CN113013457B - 一种含交联型磺化POSS的Nafion基复合质子交换膜、制备方法及其应用 - Google Patents

一种含交联型磺化POSS的Nafion基复合质子交换膜、制备方法及其应用 Download PDF

Info

Publication number
CN113013457B
CN113013457B CN202110208808.9A CN202110208808A CN113013457B CN 113013457 B CN113013457 B CN 113013457B CN 202110208808 A CN202110208808 A CN 202110208808A CN 113013457 B CN113013457 B CN 113013457B
Authority
CN
China
Prior art keywords
nafion
poss
proton exchange
exchange membrane
sulfonated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110208808.9A
Other languages
English (en)
Other versions
CN113013457A (zh
Inventor
孟跃中
李臻
王拴紧
肖敏
韩东梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202110208808.9A priority Critical patent/CN113013457B/zh
Publication of CN113013457A publication Critical patent/CN113013457A/zh
Application granted granted Critical
Publication of CN113013457B publication Critical patent/CN113013457B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种含交联型磺化POSS的Nafion基复合质子交换膜、制备方法及其应用。本发明以Nafion为基体,以双功能化笼型倍半硅氧烷(Vi‑POSS‑SO3Na)为性能增强成分;通过溶液共混,刮涂烘干成膜,再加热交联。复合膜中的Vi‑POSS‑SO3Na之间发生热交联,原位热交联形成POSS‑SO3Na纳米块。再经酸化处理后,形成X‑Nafion@POSS复合膜。本发明制备方法简单,原料易得,但对复合质子交换膜的性能有巨大提升,甲醇渗透率最高可以下降约50%。较Nafion重铸膜相比,阻醇性能高,热稳定性和抗氧化能力强,力学性能及尺寸稳定性好,在甲醇燃料电池中具有广阔的应用前景。

Description

一种含交联型磺化POSS的Nafion基复合质子交换膜、制备方 法及其应用
技术领域
本发明属于燃料电池质子交换膜、高分子功能膜技术领域,具体地说,涉及一种含交联型磺化POSS的Nafion基复合质子交换膜、制备方法及其应用。
背景技术
甲醇燃料电池是质子交换膜燃料电池中重要的一类。Nafion膜作为商业化成熟的质子交换膜,在氢氧燃料电池中得到了广泛的应用。但是Nafion膜的甲醇渗透率高,会导致混合电位的产生,降低了甲醇燃料电池的开路电压和输出功率,限制了其在甲醇燃料电池中的应用。因此,制备具有高质子传导率和低甲醇渗透率的质子交换膜具有十分重要的意义。
笼型聚倍半硅氧烷(POSS)是一种具有有机/无机特性的化合物,其尺寸为1~3nm,常被应用于聚合物改性中。POSS表面可以引入多种不同的官能团,如环氧基,氨基,乙烯基,氯丙基等,基于此类的POSS共混聚合物或者POSS共聚物体系,在耐热阻燃材料、包装阻隔材料、生物医学材料、电解质材料等领域显示出很大的潜力。
中国专利CN 107565149A,设计合成了一种单臂结构的蝌蚪型有机无机杂化高分子,具有良好的亲水性,而POSS核的存在保证了其优越的热稳定性,从而提高其质子交换膜高温下质子电导率。
中国专利CN 111303630A,采用高磺化度的纯聚砜为基体,在其表面刮涂otca-MAPOSS(八甲基丙烯酰氧丙基POSS)/磺化聚芳醚砜复合涂层,涂层中的POSS纳米微球粒径随厚度呈梯度分布,由此制备出具有良好界面相容性的 “ 三明治”结构的复合质子交换膜,有利于高磺化度磺化聚芳醚基体在高温高湿条件下的溶胀率的降低。
采用溶液共混的方法制备复合膜,也是一种常见的方便快捷的制备复合膜的方法,但需要添加相和基材相容性好,且添加相在基体中均匀分散才有利于复合膜整体性能的提升。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的不足,提出了一种原位热交联制备含磺化POSS的Nafion基复合质子交换膜的方法,解决Nafion膜甲醇渗透率高以及尺寸稳定性差的问题。
为解决上述技术问题,本发明提供的技术方案是:
一种含交联型磺化POSS的Nafion基复合质子交换膜,该质子交换膜由八乙烯基笼型倍半硅氧烷(OV-POSS)和3-巯基-1-丙烷磺酸钠(MPS)经烯-巯加成反应得到乙烯基磺化硅氧烷(Vi-POSS-SO3Na),然后将所得的Vi-POSS-SO3Na和Nafion溶液混合,并刮涂烘干成复合膜;然后复合膜经过热交联处理,浸泡于稀硫酸溶液中酸化得到。
作为优选的,在上述的含交联型磺化POSS的Nafion基复合质子交换膜中:所述八乙烯基笼型倍半硅氧烷(OV-POSS)和3-巯基-1-丙烷磺酸钠(MPS)的摩尔比为1:4。
作为优选的,在上述的含交联型磺化POSS的Nafion基复合质子交换膜中:所述的乙烯基磺化硅氧烷由以下方法合成:
(1)将OV-POSS和MPS在混合溶剂中溶解,再加光引发剂,混合均匀;
(2)搅拌条件下,紫外灯光照反应,然后旋蒸除去四氢呋喃,剩余的溶液倒在大量无水乙醇中析出沉淀;
(3)将沉淀过滤,无水乙醇洗涤,干燥得到乙烯基磺化硅氧烷。
作为优选的,在上述的含交联型磺化POSS的Nafion基复合质子交换膜中:步骤(1)所述的混合溶剂为四氢呋喃(THF)和二甲基亚砜(DMSO)按照体积比1:1~2混合;步骤(1)所述的光引发剂为安息香二甲醚(DMPA)。
作为优选的,在上述的含交联型磺化POSS的Nafion基复合质子交换膜中:步骤(2)所述的紫外光的波长为395nm;步骤(2)所述旋蒸的温度为50℃,时长40min;步骤(2)所述的大量无水乙醇的体积为混合溶剂的3倍;步骤(3)所述干燥的温度为100℃,时间为12h。
作为优选的,在上述的含交联型磺化POSS的Nafion基复合质子交换膜中:所述的Nafion溶液为将Nafion 212膜用二甲基亚砜(DMSO)重新溶解后得到的溶液,其中Nafion和二甲基亚砜的质量体积比为1g/4mL。
作为优选的,在上述的含交联型磺化POSS的Nafion基复合质子交换膜中:所述乙烯基磺化硅氧烷与Nafion溶液中Nafion的质量比为3~12:100。
上述含交联型磺化POSS的Nafion基复合质子交换膜的制备方法,由以下方法制备得到:
(1)将乙烯基磺化硅氧烷溶解在Nafion溶液中,加热搅拌得到澄清透明的混合溶液;
(2)用刮涂的方法在玻璃板上刮涂1000μm厚的液膜,然后在70℃下烘干成膜;
(3)将步骤(2)得到的复合膜,200℃下热交联10h;
(4)将步骤(3)得到的复合膜,浸泡于硫酸溶液中酸化,得到含交联型磺化POSS的Nafion基复合质子交换膜。
作为优选的,在上述的制备方法中,步骤(1)所述加热搅拌的温度为90℃,时间为12h;步骤(4)中所述硫酸溶液的浓度为0.5mol/L,酸化条件为80℃下12h。
本发明最终合成的乙烯基磺化硅氧烷在一些溶剂中有良好的溶解性,如二甲基亚砜和水。最终合成的乙烯基磺化硅氧烷如果经200℃交联后,不再溶解于原本可以溶解的溶剂中,如二甲基亚砜。
与现有技术相比,本发明具有如下有益效果:
1.本发明首先利用八乙烯基笼型倍半硅氧烷的乙烯基和3-巯基-1-丙烷磺酸钠的巯基进行烯-巯加成反应得到乙烯基磺化硅氧烷。通过控制投料比,还可以调节乙烯基磺化硅氧烷上乙烯基与磺酸基的比例。
2.本发明合成的乙烯基磺化硅氧烷这种双功能化的POSS即能利用磺酸基提供质子传导的位点,同时可以利用加热法交联聚合在一起。
3.本发明以溶液共混的方式将乙烯基磺化硅氧烷掺杂到Nafion中。再经过热交联处理,使乙烯基磺化硅氧烷在Nafion基体中原位形成交联的磺化POSS纳米块,这种纳米块在Nafion基体中可以原位均匀的分散,克服了常规物理共混容易发生团聚的弊端。
4.本发明提出的含交联型磺化POSS的Nafion基复合质子交换膜由于其中的磺化POSS纳米块的存在,可以增强复合膜的甲醇阻隔性能,同时质子传导能力也有所提升。
5.本发明制备方法简单,原料易得,但对复合质子交换膜的性能有巨大提升,甲醇渗透率最高可以下降约50%。较Nafion重铸膜相比,阻醇性能高,热稳定性和抗氧化能力强,力学性能及尺寸稳定性好,在甲醇燃料电池中具有广阔的应用前景。
附图说明
图1为乙烯基磺化硅氧烷的反应方程式。
图2为八乙烯基笼型倍半硅氧烷(OV-POSS)和乙烯基磺化硅氧烷(Vi-POSS-SO3Na)的红外吸收光谱图。
图3为Nafion膜以及不同交联型磺化POSS含量的Nafion基复合质子交换膜的甲醇渗透率图。
图4为Nafion膜以及不同交联型磺化POSS含量的Nafion基复合质子交换膜在不同温度下的质子传导率图。
图5为用Nafion膜以及不同交联型磺化POSS含量的Nafion基复合质子交换膜用于燃料电池测试的极化曲线和功率密度曲线图。
具体实施方式
下面结合实例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1:含交联型磺化POSS的Nafion基复合质子交换膜的制备
(1)在圆底烧瓶中,加入八乙烯基笼型倍半硅氧烷0.1226g,3-巯基-1-丙烷磺酸钠0.1426g,先加四氢呋喃2.5mL和二甲基亚砜4mL将原料分散均匀溶解。再加5.4mg光引发剂安息香二甲醚,溶解。然后在磁力搅拌下,紫外灯光照反应2h。反应生成大量沉淀,再在50℃下,旋蒸40min除去溶剂中的THF,得到的液体倒在20mL无水乙醇中析出沉淀。得到的沉淀过滤洗涤干燥,即得到乙烯基磺化硅氧烷。反应方程式如图1。
(2)复合质子交换膜的制备:先取Nafion 212膜0.485g,加热溶解在约1.5mL二甲基亚砜中,再取乙烯基磺化硅氧烷0.015g,加入Nafion溶液中加热搅拌,溶解均匀。得到的均匀溶液刮涂在玻璃板上,液膜厚约1000μm,然后在70℃下加热烘干成膜。成膜后转移到200℃的烘箱中,加热交联10h。最后得到的复合膜在0.5M的硫酸溶液中80℃下浸泡酸化12h,即得到最终的含交联型磺化POSS的Nafion基复合质子交换膜,记作:X-Nafion/POSS-3。
实施例2:含交联型磺化POSS的Nafion基复合质子交换膜的制备
(1)在圆底烧瓶中,加入八乙烯基笼型倍半硅氧烷1.0128g,3-巯基-1-丙烷磺酸钠1.1406g,先加四氢呋喃20mL和二甲基亚砜20mL将原料分散均匀溶解。再加40mg光引发剂安息香二甲醚,溶解。然后在磁力搅拌下,紫外灯光照反应2h。反应生成大量沉淀,再在50℃下,旋蒸40min除去溶剂中的THF,得到的液体倒在120mL无水乙醇中析出沉淀。得到的沉淀过滤洗涤干燥,即得到乙烯基磺化硅氧烷。
(2)复合质子交换膜的制备:先取Nafion 212膜0.47g,加热溶解在约1.5mL二甲基亚砜中,再取乙烯基磺化硅氧烷0.03g,加入Nafion溶液中加热搅拌,溶解均匀。得到的均匀溶液刮涂在玻璃板上,液膜厚约1000μm,然后在70℃下加热烘干成膜。成膜后转移到200℃的烘箱中,加热交联10h。最后得到的复合膜在0.5 M的硫酸溶液中80℃下浸泡酸化12h,即得到最终的含交联型磺化POSS的Nafion基复合质子交换膜,记作:X-Nafion/POSS-6。
实施例3:含交联型磺化POSS的Nafion基复合质子交换膜的制备
(1)乙烯基磺化硅氧烷的制备按照实施例2。
(2)复合质子交换膜的制备:先取Nafion 212膜0.455g,加热溶解在约1.5mL二甲基亚砜中,再取乙烯基磺化硅氧烷0.045g,加入Nafion溶液中加热搅拌,溶解均匀。得到的均匀溶液刮涂在玻璃板上,液膜厚约1000μm,然后在70℃下加热烘干成膜。成膜后转移到200℃的烘箱中,加热交联10h。最后得到的复合膜在0.5 M的硫酸溶液中80℃下浸泡酸化12h,即得到最终的含交联型磺化POSS的Nafion基复合质子交换膜,记作:X-Nafion/POSS-9。
实施例4:含交联型磺化POSS的Nafion基复合质子交换膜的制备
(1)乙烯基磺化硅氧烷的制备按照实施例2。
(2)复合质子交换膜的制备:先取Nafion 212膜0.44g,加热溶解在约1.5mL二甲基亚砜中,再取乙烯基磺化硅氧烷0.06g,加入Nafion溶液中加热搅拌,溶解均匀。得到的均匀溶液刮涂在玻璃板上,液膜厚约1000μm,然后在70℃下加热烘干成膜。成膜后转移到200℃的烘箱中,加热交联10h。最后得到的复合膜在0.5 M的硫酸溶液中80℃下浸泡酸化12h,即得到最终的含交联型磺化POSS的Nafion基复合质子交换膜,记作:X-Nafion/POSS-12。
实施例5 实施例1-4所得交换膜的性能测试
通过红外吸收光谱(FT-IR)的测试(图2),可以看到,原本OV-POSS谱图中在1604,1410,1276 cm-1位置代表乙烯基的明显的红外吸收峰在Vi-POSS-SO3Na的谱图中峰高变低,说明部分乙烯基因发生反应而消失;而Vi-POSS-SO3Na谱图中在1182,1049 cm-1位置出现的强吸收峰和3455位置的包峰到代表磺酸钠通过烯-巯加成反应成功的接在了POSS上。通过红外光谱的测试,说明了乙烯基磺化硅氧烷的成功合成。
图3是不同复合膜的甲醇渗透率。通过这样的结果比较,可以看出,含交联型磺化POSS的Nafion基复合质子交换膜均具有低于Nafion膜的甲醇渗透率,尤其是当乙烯基磺化硅氧烷的添加量在12%时,复合膜的甲醇渗透率最低。说明复合膜有更好的阻醇效果,有利于在甲醇燃料电池中的应用。
图4 是不同复合膜在不同温度下的质子传导率,在低温度时,复合膜的质子传导率比Nafion膜更高,另外通过活化能的计算,可以得出结论,复合膜中质子传导时活化能更低,质子转移更容易,复合膜有利于应用在甲醇燃料电池中。
图5是利用Nafion膜和不同复合膜组装成甲醇燃料电池测试电池性能的结果。复合膜具有更高的甲醇燃料电池开路电压以及更高的功率密度。尤其是X-Nafion/POSS-12样品组装成的甲醇燃料电池最高功率密度约为35mW cm-2,是同样条件下用Nafion 212膜组装成的甲醇燃料电池最高功率密度的2倍多。

Claims (8)

1.一种含交联型磺化POSS的Nafion基复合质子交换膜,其特征在于:该质子交换膜由八乙烯基笼型倍半硅氧烷和3-巯基-1-丙烷磺酸钠经烯-巯加成反应得到乙烯基磺化硅氧烷Vi-POSS-SO3Na,然后将所得的Vi-POSS-SO3Na和Nafion溶液混合,并刮涂烘干成复合膜;然后复合膜经过热交联处理,浸泡于稀硫酸溶液中酸化得到;
所述八乙烯基笼型倍半硅氧烷和3-巯基-1-丙烷磺酸钠的摩尔比为1:4;
所述的乙烯基磺化硅氧烷由以下方法合成:
(1)将OV-POSS和MPS在混合溶剂中溶解,再加光引发剂,混合均匀;
(2)搅拌条件下,紫外灯光照反应,然后旋蒸除去四氢呋喃,剩余的溶液倒在大量无水乙醇中析出沉淀;
(3)将沉淀过滤,无水乙醇洗涤,干燥得到乙烯基磺化硅氧烷。
2.根据权利要求1所述的含交联型磺化POSS的Nafion基复合质子交换膜,其特征在于:步骤(1)所述的混合溶剂为四氢呋喃和二甲基亚砜按照体积比1:1~2混合;步骤(1)所述的光引发剂为安息香二甲醚。
3.根据权利要求1所述的含交联型磺化POSS的Nafion基复合质子交换膜,其特征在于:步骤(2)所述的紫外光的波长为395nm;步骤(2)所述旋蒸的温度为50℃,时长40min;步骤(2)所述的大量无水乙醇的体积为混合溶剂的3倍;步骤(3)所述干燥的温度为100℃,时间为12h。
4.根据权利要求1所述的含交联型磺化POSS的Nafion基复合质子交换膜,其特征在于:所述的Nafion溶液为将Nafion 212膜用二甲基亚砜重新溶解后得到的溶液,其中Nafion和二甲基亚砜的质量体积比为1g/4mL。
5.根据权利要求1所述的含交联型磺化POSS的Nafion基复合质子交换膜,其特征在于:所述乙烯基磺化硅氧烷与Nafion溶液中Nafion的质量比为3~12:100。
6.权利要求1所述含交联型磺化POSS的Nafion基复合质子交换膜的制备方法,其特征在于由以下方法制备得到:
(1)将乙烯基磺化硅氧烷溶解在Nafion溶液中,加热搅拌得到澄清透明的混合溶液;
(2)用刮涂的方法在玻璃板上刮涂1000μm厚的液膜,然后在70℃下烘干成膜;
(3)将步骤(2)得到的复合膜,200℃下热交联10h;
(4)将步骤(3)得到的复合膜,浸泡于硫酸溶液中酸化,得到含交联型磺化POSS的Nafion基复合质子交换膜。
7.根据权利要求6所述的制备方法,其特征在于,步骤(1)所述加热搅拌的温度为90℃,时间为12h;步骤(4)中所述硫酸溶液的浓度为0.5mol/L,酸化条件为80℃下12h。
8.权利要求1所述交联型磺化POSS的Nafion基复合质子交换膜在甲醇燃料电池中的应用。
CN202110208808.9A 2021-02-24 2021-02-24 一种含交联型磺化POSS的Nafion基复合质子交换膜、制备方法及其应用 Active CN113013457B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110208808.9A CN113013457B (zh) 2021-02-24 2021-02-24 一种含交联型磺化POSS的Nafion基复合质子交换膜、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110208808.9A CN113013457B (zh) 2021-02-24 2021-02-24 一种含交联型磺化POSS的Nafion基复合质子交换膜、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN113013457A CN113013457A (zh) 2021-06-22
CN113013457B true CN113013457B (zh) 2022-04-05

Family

ID=76385945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110208808.9A Active CN113013457B (zh) 2021-02-24 2021-02-24 一种含交联型磺化POSS的Nafion基复合质子交换膜、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113013457B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122470B (zh) * 2021-11-24 2023-12-29 中汽创智科技有限公司 一种质子交换膜及其制备方法和应用
CN114671496A (zh) * 2022-01-17 2022-06-28 杭州职业技术学院 一种高稳定性的废水处理系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130118075A (ko) * 2012-04-19 2013-10-29 서강대학교산학협력단 술폰산기를 가지는 실세스퀴옥산을 이용한 양성자 전도성 고분자나노복합막
CN105985474A (zh) * 2015-02-13 2016-10-05 中国科学院大连化学物理研究所 基于光引发的巯基–丙烯酸酯聚合反应快速制备有机–无机杂化多孔整体材料的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247741A (ja) * 2000-03-08 2001-09-11 Japan Automobile Research Inst Inc イオン伝導膜及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130118075A (ko) * 2012-04-19 2013-10-29 서강대학교산학협력단 술폰산기를 가지는 실세스퀴옥산을 이용한 양성자 전도성 고분자나노복합막
CN105985474A (zh) * 2015-02-13 2016-10-05 中国科学院大连化学物理研究所 基于光引发的巯基–丙烯酸酯聚合反应快速制备有机–无机杂化多孔整体材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Insitu implantation of PolyPOSS blocks in Nafion® matrix to promote its performance in direct methanol fuel cell;XinhuiZhang;《Journal of Membrane Science》;20080415;参见第310-312、316页 *

Also Published As

Publication number Publication date
CN113013457A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
CN113013457B (zh) 一种含交联型磺化POSS的Nafion基复合质子交换膜、制备方法及其应用
CN110492158B (zh) 一种基于含羧基磺化聚芳醚酮砜和Im-MOF-801的有机-无机复合膜及其制备方法
Martina et al. Nanosulfonated silica incorporated SPEEK/SPVdF-HFP polymer blend membrane for PEM fuel cell application
Han et al. Effect of “bridge” on the performance of organic-inorganic crosslinked hybrid proton exchange membranes via KH550
CN101724165B (zh) 环氧交联磺化聚芳醚酮质子交换膜材料及其制备方法
CN107104242B (zh) 一种聚硅氧烷多膦酸掺杂speek高低温通用型质子交换膜及其制备方法
WO2006068369A1 (en) Branched and sulphonated multi block copolymer and electrolyte membrane using the same
CN110041552B (zh) 基于磺化芳醚型聚苯并咪唑与磺化聚倍半硅氧烷的复合型高温质子交换膜及其制备方法
CN112133946A (zh) 一种含羧基磺化聚芳醚酮砜/负载磷钨酸-离子液体金属有机框架复合膜及其制备方法
TW201024343A (en) High proton conductivity proton exchange membrane composites
Yu et al. Polymeric ionic liquids and MXene synergistically improve proton conductivity and mechanical properties of polybenzimidazole-based high-temperature proton exchange membranes
US20120115050A1 (en) Method for in-situ preparation of polybenzimidazole-based electrolyte membrane and polybenzimidazole-based electrolyte membrane prepared thereby
CN110071313B (zh) 聚苯并咪唑基多组分纳米高温质子交换复合膜、制备方法及其应用
Aparicio et al. Proton conducting organic/inorganic sol–gel membranes produced from phenyltriethoxysilane and 3-methacryloxypropyl trimethoxysilane
CN107799794A (zh) 基于有机膦酸的高温质子交换膜及其制备方法和应用
CN106751839A (zh) 燃料电池用高分子微球/含氨基的磺化聚芳醚酮砜质子交换膜材料、制备方法及其应用
CN113801474A (zh) 一种含羧基的磺化聚芳醚酮砜/Im-Uio-66-AS复合的质子交换膜及其制备方法
CN101481457B (zh) 含磺酸基的交联聚苯并咪唑薄膜及其制备方法
CN1226329C (zh) 可溶性磺化聚苯并咪唑及其制备方法
CN114883618B (zh) 一种磺化聚醚醚酮基质子交换膜及其制备方法与应用
CN103560259A (zh) 一种poss交联型磺化聚酰亚胺质子交换膜及其制备方法
CN116613362A (zh) 一种用于钒电池的复合两性离子交换膜及其制备方法
CN111363140A (zh) 一种可交联含氟聚芳醚及其制备方法和应用
Kim et al. Properties of composite membrane based on sulfonated poly (arylene ether sulfone): effect of functional groups in phosphotungstic acid particles prepared by sol–gel method
CN1834135A (zh) 磺化聚合物/聚吡咯复合质子交换膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant