CN113046363B - 番茄SlZHD10基因及其应用 - Google Patents
番茄SlZHD10基因及其应用 Download PDFInfo
- Publication number
- CN113046363B CN113046363B CN202110365790.3A CN202110365790A CN113046363B CN 113046363 B CN113046363 B CN 113046363B CN 202110365790 A CN202110365790 A CN 202110365790A CN 113046363 B CN113046363 B CN 113046363B
- Authority
- CN
- China
- Prior art keywords
- slzhd10
- tomato
- gene
- seq
- artificial sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8218—Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8262—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
- C12N15/8267—Seed dormancy, germination or sprouting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Virology (AREA)
- Physiology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
本发明涉及一种番茄SlZHD10基因及其应用,其序列如SEQ ID NO:1所示;其编码的蛋白序列如SEQ ID NO:2所示。还包含番茄SlZHD10基因用于构建SlZHD10番茄基因组编辑材料的应用,该材料能提高种子萌发率。通过本发明,本发明首次构建了SlZHD10番茄基因组编辑材料,并进行功能研究,发现该基因在种子萌发过程中起调控作用。
Description
技术领域
本发明涉及一种番茄
SlZHD10基因及其应用,属于生物技术领域。
背景技术
种子是园艺生产的重要基础,种子的质量直接影响农业生产的进行。番茄(
Solanum lycopersicumL.)是世界范围内广泛种植的重要蔬菜作物,而我国的番茄种植面积和产量都位居世界前列。我国的番茄生产通常采用穴盘育苗和设施栽培,对种子的萌发率有较高的要求,种子萌发率低会导致出苗不整齐和用种量的提高,从而延迟栽种计划和增加生产成本。因此,提高番茄种子的萌发率对农业生产具有重要意义。
番茄
SlZHD10基因编码的蛋白属于锌指同源域(ZHD,zinc finger-homodomain)转录因子家族,已有研究表明,该家族蛋白在植物生长发育和胁迫响应中发挥重要作用,但还没有其参与调控番茄种子萌发的报道。
CRISPR/Cas9是一种简单易行且成本较低的基因编辑技术,通过靶点的精准修饰,可以定向改良植物性状,从而加速育种进程。然而,目前还没有通过CRISPR/Cas9技术敲除
SlZHD10基因,从而提高番茄种子萌发率的方法。
发明内容
本发明的目的在于针对上述问题,提供一种番茄
SlZHD10基因及其应用,本发明提供了番茄
SlZHD10基因(序列如SEQ ID NO:1所示)及其编码蛋白(序列如SEQ ID NO:2所示),和
SlZHD10基因组编辑材料在提高种子萌发率中的应用。
一种番茄
SlZHD10基因,其特征在于:
其序列如SEQ ID NO:1所示,SEQ ID NO:1为:
ATGGAACACAGAGGCCAAGAAAAGGATATGGGCTTGCCTAATCCCAATCCCATGAGTTATAACCCATCTCAACTTAACCAGCAAGAATCATCTTCCTCTGCAGCAAACAAGTTCCTTACCGCACCAAATAGAACAACAAATGAACATGAGAATACCATTTTTAGCCCTAACCAAACCCTAGATCAGCATAATATTACTCAAAATTCAGATCCAGATCCAGTTCGACAACTATCTACTAGTTCAGCAAGTGAGAGGAATATTACCCCCGTCCGGTACAAAGAATGTCTCAAAAATCATGCTGCAAATTTGGGAGGATATGTACTAGACGGTTGCGGAGAATTCATGCCAAGCGGAGAAGAGGAGACACTAGAATACCTGAAATGTGCAGCTTGTGATTGTCACCGCAATTTTCATAGGAAAGAGACTGAGGACGAATCACAAACACCTGGTGTGCATAGAAATAACCACCGTATACCCAACCAAACTCCGCCTTCTCTTCCAGCTGTGCCTACGCAGCAACAACACCATCATAAATACCCTCACAGCTATCCAAGAGGTCACATGGCACCAGTAATGATGAGTTTCGGCGGGAACACGGGAGTTGCAGCTGAATCATCAAGTGAAGATCTGAATATGTTTCACGGAGGACAAGGGGTAATTCAGCCTTGTAATTTTTCGGCATCGAAGAAGAGATTTCGAACGAAATTCAGTCAACAACAGAAAGATAGAATGCTAGAGTTCGCTGAGAAACTGGGATGGAGAATTCAGAAACAAGATGAACAAGAAGTGCATCAATTTTGTAATGAAGTGGGCGTGAAGAGACAAGTGTTCAAAGTGTGGATGCACAACAGCAAACAAGCAACCAAGAAGAAACAAAATTAA
其编码的蛋白序列如SEQ ID NO:2所示,SEQ ID NO:2为:
MEHRGQEKDMGLPNPNPMSYNPSQLNQQESSSSAANKFLTAPNRTTNEHENTIFSPNQTLDQHNITQNSDPDPVRQLSTSSASERNITPVRYKECLKNHAANLGGYVLDGCGEFMPSGEEETLEYLKCAACDCHRNFHRKETEDESQTPGVHRNNHRIPNQTPPSLPAVPTQQQHHHKYPHSYPRGHMAPVMMSFGGNTGVAAESSSEDLNMFHGGQGVIQPCNFSASKKRFRTKFSQQQKDRMLEFAEKLGWRIQKQDEQEVHQFCNEVGVKRQVFKVWMHNSKQATKKKQN
番茄
SlZHD10基因用于构建
SlZHD10番茄基因组编辑材料的应用,该材料能提高种子萌发率。
通过本发明,提供番茄
SlZHD10基因序列,及其编码的蛋白序列。还同时提供了上述基因的用途:用于构建
SlZHD10番茄基因组编辑材料,该材料能提高种子萌发率。本发明首次构建了
SlZHD10番茄基因组编辑材料,并进行功能研究,发现该基因在种子萌发过程中起调控作用。
附图说明
图1为SlZHD10基因编辑植株突变类型;
a为CRISPR/Cas9敲除
SlZHD10基因靶点序列获得的突变体DNA序列示意图;b为CRISPR/Cas9敲除
SlZHD10基因靶点序列获得的突变体氨基酸序列示意图。
图2为SlZHD10调控种子萌发;
a和b显示出在1/2 MS培养基上和NaCl培养基上
SlZHD10基因编辑株系CR-10-1,CR-10-5和CR-10-6的种子比野生型AC萌发得更快;c显示出
SlZHD10基因在种子萌发过程中表达量逐渐下降。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式作进一步详细说明。
一、得到
SlZHD10基因全长序列:
取种植在番茄品种‘Ailsa Craig’(AC)叶片的cDNA为模版,设计克隆引物
SlZHD10-F和
SlZHD10-R,用高保真酶PrimerSTAR进行PCR扩增。
引物序列为:
SlZHD10-F:5’-CACCATGGAACACAGAGGCCAAGAAA-3’(SEQ ID NO:3)
SlZHD10-R:5’-TTAATTTTGTTTCTTCTTGGTTGCTT-3’(SEQ ID NO:4)
PCR体系共50 μL:2xbuffer 25 μL、dNTP 5μL、PrimerSTAR DNA polymerase1μL、模板2μL、上下游引物各1μL、ddH2O 15 μL。PCR反应程序为:94℃预变性5分钟;94℃变性10秒,57℃退火15秒,72℃延伸1分钟,共36循环;最后72℃延伸5分钟。将获得的PCR反应产物用1%的琼脂糖凝胶电泳鉴定,然后将目的条带用Takara的凝胶回收试剂盒纯化,将产物连接到pENTR/D-topo载体(Thermo Fisher)上,将上述重组质粒送测。
SlZHD10基因的核苷酸序列如SEQ ID No.1所示;该基因编码的氨基酸序列如SEQID No.2所示。
二、
SlZHD10基因的CRISPR/Cas9基因组编辑载体的构建:
在
SlZHD10的第一个外显子上寻找了2个20 bp左右的靶位点,分别设计引物,引物序列为ZHD10-1-CR-F:TTGGAGGCCAAGAAAAGGATAT(SEQ ID No.5),ZHD10-1-CR-R:AACATATCCTTTTCTTGGCCTC(SEQ ID No.6)和ZHD10-2-CR-F:TTGAGGAACTTGTTTGCTGCAG(SEQID No.7),ZHD10-2-CR-R:AACCTGCAGCAAACAAGTTCCT(SEQ ID No.8)。将合成的oligo分别稀释成10 μM,各取5 μL加入ddH2O 15 μL,终浓度为2 μM。在PCR仪中95 ℃加热3分钟,立即取出,自然冷却至室温。再按照VK005-16试剂盒(VIEWSOLID BIOTECH)的说明,将上述两个片段连接到vk005-16载体上。连接产物转化大肠杆菌DH5α感受态中,Kan抗性培养基筛选,菌落PCR筛选阳性克隆,鉴定引物为Seq-R:GATGAAGTGGACGGAAGGAAGGAG(SEQ ID No.9)和各自的正向引物。阳性克隆37 ℃摇菌过夜,送测序,测序引物为Seq-R。测序正确后提取质粒,分别命名为VKCas9-SlZHD10-g1和VKCas9-SlZHD10-g2。VKCas9-SlZHD10-g1用 AscI和SpeI酶切,跑琼脂糖凝胶电泳回收短带,插入到Asc1和AvrII酶切的VKCas9-SlZHD10-g2中,连接产物转化大肠杆菌DH5α感受态中,Kan抗性培养基筛选,菌落PCR筛选阳性克隆,鉴定引物为Seq-R和ZHD10-1-CR-F。阳性克隆37 ℃摇菌过夜,送公司测序,测序引物为Seq-R。测序正确后提取质粒,命名为VKCas9-SlZHD10-g1g2。
三、基因组编辑材料的构建与检测:
将构建成功的VKCas9-SlZHD10-g1g2载体转化农杆菌LBA4404菌株,经过PCR鉴定后,用于侵染番茄品种’AC’的子叶,通过诱导愈伤,抗性诱导分化以及生根培养,获得组培苗。对获得的10株再生植株中的
Cas9基因进行PCR检测,扩增引物为Cas9-F:CCACATGATTAAGTTCAGGGGCCAT(SEQ ID No.10)和Cas9-R:GAGCCTTCGTAATCTCGGTGTTC(SEQID No.11)。对PCR产物进行凝胶电泳检测,10株植物均检测到
Cas9基因。对
SlZHD10基因的编辑位点进行PCR扩增,扩增引物为CRZHD10-F:ATTTTTGTAACTTAGGATAGATTAC(SEQ IDNo.12)和CRZHD10-R:TTATTTCTATGCACACCAGGT(SEQ ID No.13)。PCR产物测序。最终获得基因编辑阳性植株9株,其中1株纯合,8株杂合。将上述9株T0代植株单株留种获得T1代种子播种,选取不含
Cas9,但
SlZHD10发生突变的T1代植株,自交留种后选择3个纯合T2代突变株系,分别命名为CR-10-1,CR-10-5和CR-10-6,其基因编辑位点序列如图1a所示。其中CR-10-1的第一个靶点缺失1个碱基(-A),第二个靶点插入1个碱基(+C);CR-10-5在两个靶点之间缺失74个碱基;CR-10-6在1号靶点和2号靶点分别缺失1个碱基(-A和-C)。根据ExPASy网站(https://www.expasy.org/)预测,这三个株系的SlZHD10蛋白翻译提前终止(图1b)。
SlZHD10调控种子萌发率的研究:
将番茄品种’AC’及CR-10-1,CR-10-5和CR-10-6三个株系的种子,用75%的酒精浸泡种子2分钟,无菌水冲洗3次,然后用40%(V/V)的花王漂白水浸泡10分钟,无菌水冲洗7次,并用无菌水浸泡4-6 h。最后播种在1/2 MS和含80 mM NaCl的1/2 MS培养基上,放置在光照培养箱内,26℃,16 h光照/8 h黑暗的光周期下等待发芽。每个株系播种至少60粒,3次生物学重复。以胚根露出视为种子萌发,每天统计发芽率并拍照。结果如图2a,2b所示,在1/2 MS培养基上
SlZHD10基因编辑株系CR-10-1,CR-10-5和CR-10-6的种子比野生型AC萌发的更快。播种2天后,CR-10-1,CR-10-5和CR-10-6种子的萌发率分别达到41%,37%和47%,而AC的发芽率只有7%。此外,CR-10-1,CR-10-5和CR-10-6对NaCl处理更不敏感,从播种后第5天开始,三个株系种子的萌发率均高于对照AC。
为进一步明确SlZHD10在种子萌发过程中的作用,将AC种子播种于1/2 MS培养基上,利用qRT-PCR技术分析种子萌发过程中
SlZHD10表达量变化。番茄总RNA的提取采用TaKaRa MiniBEST Universal RNA Extraction Kit(Takara, Japan)试剂盒,然后使用Prime Script RT Master Mix(Takara, Japan)将RNA反转录为cDNA。qRT-PCR使用SYBRGreen PCR Master Mix(Takara,Japan)于实时荧光定量PCR仪(CFX96,Bio-Rad,USA)进行分析。使用番茄
SlTIP41为内参基因,基因相对表达量采用2-△△CT方法计算。实时定量PCR引物为qRT-SlTIP41-F:TCAGTGGGAGGATTGTAAGG(SEQ ID No.14),qRT-SlTIP41-R:GGTTCTTTAGACGCCAATGC(SEQ ID No.15),qRT-S1ZHD10-F:ATCCAGATCCAGTTCGACAA(SEQ IDNo.16),qRT-S1ZHD10-R:ATCACAAGCTGCACATTTCA(SEQ ID No.17)。结果如图2c所示,SlZHD10的表达量呈逐渐下降的趋势,这进一步说明了番茄SlZHD10基因负向调控种子萌发。
与现有技术相比,本发明具有如下有益效果:
本发明利用CRISPR/Cas9基因编辑技术构建番茄
SlZHD10突变体,对
SlZHD10基因进行功能研究。本发明通过实验证明,番茄
SlZHD10基因编辑材料的种子在正常条件下及NaCl胁迫下的萌芽率显著高于野生型番茄种子,说明
SlZHD10基因在番茄种子萌发的过程发挥负向调控作用。
SlZHD10基因新功能的发现为创制高萌发率的番茄种质材料提供了依据,具有良好的应用前景。
序列表
<110> 扬州大学
<120> 番茄SlZHD10基因及其应用
<160> 17
<170> SIPOSequenceListing 1.0
<210> 1
<211> 882
<212> DNA
<213> 番茄(Solanum lycopersicum L.)
<400> 1
atggaacaca gaggccaaga aaaggatatg ggcttgccta atcccaatcc catgagttat 60
aacccatctc aacttaacca gcaagaatca tcttcctctg cagcaaacaa gttccttacc 120
gcaccaaata gaacaacaaa tgaacatgag aataccattt ttagccctaa ccaaacccta 180
gatcagcata atattactca aaattcagat ccagatccag ttcgacaact atctactagt 240
tcagcaagtg agaggaatat tacccccgtc cggtacaaag aatgtctcaa aaatcatgct 300
gcaaatttgg gaggatatgt actagacggt tgcggagaat tcatgccaag cggagaagag 360
gagacactag aatacctgaa atgtgcagct tgtgattgtc accgcaattt tcataggaaa 420
gagactgagg acgaatcaca aacacctggt gtgcatagaa ataaccaccg tatacccaac 480
caaactccgc cttctcttcc agctgtgcct acgcagcaac aacaccatca taaataccct 540
cacagctatc caagaggtca catggcacca gtaatgatga gtttcggcgg gaacacggga 600
gttgcagctg aatcatcaag tgaagatctg aatatgtttc acggaggaca aggggtaatt 660
cagccttgta atttttcggc atcgaagaag agatttcgaa cgaaattcag tcaacaacag 720
aaagatagaa tgctagagtt cgctgagaaa ctgggatgga gaattcagaa acaagatgaa 780
caagaagtgc atcaattttg taatgaagtg ggcgtgaaga gacaagtgtt caaagtgtgg 840
atgcacaaca gcaaacaagc aaccaagaag aaacaaaatt aa 882
<210> 2
<211> 293
<212> PRT
<213> 番茄(Solanum lycopersicum L.)
<400> 2
Met Glu His Arg Gly Gln Glu Lys Asp Met Gly Leu Pro Asn Pro Asn
1 5 10 15
Pro Met Ser Tyr Asn Pro Ser Gln Leu Asn Gln Gln Glu Ser Ser Ser
20 25 30
Ser Ala Ala Asn Lys Phe Leu Thr Ala Pro Asn Arg Thr Thr Asn Glu
35 40 45
His Glu Asn Thr Ile Phe Ser Pro Asn Gln Thr Leu Asp Gln His Asn
50 55 60
Ile Thr Gln Asn Ser Asp Pro Asp Pro Val Arg Gln Leu Ser Thr Ser
65 70 75 80
Ser Ala Ser Glu Arg Asn Ile Thr Pro Val Arg Tyr Lys Glu Cys Leu
85 90 95
Lys Asn His Ala Ala Asn Leu Gly Gly Tyr Val Leu Asp Gly Cys Gly
100 105 110
Glu Phe Met Pro Ser Gly Glu Glu Glu Thr Leu Glu Tyr Leu Lys Cys
115 120 125
Ala Ala Cys Asp Cys His Arg Asn Phe His Arg Lys Glu Thr Glu Asp
130 135 140
Glu Ser Gln Thr Pro Gly Val His Arg Asn Asn His Arg Ile Pro Asn
145 150 155 160
Gln Thr Pro Pro Ser Leu Pro Ala Val Pro Thr Gln Gln Gln His His
165 170 175
His Lys Tyr Pro His Ser Tyr Pro Arg Gly His Met Ala Pro Val Met
180 185 190
Met Ser Phe Gly Gly Asn Thr Gly Val Ala Ala Glu Ser Ser Ser Glu
195 200 205
Asp Leu Asn Met Phe His Gly Gly Gln Gly Val Ile Gln Pro Cys Asn
210 215 220
Phe Ser Ala Ser Lys Lys Arg Phe Arg Thr Lys Phe Ser Gln Gln Gln
225 230 235 240
Lys Asp Arg Met Leu Glu Phe Ala Glu Lys Leu Gly Trp Arg Ile Gln
245 250 255
Lys Gln Asp Glu Gln Glu Val His Gln Phe Cys Asn Glu Val Gly Val
260 265 270
Lys Arg Gln Val Phe Lys Val Trp Met His Asn Ser Lys Gln Ala Thr
275 280 285
Lys Lys Lys Gln Asn
290
<210> 3
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
caccatggaa cacagaggcc aagaaa 26
<210> 4
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ttaattttgt ttcttcttgg ttgctt 26
<210> 5
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
ttggaggcca agaaaaggat at 22
<210> 6
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
aacatatcct tttcttggcc tc 22
<210> 7
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
ttgaggaact tgtttgctgc ag 22
<210> 8
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
aacctgcagc aaacaagttc ct 22
<210> 9
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
gatgaagtgg acggaaggaa ggag 24
<210> 10
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
ccacatgatt aagttcaggg gccat 25
<210> 11
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
gagccttcgt aatctcggtg ttc 23
<210> 12
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
atttttgtaa cttaggatag attac 25
<210> 13
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
ttatttctat gcacaccagg t 21
<210> 14
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
tcagtgggag gattgtaagg 20
<210> 15
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
ggttctttag acgccaatgc 20
<210> 16
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
atccagatcc agttcgacaa 20
<210> 17
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
atcacaagct gcacatttca 20
Claims (1)
1.敲除番茄SlZHD10基因在提高番茄种子萌发率中的应用,其特征在于:
所述SlZHD10基因的序列如SEQ ID NO:1所示;
所述SlZHD10基因编码的蛋白序列如SEQ ID NO:2所示。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110365790.3A CN113046363B (zh) | 2021-04-06 | 2021-04-06 | 番茄SlZHD10基因及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110365790.3A CN113046363B (zh) | 2021-04-06 | 2021-04-06 | 番茄SlZHD10基因及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113046363A CN113046363A (zh) | 2021-06-29 |
CN113046363B true CN113046363B (zh) | 2023-05-09 |
Family
ID=76517446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110365790.3A Active CN113046363B (zh) | 2021-04-06 | 2021-04-06 | 番茄SlZHD10基因及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113046363B (zh) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109207505B (zh) * | 2017-06-29 | 2020-03-17 | 北京市农林科学院 | 一种通过基因组编辑创制番茄雄性不育系的方法及其应用 |
CN109423498B (zh) * | 2017-08-30 | 2021-03-19 | 中国科学院遗传与发育生物学研究所 | 一种通过基因编辑创制高花青素紫黑果番茄材料的方法 |
CN112011546A (zh) * | 2020-07-19 | 2020-12-01 | 华中农业大学 | SlMS基因在调控番茄育性中的应用及方法 |
-
2021
- 2021-04-06 CN CN202110365790.3A patent/CN113046363B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN113046363A (zh) | 2021-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110669785B (zh) | 番茄SlLOB40蛋白及其编码基因在调控植物抗旱性中的应用 | |
CN111187789B (zh) | 一种水稻myb转录因子及其重组表达载体的应用 | |
CN104611359B (zh) | ZmSPL1蛋白及其编码基因在调控玉米籽粒发育中的应用 | |
CN113430221B (zh) | 番茄wrky37蛋白在调控番茄抗叶片衰老能力、提高番茄产量中的应用 | |
CN110358772A (zh) | 提高水稻非生物胁迫抗性的OsEBP89基因及制备方法与应用 | |
CN108424920A (zh) | 玉米耐逆相关转录因子ZmNAC33基因及其应用 | |
CN112342235A (zh) | GmDGAT2A在提高大豆油含量并增加亚油酸含量中的应用 | |
CN114836436B (zh) | 大豆基因GmRGS1与葡糖糖共同促进豆科植物根瘤产生中的应用 | |
EP1236801A2 (en) | Method of agrobacterium mediated plant transformation through treatment of germinating seeds | |
CN114940998B (zh) | 一种玉米转录因子ZmEREB92及应用 | |
CN113046363B (zh) | 番茄SlZHD10基因及其应用 | |
CN107988233B (zh) | 大豆GmCRY1b基因在调控植物高度和开花时间中的应用 | |
CN107973844B (zh) | 小麦抽穗期相关蛋白Ta-Hd4A及其应用 | |
CN108004248B (zh) | 一种黄瓜钙结合蛋白基因CsCaM在提高植物耐热性中的应用 | |
CN111979233A (zh) | 一种增大水稻粒型的方法及其应用 | |
CN114230648B (zh) | 水稻基因panda提高植物产量的应用 | |
WO2023096614A1 (en) | Method for developing haploid-inducing lines in tomato via mutant centromere- specific histone 3 protein (mtcenh3) | |
CN115820659A (zh) | C2h2型锌指蛋白基因hstl在调控水稻抽穗时间中的应用 | |
CN109722441B (zh) | 一种黄瓜小热激蛋白Cu-sHSP基因及其应用 | |
CN110468138B (zh) | 控制水稻耐冷性的基因tsg2及其应用 | |
CN109182350B (zh) | 玉米Zm675基因在植物品质改良中的应用 | |
CN109207487B (zh) | 一种油菜耐渍基因BnaLPP1及制备方法和应用 | |
CN111499709A (zh) | 水稻穗粒数相关的rgn1蛋白及其编码基因与应用 | |
CN116574701B (zh) | 组蛋白去甲基化酶SlJMJ10及其编码基因和在调控番茄果实大小中的应用 | |
CN114807072B (zh) | 番茄SlDAO2基因及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |