且第三介质层(10)的临界击穿电场强度大于氧化镓材料的临界击穿电场强度。
3.根据权利要求1或2所述的具有变K介质槽复合终端的氧化镓结势垒肖特基二极管,其特征在于,所述倾斜场板(6)位于第一介质层(4)与第二介质层(5)的交界面。
4.根据权利要求1或2所述的具有变K介质槽复合终端的氧化镓结势垒肖特基二极管,其特征在于,所述倾斜场板(6)位于第二介质层(5)的内部。
CN202110317636.9A 2021-03-25 2021-03-25 具有变k介质槽复合终端的氧化镓结势垒肖特基二极管 Pending CN113066871A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110317636.9A CN113066871A (zh) 2021-03-25 2021-03-25 具有变k介质槽复合终端的氧化镓结势垒肖特基二极管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110317636.9A CN113066871A (zh) 2021-03-25 2021-03-25 具有变k介质槽复合终端的氧化镓结势垒肖特基二极管

Publications (1)

Publication Number Publication Date
CN113066871A true CN113066871A (zh) 2021-07-02

Family

ID=76561911

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110317636.9A Pending CN113066871A (zh) 2021-03-25 2021-03-25 具有变k介质槽复合终端的氧化镓结势垒肖特基二极管

Country Status (1)

Country Link
CN (1) CN113066871A (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217667A (ja) * 1987-03-06 1988-09-09 Nippon Telegr & Teleph Corp <Ntt> 半導体装置とその製造方法
US6011280A (en) * 1998-06-26 2000-01-04 Delco Electronics Corporation IGBT power device with improved resistance to reverse power pulses
US20100314659A1 (en) * 2009-06-12 2010-12-16 Alpha & Omega Semiconductor, Inc. Nanotube Semiconductor Devices
CN102214678A (zh) * 2011-05-18 2011-10-12 电子科技大学 一种功率半导体器件的3d-resurf结终端结构
US20120187526A1 (en) * 2011-01-21 2012-07-26 Jaume Roig-Guitart Method of forming a semiconductor device termination and structure therefor
CN202434522U (zh) * 2011-01-31 2012-09-12 台湾半导体股份有限公司 肖特基二极管的终止区沟槽结构
CN102884631A (zh) * 2010-03-16 2013-01-16 威世通用半导体公司 用于高电压应用的具有改良的终端结构的沟槽dmos器件
US20170148927A1 (en) * 2015-11-20 2017-05-25 Lite-On Semiconductor Corp. Diode device and manufacturing method thereof
US20170162679A1 (en) * 2015-12-03 2017-06-08 Infineon Technologies Ag Semiconductor device with trench edge termination
US20170250258A1 (en) * 2016-02-26 2017-08-31 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
CN109920857A (zh) * 2019-03-19 2019-06-21 南方科技大学 一种肖特基二极管及其制备方法
CN110098264A (zh) * 2019-05-29 2019-08-06 西安电子科技大学 一种结型势垒肖特基二极管
CN111146294A (zh) * 2019-12-05 2020-05-12 中国电子科技集团公司第十三研究所 肖特基二极管及其制备方法
CN112186032A (zh) * 2020-10-20 2021-01-05 西安电子科技大学 一种带场板结构的氧化镓结势垒肖特基二极管

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217667A (ja) * 1987-03-06 1988-09-09 Nippon Telegr & Teleph Corp <Ntt> 半導体装置とその製造方法
US6011280A (en) * 1998-06-26 2000-01-04 Delco Electronics Corporation IGBT power device with improved resistance to reverse power pulses
US20100314659A1 (en) * 2009-06-12 2010-12-16 Alpha & Omega Semiconductor, Inc. Nanotube Semiconductor Devices
CN102884631A (zh) * 2010-03-16 2013-01-16 威世通用半导体公司 用于高电压应用的具有改良的终端结构的沟槽dmos器件
US20120187526A1 (en) * 2011-01-21 2012-07-26 Jaume Roig-Guitart Method of forming a semiconductor device termination and structure therefor
CN202434522U (zh) * 2011-01-31 2012-09-12 台湾半导体股份有限公司 肖特基二极管的终止区沟槽结构
CN102214678A (zh) * 2011-05-18 2011-10-12 电子科技大学 一种功率半导体器件的3d-resurf结终端结构
US20170148927A1 (en) * 2015-11-20 2017-05-25 Lite-On Semiconductor Corp. Diode device and manufacturing method thereof
US20170162679A1 (en) * 2015-12-03 2017-06-08 Infineon Technologies Ag Semiconductor device with trench edge termination
US20170250258A1 (en) * 2016-02-26 2017-08-31 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
CN109920857A (zh) * 2019-03-19 2019-06-21 南方科技大学 一种肖特基二极管及其制备方法
CN110098264A (zh) * 2019-05-29 2019-08-06 西安电子科技大学 一种结型势垒肖特基二极管
CN111146294A (zh) * 2019-12-05 2020-05-12 中国电子科技集团公司第十三研究所 肖特基二极管及其制备方法
CN112186032A (zh) * 2020-10-20 2021-01-05 西安电子科技大学 一种带场板结构的氧化镓结势垒肖特基二极管

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI HUAN等: "Deep Trench Junction Termination Employing Variable-K Dielectric for High voltage Devices", 《INTERNATIONAL CONFERENCE ON ASIC (ASICON)》 *
WENTAO YANG等: "A Novel Sloped Field Plate-Enhanced Ultra-Short Edge Termination Structure", 《IEEE ELECTRON DEVICE LETTERS》 *
李欢: "新型横向功率器件及利用高K介质的终端结构的研究", 《中国博士学位论文全文数据库》 *

Similar Documents

Publication Publication Date Title
US5612567A (en) Schottky barrier rectifiers and methods of forming same
US6683363B2 (en) Trench structure for semiconductor devices
WO2000074146A1 (en) Power semiconductor devices having an insulating layer formed in a trench
CN109065621B (zh) 一种绝缘栅双极晶体管及其制备方法
KR20120067938A (ko) 절연 게이트형 바이폴라 트랜지스터와 그 제조방법
KR100514398B1 (ko) 실리콘 카바이드 전계제어 바이폴라 스위치
JP4119148B2 (ja) ダイオード
CN113644129B (zh) 一种具有台阶式P型GaN漏极结构的逆阻型HEMT
US11869940B2 (en) Feeder design with high current capability
JP2007311822A (ja) ショットキーバリヤダイオード
CN112786679B (zh) 碳化硅mosfet器件的元胞结构及碳化硅mosfet器件
CN115832058A (zh) 一种沟槽型碳化硅mosfet器件
CN113066870B (zh) 一种具有终端结构的氧化镓基结势垒肖特基二极管
CN113066871A (zh) 具有变k介质槽复合终端的氧化镓结势垒肖特基二极管
CN111211160B (zh) 一种垂直GaN功率二极管
WO2022119743A1 (en) Finfet power semiconductor devices
CN115483281A (zh) 逆导型横向绝缘栅双极型晶体管
GB2592928A (en) Insulated gate switched transistor
CN117832284B (zh) 一种功率器件及其制造方法
CN113707727B (zh) 一种具有倒梯形槽的垂直GaN二极管
CN112563317B (zh) 氮化镓功率器件及其制造方法
CN111508955B (zh) 高反向耐压的氮化镓整流器及其制作方法
CN117393598A (zh) 一种具有多列柱型栅极结构的多沟道GaN HEMT器件
CN115101583A (zh) 具有斜面复合终端的氧化镓结势垒肖特基二极管
CN116207164A (zh) 一种多级沟槽自保护肖特基二极管器件及制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210702