CN113644129B - 一种具有台阶式P型GaN漏极结构的逆阻型HEMT - Google Patents

一种具有台阶式P型GaN漏极结构的逆阻型HEMT Download PDF

Info

Publication number
CN113644129B
CN113644129B CN202110925423.4A CN202110925423A CN113644129B CN 113644129 B CN113644129 B CN 113644129B CN 202110925423 A CN202110925423 A CN 202110925423A CN 113644129 B CN113644129 B CN 113644129B
Authority
CN
China
Prior art keywords
type gan
type
drain electrode
layer
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110925423.4A
Other languages
English (en)
Other versions
CN113644129A (zh
Inventor
孙瑞泽
王茁成
罗攀
王方洲
刘超
陈万军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Guangdong Electronic Information Engineering Research Institute of UESTC
Original Assignee
University of Electronic Science and Technology of China
Guangdong Electronic Information Engineering Research Institute of UESTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China, Guangdong Electronic Information Engineering Research Institute of UESTC filed Critical University of Electronic Science and Technology of China
Priority to CN202110925423.4A priority Critical patent/CN113644129B/zh
Publication of CN113644129A publication Critical patent/CN113644129A/zh
Application granted granted Critical
Publication of CN113644129B publication Critical patent/CN113644129B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0891Source or drain regions of field-effect devices of field-effect transistors with Schottky gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及功率半导体技术,特别涉及一种具有台阶式P型GaN漏极结构的逆阻型HEMT。本发明中漏极区域P型GaN层呈台阶状,沿漏极向源级方向呈台阶式减薄。在台阶式P型GaN漏极结构中,各个P型GaN台阶沿漏极到源级方向呈台阶式依次减薄,在正向导通时,较薄的台阶处正向开启电压较小,使得器件开启电压减小。当器件处于反向阻断状态时,通过台阶式P型GaN漏极结构对沟道电场的调制,优化了反向阻断时漏极区域沟道电场分布,提升了器件逆向阻断电压。本发明的有益成果:对比传统的肖特基势垒漏极逆阻型HEMT器件,器件的逆向阻断电压提升,反向耐压时漏极区域沟道电场分布得到优化。

Description

一种具有台阶式P型GaN漏极结构的逆阻型HEMT
技术领域
本发明属于功率半导体技术领域,涉及一种具有台阶式P型GaN漏极结构的逆阻型HEMT(High electron mobility transistor,高电子迁移率晶体管)。
背景技术
随着当代社会与科技的发展,人们对于电能的利用与管理有了更高的要求。在电能转换方面,功率半导体技术有着十分重要的地位。如今,功率半导体技术与人们的生活日常息息相关,极大地提高了人们的生活质量与水平。而功率半导体器件是功率半导体技术的基础,是功率变换系统的核心器件,也是当下的研究热点。作为第三代宽禁带半导体材料,氮化镓(GaN)材料具有击穿电场强度高、介电常数小、电子迁移率高、饱和电子漂移速率高、热导率大、抗辐射能力强等优点,是近年来半导体研究领域的热点。同时,由于氮化镓优良的材料特性,使得氮化镓器件在高频、高温以及高压情况下表现优异,氮化镓器件在近几年来得到飞速的发展,有望解决目前功率半导体技术发展所面临的“硅极限”问题。
逆阻型HEMT是一种在器件开启与关断时具有反向阻断能力的HEMT。在一些功率器件的应用领域中,增强型功率器件需要同时具备正向阻断和反向阻断能力。常见的传统逆阻型HEMT器件中,采用肖特基金属作为漏极金属来实现器件的反向阻断能力,这种器件被称为肖特基势垒漏极逆阻型HEMT器件,其结构如图1所示。肖特基金属漏极结构简单,且在正向导通时有较小的开启电压,但是在反向耐压时,漏极肖特基金属下方的电场分布不均,会在漏极区域边缘处形成高电场峰,不利于器件反向阻断电压的提升。
发明内容
本发明的目的,就是针对上述问题,提出一种具有台阶式P型GaN漏极结构的逆阻型HEMT,通过改变漏极处台阶式P型GaN材料层中的台阶长度与厚度,调制反向耐压时漏极区域沟道电场分布,提高器件的反向击穿电压。由于在台阶式P型GaN漏极结构中,各个P型GaN台阶高度依次减小,在正向导通时,高度较低的台阶处正向开启电压较小,使得器件开启电压减小。
本发明的技术方案为:一种具有台阶式P型GaN漏极结构的逆阻型HEMT器件,包括由下到上依次层叠设置的衬底层1、AlGaN缓冲层2、GaN层3、AlGaN势垒层4,其中GaN层3与AlGaN势垒层4形成异质结结构;从AlGaN势垒层4上表面的一端到另一端依次具有源极金属8、栅极P型GaN材料层7、漏极金属5;在源极金属8和栅极P型GaN材料层7之间的AlGaN势垒层4上表面、以及栅极P型GaN材料层7和漏极金属5之间的AlGaN势垒层4上表面具有钝化层10;栅极P型GaN材料层7上表面具有栅极金属9;其特征在于,在栅极P型GaN材料层7和漏极金属5之间的钝化层10上表面具有P型GaN材料层6,P型GaN材料层6与漏极金属5接触,且P型GaN材料层6呈台阶型,从漏极到源极方向台阶垂直高度递减,漏极金属5向源极金属8的方向延伸覆盖住P型GaN材料层6上表面。
进一步的,如图2所示,其中台阶式P型GaN材料层6由三个不同高度台阶:第一台阶61、第二台阶62和第三台阶63组成,台阶式P型GaN材料层沿漏极到源极方向呈台阶式依次减薄,即第一台阶61厚度大于第二台阶62厚度,且第二台阶62厚度大于第三台阶63厚度。
进一步的,所述衬底1可采用硅,碳化硅或蓝宝石;所述钝化层10可采用材料氮化硅或二氧化硅。且在漏极台阶式P型GaN结构中,台阶的个数应根据器件中栅极与漏极的距离而定,且台阶个数应大于或等于两个。
本发明的有益效果为,对比传统的肖特基势垒漏极逆阻型HEMT器件,该发明使得器件在反向耐压时漏极区域边缘产生的高电场峰被削弱,使漏极区域沟道电场分布更均匀,提高了器件的反向击穿电压。
附图说明
图1为现有的,一种具有肖特基势垒漏极结构的逆阻型HEMT的结构示意图;
图2是本发明提出的,一种具有台阶式P型GaN漏极结构的逆阻型HEMT的结构示意图。图2中台阶式P型GaN材料层6由三个不同高度台阶:第一台阶61、第二台阶62和第三台阶63组成,台阶式P型GaN材料层沿漏极到源极方向呈台阶式依次减薄,即第一台阶61厚度大于第二台阶62厚度,且第二台阶62厚度大于第三台阶63厚度;
图3是本发明提出的,一种具有台阶式P型GaN漏极结构的逆阻型HEMT的3D结构示意图。图3中台阶式P型GaN材料层6中共有三个台阶,在实际应用中,台阶个数应根据器件中栅极与漏极的距离而定,且台阶个数应大于或等于两个;
图4-图9为本发明提出的,一种具有台阶式P型GaN漏极结构的逆阻型HEMT的制备流程示意图;
图10为本发明提出的,一种具有台阶式P型GaN漏极结构的逆阻型HEMT和现有的具有肖特基势垒漏极结构的逆阻型HEMT的正反向阻断特性对比图;
图11为本发明提出的,一种具有台阶式P型GaN漏极结构的逆阻型HEMT和现有的具有肖特基势垒漏极结构的逆阻型HEMT在漏极电压为-400V时,漏极区域沟道电场分布对比图。
具体实施方式
下面结合附图对本发明的方案进行详细的描述。
如图2所示,该器件结构包括由下到上的衬底层1,AlGaN缓冲层2,GaN层3,AlGaN势垒层4,其中GaN层与AlGaN势垒层形成异质结结构;在AlGaN势垒层一端有源极金属8与栅极P型GaN材料层7;P型GaN材料层7与栅极金属9相连,实现增强型器件;AlGaN势垒层上方由钝化层10覆盖;在AlGaN势垒层一端有台阶式P型GaN材料层6与漏极金属5相连,形成台阶式P型GaN漏极结构,台阶式P型GaN材料层6沿漏极到源极方向呈台阶式依次减薄。
下面说明本发明的台阶式P型GaN漏极结构的逆阻型HEMT的工作原理。
如图2所示,为本发明的具有台阶式P型GaN漏极结构的逆阻型HEMT。其工作原理如下:
当器件处于反向阻断状态时,漏极台阶式P型GaN材料层与AlGaN势垒层形成的pn结处于反偏状态,随着漏极台阶式P型GaN材料层中台阶的增厚,漏极区域下方耗尽区长度增加,沟道电场出现了两个电场峰值,优化了漏极区域下方电场分布,提升了器件的反向击穿电压。通过Sentaurus TCAD对上述一种具有台阶式P型GaN漏极结构的逆阻型HEMT与传统肖特基势垒漏极结构的逆阻型HEMT进行了仿真,得到图10、图11。图10为本发明一种具有台阶式P型GaN漏极结构的逆阻型HEMT和传统肖特基势垒漏极结构的逆阻型HEMT的正反向阻断特性对比图。如图10所示,两种器件的正向击穿电压相等,皆为1780V,相对比于传统的肖特基漏极结构反向击穿电压只有1716V,本发明的反向击穿电压高达2111V,器件的反向击穿电压得到明显的提高。图11为本发明一种具有台阶式P型GaN漏极结构的逆阻型HEMT和传统肖特基势垒漏极结构的逆阻型HEMT在漏极电压为-400V时,漏极区域沟道电场分布对比图。如图11所示,本发明中具有台阶式P型GaN漏极结构的逆阻型HEMT在反向阻断时,沟道电场出现了两个电场峰值,且相对比于传统肖特基势垒漏极结构的逆阻型HEMT,漏极边缘处电场变弱。
本发明结构可以用以下方法制备得到,工艺步骤为:
1、在衬底1上依次外延生长AlGaN缓冲层2,GaN层3,AlGaN势垒层4,P型GaN层11,并通过离子注入形成高阻区12或通过台面刻蚀实现导电通道的阻断,如图4所示。
2、对栅极以外的P型GaN材料层刻蚀,直至剩余P型GaN层高度与第一台阶61高度相等,如图5所示。
3、对栅极和第一台阶61以外的P型GaN材料层刻蚀,直至剩余P型GaN层高度与第二台阶62高度相等,如图6所示。
4、对栅极、第一台阶61和第二台阶62以外的P型GaN材料层刻蚀,直至剩余P型GaN层高度与第三台阶63高度相等,如图7所示。
5、对栅极、第一台阶61、第二台阶62和第三台阶63以外的P型GaN材料层刻蚀,直至剩余P型GaN层完全刻蚀,形成栅极P型GaN材料层7和台阶式P型GaN材料层6,如图8所示。台阶式P型GaN材料层6由第一台阶61,第二台阶62和第三台阶63组成。
6、如图9所示,在源极区域淀积金属,与半导体材料形成欧姆接触,形成源电极8;在栅极区域与漏极区域淀积金属,与半导体材料形成肖特基接触,形成栅电极9和漏电极5;在器件表面淀积形成钝化层10。

Claims (2)

1.一种具有台阶式P型GaN漏极结构的逆阻型HEMT器件,包括由下到上依次层叠设置的衬底层(1)、AlGaN缓冲层(2)、GaN层(3)、AlGaN势垒层(4),其中GaN层(3)与AlGaN势垒层(4)形成异质结结构;从AlGaN势垒层(4)上表面的一端到另一端依次具有源极金属(8)、栅极P型GaN材料层(7)、漏极金属(5);在源极金属(8)和栅极P型GaN材料层(7)之间的AlGaN势垒层(4)上表面、以及栅极P型GaN材料层(7)和漏极金属(5)之间的AlGaN势垒层(4)上表面具有钝化层(10);栅极P型GaN材料层(7)上表面具有栅极金属(9);其特征在于,在栅极P型GaN材料层(7)和漏极金属(5)之间的AlGaN势垒层(4)上表面具有P型GaN材料层(6),且P型GaN材料层(6)的一端与漏极金属(5)接触,另一端与栅极P型GaN材料层(7)之间为钝化层(10),且P型GaN材料层(6)呈台阶型,从漏极到源极方向台阶垂直高度递减,漏极金属(5)向源极金属(8)的方向延伸覆盖住P型GaN材料层(6)上表面。
2.根据权利要求1所述一种具有台阶式P型GaN漏极结构的逆阻型HEMT器件,衬底(1)采用的材料为硅、碳化硅或蓝宝石中的一种;所述钝化层(10)采用的材料为氮化硅或二氧化硅。
CN202110925423.4A 2021-08-12 2021-08-12 一种具有台阶式P型GaN漏极结构的逆阻型HEMT Active CN113644129B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110925423.4A CN113644129B (zh) 2021-08-12 2021-08-12 一种具有台阶式P型GaN漏极结构的逆阻型HEMT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110925423.4A CN113644129B (zh) 2021-08-12 2021-08-12 一种具有台阶式P型GaN漏极结构的逆阻型HEMT

Publications (2)

Publication Number Publication Date
CN113644129A CN113644129A (zh) 2021-11-12
CN113644129B true CN113644129B (zh) 2023-04-25

Family

ID=78421169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110925423.4A Active CN113644129B (zh) 2021-08-12 2021-08-12 一种具有台阶式P型GaN漏极结构的逆阻型HEMT

Country Status (1)

Country Link
CN (1) CN113644129B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114420743B (zh) * 2021-12-13 2023-05-26 晶通半导体(深圳)有限公司 反向阻断高迁移率晶体管
CN114823849A (zh) * 2022-04-15 2022-07-29 晶通半导体(深圳)有限公司 氮化镓反向阻断晶体管
CN114823850B (zh) * 2022-04-15 2023-05-05 晶通半导体(深圳)有限公司 P型混合欧姆接触的氮化镓晶体管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448975A (zh) * 2015-12-03 2016-03-30 西安电子科技大学 复合阶梯场板槽栅hemt高压器件及其制作方法
CN111430240A (zh) * 2020-06-15 2020-07-17 浙江集迈科微电子有限公司 基于场板复合结构的GaN器件及其制备方法
CN113178480A (zh) * 2021-05-12 2021-07-27 华南师范大学 具有栅漏复合阶梯场板结构的增强型hemt射频器件及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4385205B2 (ja) * 2002-12-16 2009-12-16 日本電気株式会社 電界効果トランジスタ
US9773877B2 (en) * 2004-05-13 2017-09-26 Cree, Inc. Wide bandgap field effect transistors with source connected field plates
JP5367429B2 (ja) * 2009-03-25 2013-12-11 古河電気工業株式会社 GaN系電界効果トランジスタ
KR20110026798A (ko) * 2009-09-08 2011-03-16 삼성전기주식회사 반도체 소자 및 그 제조 방법
EP3252825B1 (en) * 2016-05-30 2022-12-21 STMicroelectronics S.r.l. Double-channel hemt device and manufacturing method thereof
KR20210074871A (ko) * 2019-12-12 2021-06-22 삼성전자주식회사 반도체 장치 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448975A (zh) * 2015-12-03 2016-03-30 西安电子科技大学 复合阶梯场板槽栅hemt高压器件及其制作方法
CN111430240A (zh) * 2020-06-15 2020-07-17 浙江集迈科微电子有限公司 基于场板复合结构的GaN器件及其制备方法
CN113178480A (zh) * 2021-05-12 2021-07-27 华南师范大学 具有栅漏复合阶梯场板结构的增强型hemt射频器件及其制备方法

Also Published As

Publication number Publication date
CN113644129A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
CN113644129B (zh) 一种具有台阶式P型GaN漏极结构的逆阻型HEMT
CN111312802B (zh) 低开启电压和低导通电阻的碳化硅二极管及制备方法
CN109192779B (zh) 一种碳化硅mosfet器件及其制造方法
CN108962977B (zh) 一种集成SBD的碳化硅沟槽型MOSFETs及其制备方法
CN109065621B (zh) 一种绝缘栅双极晶体管及其制备方法
CN106024914A (zh) 混合阳极电极结构的GaN基肖特基二极管及其制备方法
CN109742135B (zh) 一种碳化硅mosfet器件及其制备方法
CN109004028B (zh) 一种具有源极相连P埋层和漏场板的GaN场效应晶体管
US20170033098A1 (en) GaN-BASED SCHOTTKY DIODE RECTIFIER
CN107623032A (zh) 一种新型的GaN异质结场效应晶体管
CN115411095A (zh) 具有介电调控混合场板终端的sbd结构及其制备方法
CN115799344A (zh) 一种碳化硅jfet元胞结构及其制作方法
CN117080269A (zh) 一种碳化硅mosfet器件及其制备方法
CN113066870B (zh) 一种具有终端结构的氧化镓基结势垒肖特基二极管
CN109166929A (zh) 一种具有P型GaN帽层的GaN基肖特基势垒二极管
CN210897283U (zh) 一种半导体器件
CN108695396B (zh) 一种二极管及其制作方法
CN114551586B (zh) 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法
CN111739800A (zh) 一种SOI基凹栅增强型GaN功率开关器件的制备方法
CN205911315U (zh) 混合阳极电极结构的GaN基肖特基二极管
CN109346529A (zh) 一种具有复合势垒层的GaN基肖特基势垒二极管
CN114203797B (zh) 基于异质结的超结氧化镓晶体管及其制作方法与应用
CN109166930A (zh) 一种GaN基肖特基势垒二极管
CN111508955B (zh) 高反向耐压的氮化镓整流器及其制作方法
CN112838006B (zh) 一种氮化镓pin二极管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant