CN113058610A - 一种氨裂解制氢的装置及其制作方法 - Google Patents

一种氨裂解制氢的装置及其制作方法 Download PDF

Info

Publication number
CN113058610A
CN113058610A CN202010000248.3A CN202010000248A CN113058610A CN 113058610 A CN113058610 A CN 113058610A CN 202010000248 A CN202010000248 A CN 202010000248A CN 113058610 A CN113058610 A CN 113058610A
Authority
CN
China
Prior art keywords
cylinder
carrier
hours
amount
carrying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010000248.3A
Other languages
English (en)
Inventor
谭赞麟
符国栋
花阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Feiyou New Material Technology Co ltd
Original Assignee
Chengdu Feiyou New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Feiyou New Material Technology Co ltd filed Critical Chengdu Feiyou New Material Technology Co ltd
Priority to CN202010000248.3A priority Critical patent/CN113058610A/zh
Publication of CN113058610A publication Critical patent/CN113058610A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1035Catalyst coated on equipment surfaces, e.g. reactor walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1094Promotors or activators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

发明涉及一种专为质子陶瓷燃料电池提供氢燃料的改进型氨裂解装置,该装置包括:(1)催化载体胚料是由Ni金属纤维、颗粒状Al2O3微粉以及纤维素三者复合而成。(2)以Ni盐作为催化剂和Ce盐等作为催化助剂,使两种盐溶液分二步浸渍到催化载体上。本氨裂解装置,其裂解温度约为500℃左右,裂解效率在98%以上。

Description

一种氨裂解制氢的装置及其制作方法
技术领域
发明属于氨能源利用的领域,涉及为燃料电池提供氨制氢的解决方案,更具体的涉及一种专为质子陶瓷燃料电池提供氢燃料的改进型氨裂解装置。
背景技术
氢作为燃料电池最洁净的燃料,已为业内研究者所共识,但怎样得到这种既清洁,又廉价,使用又安全的燃料乃是研究者一致的愿望。本专利针对中温质子陶瓷燃料电池的工作特点,提出一种高效简单的氨裂解制氢的特殊技术。
本发明涉及一种专为质子陶瓷燃料电池提供氢燃料的改进型氨裂解装置,其所选择的技术依据是:
a.氨易于液化,裂解产物氮,氢混合气,氢占体积比高达75%。
b.与氢等其它气体燃料等相比,氨的运输,储存、裂解和使用方法均比较安全、简单。
c.氨的来源广泛,廉价。
d.氨裂解过程不产生COx污染物,H2氧化的最终产物为H2O,无任何污染。
e.对于为质子陶瓷燃料电池提供含N2的H2燃料,电池运作过程中不产生 NOx有毒生成物,即使在高湿度条件下,H2O气体的存在也无碍质子的迁移。
发明内容
本发明内容包含一种为中温质子陶瓷燃料电池提供裂解氨制氢的装置,具体涉及分两个步骤制作并集成为螺纹管型的氨裂解装置,其中它包含:催化载体、催化剂、催化助剂、粘合剂。
上述催化载体是指Ni微细纤维、Al2O3颗粒微粉、微量的SiO2微粉。
上述催化助剂是指分析纯或化学纯的Ni(NO3)Z.6H2O以及 Ce(NO3)3.6H2O。
上述的Al2O3微粉是指掺入了微量SiO2,其比例为Al2O3的1-2wt%。
上述的Ni(NO3)Z.6H2O是指掺入了微量CuO,其比例为总载体的 0.5-1wt%。
上述的Ce(NO3)3.6H2O是指掺入了微量MgO,其比例为总载体的 0.5-1wt%。
上述的粘合剂是指纤维素,并且掺入了微量淀粉发泡剂,其比例为粘合剂的1-2wt%。
上述的Ni微细纤维,其量控制在载体总量的31wt%,尺寸为直径小于8 微米,长度为2.5毫米。
上述的Al2O3颗粒,其尺寸小于100目,添加量为载体的51.5wt%,其中所包含的SiO2为0.5-1wt%。
上述的Ni(NO3)Z.6H2O,其折合为Ni的量为总载体的8wt%。
上述的Ce(NO3)3.6H2O,其折合为CeO2的量为总载体的8wt%。
本发明的制作过程和步骤包括:
将Ni细微纤维、Al2O3颗粒微粉、SiO2微粉、纤维素、分散剂及总量5倍以上的水球磨制浆或高速搅拌制浆,在复合圆纸筒模具烧注为圆筒,圆筒在90℃以下阴干12小时,真空2小时,再将环筒套入专制模具,经200mpa冷等静压下压型,保压2~3分钟。
将压型圆筒在空气中阶梯式升温到400~500℃,焙烧2小时。
将焙烧完成圆筒机加工,筒内呈同轴圆形光孔,筒外壁呈平头螺纹。
将螺纹圆筒烘干后,再阶梯式升温至250℃→350℃→450℃,空气下烘焙2小时,再由450℃升至900℃,在H2保护下烧结2小时。
将Ce(NO3)3.6H2O和MgO加水调成流动性适中的浆料,将浆料浸润抽吸到权利要求16中的平头螺纹载体,控制抽吸量,在<90℃温度下阴干12小时,再真空烘干。
将渗吸Ce(NO3)3.6H2O的载体,置于空气中焙烧,升温控制为100℃→200℃1小时,200℃→450℃1小时,450℃保持2小时,总计4小时。
将Ni(NO3)Z.6H2O和CuO的浆料采用与权利要求17的相同方法,浸润抽吸到权利要求18的制品中,至渗吸量适中。
将其工序完成的制品,置于90℃下12小时阴干,1小时真空干燥,再经 H2保护150℃1小时,250℃1.5小时
在氨气通入裂解装置的管中,提供一种超强永磁装置,即外扣8000高斯超强永磁场,使氨进入裂解炉前对NH3能起到预激活的作用。
a.本发明的性能和优点如下:
b.本氨裂解装置,其裂解温度约为500℃左右,裂解效率>98%以上。本发明的裂解温度还可进一步降至500℃以下,其条件是催化材料制作时尽可能确保其表面活性。
c.本发明所采用的Ni盐催化剂和Ce盐等催化助剂,以及所采用的Ni纤维、 Al2O3(含微量SiO2)颗粒微粉,都属于是廉价高效的催化剂组分。
d.本发明所用的催化剂的金属丝或粉,在长期工作状态下,即使表面产生微量氧化膜,也可轻易还原活化消去氧化层。
e.本发明选用的催化载体,催化剂和催化助剂在其工作温度范围内均可维持物理化学性能稳定,确保了装置使用寿命的长效性。在裂解温度的中高温区,为防止H2.N2对金属渗透引起的裂纹脆化,则尽量不采用容易吸附扩散氢的金属材料。
f.具有良好的兼容性:如果要为氧离子迁移的高温陶瓷燃料电池提供氢燃料,则可在本装置后面串结一个氮氢分离装置。
g.即使对氧离子迁移的燃料电池,氨的裂解装置也可串接一个H2,N2分离装置,即能扩展为提供纯氢的燃料装置。
h.为确保氨裂解效率和降低氨裂解活化能,在氨进入裂解炉的管道上配置有>8000GS的超强永磁部件,对氨施加预激活处理
i.为确保氨裂温度均匀,对要求提供裂解氢气量大的装置,本专利采取了内外同时加热的措施。
j.对于定型的质子陶瓷燃料电池,在设计电池时,可配套设计相应的氨裂解装置,以利用陶瓷电池的反应所放出的热量,以补偿NH3裂解时所需的热量。
k.催化载体经中温焙烧后,增加了一道内外圆精加工和螺纹加工工序,以延长催化时间,为此在焙烧前,还增加了一道等静压工序,以增强加工性能和产品使用寿命。
附图说明
附图1为氨裂解装置呈卧式圆筒置放的剖面图。
具体实施方式
本发明通过实施例,结合说明书附图对本发明内容作进一步详细说明,但不是对本发明的限制。
实施例
一、准备裂解氨所需要的催化材料,其中,催化载体选择Al2O3颗粒、微量SiO2颗粒、纤维Ni丝;催化剂选用Ni等盐类,而不选用Ru等贵金属;催化助剂选用金属Mo、Cu等中的一种或二种。
二、催化材料的配比和制作
1.催化载体,即Ni微纤维结构化复合氧化物载体的配比如下:
a.所用的Ni纤维直径小于8微米,长度小于2.5毫米,其含量占总载体的31wt%。
b.所用的Al2O3颗粒尺寸为80~100目,其含量占总载体的51.5wt%。
c.所用的SiO2颗粒尺寸<100目,其含量占总载体的5.2wt%。
d.所用的纤维素,即滤纸浆,其含量占总载体的12.4wt%。
注:若要增加烧结成的催化载体孔隙率,则可添加适量的淀粉。
2.催化剂,选用Ni(NO3)Z.6H2O,其配比量为Ni(NO3)Z.6H2O换算为金属 Ni,Ni总量相当于载体的8wt%。将Ni(NO3)Z.6H2O用浸润法敷涂于载体上。
3.催化助剂,选用Ce(NO3)3.6H2O,其配比量为Ce(NO3)3.6H2O换算为CeO2, CeO2总量相当于载体的8wt%(注:选用Ce(NO3)3.6H2O是因其相对其它稀土氧化物效果更好,价格也不贵)。将Ce(NO3)3.6H2O用浸润法敷涂于载体上(最后转化为CeO2)。
三、载体制作步骤
1.将上述Ni纤维、Al2O3、SiO2颗粒和纤维素加入适量分散剂,再以总量5 倍的水,高速球磨1h,在纸质圆筒组合模具,注浆成型。
2.将上述的注浆成型在真空90℃下烤干成型环筒状(环厚<10mm)。
3.将成型环筒装入特制模具内,经200mpa等静压保压3分钟。
4.将经过等静压后的成型圆筒,在400~500℃下,在空气中经过2h烘焙。
5.通过机加工,使圆筒外壁呈平头螺纹形状,内壁为圆形光孔。
6.将齿轮圆筒置入炉内,在H2气下烘焙850~900℃,则催化载体制件完成。
四、催化剂和催化助剂浸润到载体的制作步骤
1.分别称取一定量的Ni(NO3)Z.6H2O和Ce(NO3)3.6H2O,加入适量水调成有一定流动性的水溶液。
2.将螺纹筒状的载体先浸入Ce(NO3)3.6H2O溶液中,采用抽吸渗透法使溶液从催化体螺纹一侧向载体渗透,达到吸入量后烘干(<900℃)12小时,再真空烘干。
3.将载体在空气中焙烧,升温制度为阶梯式,即200℃→300℃→400℃→500℃→580℃。
4.将上述焙烧齿轮圆筒浸入Ni(NO3)Z.6H2O溶液中,其流动性优于Ce(NO3) 3.6H2O溶液,浸入时间也长一倍,在80℃下抽吸渗透,至抽入物达到预期量。
5.将渗入Ni(NO3)Z.6H2O溶液的齿轮圆筒经阶梯升温焙烧后,在250℃下 H2还原2小时。则氨裂解的核心部件制作完成。
关于氨裂解装置的配件,如热量补偿的温度显示,对于一定功率的氨裂装置的流量和压力控制显示,以及氨裂解率和漏气率的动态跟踪显示等,均被本发明视为专业人员所了解和熟知,故未在本发明中进行描述。
在本发明的催化助剂中,还可试添加有微量的MgO或MoO以资比较,这可视为本发明范围内的进一步的合理延伸,故此处不再作详述。
以上实施例仅用以说明本发明的技术方案和实施方式,而非对本发明保护范围的限制,其它任何未脱离本发明的精神实质与原理的修改方式,均在本发明的保护范围之内。

Claims (10)

1.一种为中温质子陶瓷燃料电池提供裂解氨制氢的装置,其特征在于:制作一个包括催化载体、催化剂、催化助剂、粘合剂的螺纹管型氨裂解装置。
2.根据权利要求1所述的催化载体,其特征在于:所述的催化载体包含Ni微细纤维、Al2O3颗粒微粉、微量的SiO2微粉,其中,Ni微细纤维的尺寸为直径小于8微米,长度为2.5毫米,其量为载体总量的31wt%;Al2O3微粉被添加了少量的SiO2,其量为Al2O3的1-2wt%。
3.根据权利要求1所述的催化剂,其特征在于:包括Ni(NO3)Z.6H2O,它折合为Ni的量为总载体的8wt%,同时它被添加了少量的CuO(为总载体的0.5-1wt%)。
4.根据权利要求1所述的催化助剂,其特征在于:包括Ce(NO3)3.6H2O,它折合为CeO2的量为总载体的8wt%,同时它被添加了少量的MgO(为总载体的0.5-1wt%)。
5.根据权利要求1所述的粘合剂,其特征在于:它是纤维素,并且掺入了少量的淀粉发泡剂(为粘合剂的1-2wt%)。
6.根据权利要求1所述的装置,其特征包括:将Ni细微纤维、Al2O3颗粒微粉、SiO2微粉、纤维素、分散剂及总量5倍以上的水球磨制浆或高速搅拌制浆,在复合圆纸筒模具烧注为圆筒,圆筒在90℃以下阴干12小时,真空2小时,再将环筒套入专制模具,经200mpa冷等静压下压型,保压2~3分钟。
7.根据权利要求1所述的装置,其特征还包括:将焙烧完成圆筒机加工,筒内呈同轴圆形光孔,筒外壁呈平头螺纹,再将螺纹圆筒在阶梯式升温(250℃→350℃→450℃)下烘焙2小时,再由450℃升至900℃,在H2保护下烧结2小时。
8.根据权利要求1所述的装置,其特征进一步包括:将Ce(NO3)3.6H2O和MgO加水调成浆料,将浆料浸润抽吸到平头螺纹载体,在<90℃温度下阴干12小时,再真空烘干;再将载体,置于空气中焙烧,升温控制为100℃→200℃1小时,200℃→450℃1小时,450℃保持2小时,总计4小时。
9.根据权利要求1所述的装置,其特征进一步包括:将Ni(NO3)Z.6H2O和CuO加水调成浆料,将浆料浸润抽吸到平头螺纹载体中,将载体置于90℃下干燥12小时,其后进行真空干燥1小时,再经H2保护150℃1小时和250℃1.5小时。
10.根据权利要求1所述的装置,其特征还包括:在氨气通入裂解装置的管道中,外扣8000高斯超强永磁场,以便预激活NH3气体。
CN202010000248.3A 2020-01-02 2020-01-02 一种氨裂解制氢的装置及其制作方法 Pending CN113058610A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010000248.3A CN113058610A (zh) 2020-01-02 2020-01-02 一种氨裂解制氢的装置及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010000248.3A CN113058610A (zh) 2020-01-02 2020-01-02 一种氨裂解制氢的装置及其制作方法

Publications (1)

Publication Number Publication Date
CN113058610A true CN113058610A (zh) 2021-07-02

Family

ID=76558115

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010000248.3A Pending CN113058610A (zh) 2020-01-02 2020-01-02 一种氨裂解制氢的装置及其制作方法

Country Status (1)

Country Link
CN (1) CN113058610A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797684A (zh) * 2022-04-01 2022-07-29 众立能源装备(陕西)有限公司 一种氨气低温催化分解的制氢装置
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11764381B2 (en) 2021-08-17 2023-09-19 Amogy Inc. Systems and methods for processing hydrogen
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
US11975968B2 (en) 2023-08-23 2024-05-07 AMOGY, Inc. Systems and methods of processing ammonia

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11764381B2 (en) 2021-08-17 2023-09-19 Amogy Inc. Systems and methods for processing hydrogen
US11769893B2 (en) 2021-08-17 2023-09-26 Amogy Inc. Systems and methods for processing hydrogen
US11843149B2 (en) 2021-08-17 2023-12-12 Amogy Inc. Systems and methods for processing hydrogen
CN114797684A (zh) * 2022-04-01 2022-07-29 众立能源装备(陕西)有限公司 一种氨气低温催化分解的制氢装置
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11840447B1 (en) 2022-10-06 2023-12-12 Amogy Inc. Systems and methods of processing ammonia
US11912574B1 (en) 2022-10-06 2024-02-27 Amogy Inc. Methods for reforming ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
US11975968B2 (en) 2023-08-23 2024-05-07 AMOGY, Inc. Systems and methods of processing ammonia

Similar Documents

Publication Publication Date Title
CN113058610A (zh) 一种氨裂解制氢的装置及其制作方法
CN106512598B (zh) 具有除尘和催化脱硝功能的陶瓷膜过滤元件及其制备方法
CN106048650B (zh) 3d多孔电极的制备方法及其在电化学析氢反应中的应用
CN101203305A (zh) 用于产生氢气的金属氧化物催化剂及制备该金属氧化物催化剂的方法
CN103920875B (zh) WC-稀土-Co逐层包覆硬质合金复合粉末的制备方法
CN102167623A (zh) 炭素材料抗氧化涂层及制备方法
CN101481263A (zh) 一种制备负载型钯或钯合金膜的方法
CN106191505B (zh) 一种高温抗氧化多孔材料的制备方法
CN109590473A (zh) 一种多孔钛基给药雾化芯以及雾化用发热组件的制备方法
CN112048635A (zh) 一种微纳米分级多孔铜及其制备方法
CN113307660A (zh) 一种陶瓷基复合材料用自愈合环境障涂层及其制备方法
CN101007347A (zh) 一种高孔隙率金属多孔载体材料的制备方法
CN114195539A (zh) 一种SiC/PyC纳米线增强Al2O3耐高温吸波陶瓷及其制备方法
CN113501547B (zh) 一种氮掺杂石墨烯负载反尖晶石型磁性气凝胶材料的制备方法
CN109748595A (zh) 一种混合渗剂、用途及反应熔渗制备方法
CN114042473B (zh) 一种提高无粘结剂整体式分子筛基催化剂机械强度的方法
CN114988908B (zh) 高温多孔介质燃烧用刚玉-六铝酸钙多孔陶瓷及制备方法
CN108455526B (zh) 由甲醇和水制备高纯度氢气的方法
CN106083123A (zh) 一种渗硅的碳‑碳复合材料刹车盘的制备方法
CN114516756B (zh) 一种碳化硅复合陶瓷材料及其制备方法和应用
CN109650933B (zh) 一种多孔Co3O4/Al2SiO5低密度吸波型复相陶瓷及其制备方法
CN106735175A (zh) 一种高孔隙的钛基吸气元件的批量化制备方法
CN103165361B (zh) 一种含铯化合物阴极的制备方法及该阴极
CN113943168A (zh) 一种新型高强度氧化物陶瓷基复合材料及其制备方法
CN110304628A (zh) 一种在金刚石表面制备可控纳米二氧化硅的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210702

WD01 Invention patent application deemed withdrawn after publication