CN113012948A - 一种用于锌离子储能器件的锌碳复合电极材料的制备方法 - Google Patents

一种用于锌离子储能器件的锌碳复合电极材料的制备方法 Download PDF

Info

Publication number
CN113012948A
CN113012948A CN202110211151.1A CN202110211151A CN113012948A CN 113012948 A CN113012948 A CN 113012948A CN 202110211151 A CN202110211151 A CN 202110211151A CN 113012948 A CN113012948 A CN 113012948A
Authority
CN
China
Prior art keywords
zinc
carbon
carbon composite
electrode material
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110211151.1A
Other languages
English (en)
Inventor
陈永
陈晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Priority to CN202110211151.1A priority Critical patent/CN113012948A/zh
Publication of CN113012948A publication Critical patent/CN113012948A/zh
Priority to PCT/CN2021/102703 priority patent/WO2022179018A1/zh
Priority to US17/594,477 priority patent/US20230223524A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • H01M10/0427Button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种用于锌离子储能器件的锌碳复合电极材料的制备方法,包括以下步骤:制备锌碳复合负极材料、制备电极浆料、制得电池电极,本发明所提出的锌碳复合负极材料,可以增强锌离子储能器件的容量,并增强器件的循环稳定性,可拓展性强,能够显著改善锌离子储能器件的性能,增加能量密度并延长使用寿命,易于大规模推广。

Description

一种用于锌离子储能器件的锌碳复合电极材料的制备方法
技术领域
本发明涉及电极材料领域,特别涉及一种用于锌离子储能器件的锌碳复合电极材料的制备方法。
背景技术
常见的水系锌离子电池和锌离子电容器中常用纯锌箔作为负极使用。但纯锌箔负极价格昂贵且表面易发生副反应和枝晶生长,存在电化学性能不稳定和使用寿命短的问题。如果要进一步提高器件的功率密度或是使器件在更长的周期中循环时,在大电流刺激下或是多次的循环后,锌枝晶和惰性副产物的大量生成就成为了不可忽视的重要问题。
而且锌枝晶的形成会增加负极的表面积,提高析氢速率;发生在负极表面的析氢反应会使得OH-浓度升高,引起局部pH值变化,这些生成的OH-将参与反应并形成电化学惰性的腐蚀副产物沉积在负极表面;负极表面的惰性腐蚀副产物可导致表面不均匀并加重电极极化,反过来促进枝晶的形成。因此,锌枝晶的大量出现有可能会造成使器件寿命减少和容量下降的恶性循环形成。
发明内容
鉴以此,本发明提出一种用于锌离子储能器件的锌碳复合电极材料的制备方法,来解决上述问题,
本发明的技术方案是这样实现的:一种用于锌离子储能器件的锌碳复合电极材料的制备方法,包括以下步骤:
S1、制备锌碳复合负极材料:锌粉颗粒与粉末状碳添加剂材料进行研磨,所述研磨方式为机械研磨或手工研磨,研磨结束后将样品置于真空干燥箱中干燥,干燥温度为100~130℃,干燥时间2~8h,得到锌碳复合负极材料;
S2、制备电极浆料:将上述锌碳复合负极材料和聚四氟乙烯(PTFE)依比例混合均匀,所述锌碳复合负极材料所占质量比为85~95%,所述聚四氟乙烯所占质量比为5~15%,制得电极浆料;
S3、将上述电极浆料压制为厚度150~300μm的薄片,放入电热恒温烘箱中干燥,所述干燥温度为60~120℃,干燥时间为1~8h;
S4、将上述薄片中用冲片机剪裁成直径8~12mm的圆片,并移入真空干燥箱中进行干燥,干燥温度为100~130℃,干燥时间为10~15h;
S5、将上述干燥好的圆片压至不锈钢网集流体上即可作为扣式电池电极使用。
进一步的,所述S1步骤中碳添加剂材料和锌粉材料分别占除粘结剂外的电极浆料质量的1~10%和90~99%。
进一步的,所述S1步骤中碳添加剂其特征为粉末状碳材料或碳粉末分散液,粉末状碳材料粒径为10nm~200μm,包括科琴黑、乙炔黑、生物质碳、石墨碳、石墨烯、碳纳米管。
进一步的,所述S1步骤中纯锌粉末,纯度高于90%,形貌为球形颗粒或类球形颗粒,锌粉材料的粒径为1~30μm。
进一步的,所述S1步骤中机械研磨方式所用球料比为20:1。
进一步的,所述S1步骤中机械研磨为行星式球磨机,球磨速度控制在200~600rpm,研磨时间为2~4h。
进一步的,所述S1步骤中手工研磨的研磨时间为10~180min。
与现有技术相比,本发明的有益效果是:
本发明所提出的锌碳复合负极材料,可以增强锌离子储能器件的容量,并增强器件的循环稳定性。可使用锌粉为储能器件提供电化学活性基础,锌粉的造价远低于纯锌箔;使用的锌碳复合电极在被组装成锌离子混合电容器后,可以提供308.75F/g的首圈放电比容量,在经过500次1A/g恒电流充放电测试后,可以保持85.83%的容量;
除此之外,本方法制备流程简单,可拓展性强,能够显著改善锌离子储能器件的性能,增加能量密度并延长使用寿命,易于大规模推广。
附图说明
图1本发明实施例2得到的锌碳复合电极的扫描电镜图
图2中Zn是用作对比的纯锌箔-活性炭电容器在不同电流密度下的循环性能对比图。
图2中KB@Zn-1%是例1中的锌碳复合电极-活性炭电容器在不同电流密度下的循环性能对比图。
图2中KB@Zn-10%是例2中的锌碳复合电极-活性炭电容器在不同电流密度下的循环性能对比图。
图2中AC@Zn-10%是例3中的锌碳复合电极-活性炭电容器在不同电流密度下的循环性能对比图。
具体实施方式
为了更好理解本发明技术内容,下面提供具体实施例,对本发明做进一步的说明。
本发明实施例所用的实验方法如无特殊说明,均为常规方法。
本发明实施例所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
一种用于锌离子储能器件的锌碳复合电极材料的制备方法,包括以下步骤:
S1、制备锌碳复合负极材料:锌粉颗粒与粉末状碳添加剂材料进行研磨,碳添加剂材料和锌粉材料分别占除粘结剂外的电极浆料质量的1%和94%,碳添加剂为科琴黑粒径为10nmμm,锌粉颗粒为类球形颗粒,粒径为1μm,所述研磨方式为手工研磨,研磨时间为10min,研磨结束后将样品置于真空干燥箱中干燥,干燥温度为100℃,干燥时间2h,得到锌碳复合负极材料;
S2、制备电极浆料:将上述锌碳复合负极材料和聚四氟乙烯(PTFE)依比例混合均匀,所述锌碳复合负极材料所占质量比为85%,所述聚四氟乙烯所占质量比为15%,制得电极浆料;
S3、将上述电极浆料压制为厚度150μm的薄片,放入电热恒温烘箱中干燥,所述干燥温度为60℃,干燥时间为1h;
S4、将上述薄片中用冲片机剪裁成直径8mm的圆片,并移入真空干燥箱中进行干燥,干燥温度为100℃,干燥时间为10h;
S5、将上述干燥好的圆片压至不锈钢网集流体上即可作为扣式电池电极,与活性炭正极材料极片、2M硫酸锌溶液共同组装成CR2025扣式电池以测试电化学性能。
实施例2
一种用于锌离子储能器件的锌碳复合电极材料的制备方法,包括以下步骤:
S1、制备锌碳复合负极材料:锌粉颗粒与粉末状碳添加剂材料进行研磨,碳添加剂材料和锌粉材料分别占除粘结剂外的电极浆料质量的10%和90%,碳添加剂为科琴黑粒径为200μm,锌粉颗粒为类球形颗粒,粒径为30μm,所述研磨方式为手工研磨,研磨时间为180min,研磨结束后将样品置于真空干燥箱中干燥,干燥温度为130℃,干燥时间8h,得到锌碳复合负极材料;
S2、制备电极浆料:将上述锌碳复合负极材料和聚四氟乙烯(PTFE)依比例混合均匀,所述锌碳复合负极材料所占质量比为95%,所述聚四氟乙烯所占质量比为5%,制得电极浆料;
S3、将上述电极浆料压制为厚度300μm的薄片,放入电热恒温烘箱中干燥,所述干燥温度为120℃,干燥时间为8h;
S4、将上述薄片中用冲片机剪裁成直径8~12mm的圆片,并移入真空干燥箱中进行干燥,干燥温度为120℃,干燥时间为15h;
S5、将上述干燥好的圆片压至不锈钢网集流体上即可作为扣式电池电极,与活性炭正极材料极片、2M硫酸锌溶液共同组装成CR2025扣式电池以测试电化学性能。
实施例3
一种用于锌离子储能器件的锌碳复合电极材料的制备方法,包括以下步骤:
S1、制备锌碳复合负极材料:锌粉颗粒与粉末状碳添加剂材料进行研磨,碳添加剂材料和锌粉材料分别占除粘结剂外的电极浆料质量的10%和90%,碳添加剂为生物质碳粒径为100μm,锌粉颗粒为类球形颗粒,粒径为25μm,所述研磨方式为行星式球磨机研磨,球磨速度控制在400rpm,研磨时间为3h,研磨结束后将样品置于真空干燥箱中干燥,干燥温度为120℃,干燥时间8h,得到锌碳复合负极材料;
S2、制备电极浆料:将上述锌碳复合负极材料和聚四氟乙烯(PTFE)依比例混合均匀,所述锌碳复合负极材料所占质量比为95%,所述聚四氟乙烯所占质量比为5%,制得电极浆料;
S3、将上述电极浆料压制为厚度200μm的薄片,放入电热恒温烘箱中干燥,所述干燥温度为120℃,干燥时间为8h;
S4、将上述薄片中用冲片机剪裁成直径10mm的圆片,并移入真空干燥箱中进行干燥,干燥温度为120℃,干燥时间为8h;
S5、将上述干燥好的圆片压至不锈钢网集流体上即可作为扣式电池电极,与活性炭正极材料极片、2M硫酸锌溶液共同组装成CR2025扣式电池以测试电化学性能。
表1为图2中4种样品在1A/g的电流密度下循环500圈所得到的恒电流充放电循环测试结果
表1
Figure BDA0002952362860000051
Figure BDA0002952362860000061
如表1,本发明所提出的锌碳复合负极材料,可以增强锌离子储能器件的容量,并增强器件的循环稳定性。用作对比的纯锌电极在被组装成锌离子混合电容器后,可以提供228.75F/g的首圈放电比容量,在经过500次1A/g恒电流充放电测试后,可以保持80.94%的容量。本发明例1所使用的锌碳复合电极在被组装成锌离子混合电容器后,可以提供285F/g的首圈放电比容量,在经过500次1A/g恒电流充放电测试后,可以保持83.78%的容量。本发明例2所使用的锌碳复合电极在被组装成锌离子混合电容器后,可以提供308.75F/g的首圈放电比容量,在经过500次1A/g恒电流充放电测试后,可以保持85.83%的容量。本发明例3所使用的锌碳复合电极在被组装成锌离子混合电容器后,可以提供306.25F/g的首圈放电比容量,在经过500次1A/g恒电流充放电测试后,可以保持85.30%的容量。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种用于锌离子储能器件的锌碳复合电极材料的制备方法,其特征在于:包括以下步骤:
S1、制备锌碳复合负极材料:锌粉颗粒与粉末状碳添加剂材料进行研磨,所述研磨方式为机械研磨或手工研磨,研磨结束后将样品置于真空干燥箱中干燥,干燥温度为100~130℃,干燥时间2~8h,得到锌碳复合负极材料;
S2、制备电极浆料:将上述锌碳复合负极材料和聚四氟乙烯混合均匀,所述锌碳复合负极材料所占质量比为85~95%,所述聚四氟乙烯所占质量比为5~15%,制得电极浆料;
S3、将上述电极浆料压制为厚度150~300μm的薄片,放入电热恒温烘箱中干燥,所述干燥温度为60~120℃,干燥时间为1~8h;
S4、将上述薄片中用冲片机剪裁成直径8~12mm的圆片,并移入真空干燥箱中进行干燥,干燥温度为100~130℃,干燥时间为10~15h;
S5、将上述干燥好的圆片压至不锈钢网集流体上即可作为扣式电池电极使用。
2.如权利要求1所述的一种用于锌离子储能器件的锌碳复合电极材料的制备方法,其特征在于:所述S1步骤中碳添加剂材料和锌粉材料分别占除粘结剂外的电极浆料质量的1~10%和90~99%。
3.如权利要求1所述的一种用于锌离子储能器件的锌碳复合电极材料的制备方法,其特征在于:所述S1步骤中碳添加剂其特征为粉末状碳材料或碳粉末分散液,粉末状碳材料粒径为10nm~200μm,包括科琴黑、乙炔黑、生物质碳、石墨碳、石墨烯、碳纳米管。
4.如权利要求1所述的一种用于锌离子储能器件的锌碳复合电极材料的制备方法,其特征在于:所述S1步骤中纯锌粉末,纯度高于90%,形貌为球形颗粒或类球形颗粒,锌粉材料的粒径为1~30μm。
5.如权利要求1所述的一种用于锌离子储能器件的锌碳复合电极材料的制备方法,其特征在于:所述S1步骤中机械研磨方式所用球料比为20:1。
6.如权利要求1所述的一种用于锌离子储能器件的锌碳复合电极材料的制备方法,其特征在于:所述S1步骤中机械研磨为行星式球磨机,球磨速度控制在200~600rpm,研磨时间为2~4h。
7.如权利要求1所述的一种用于锌离子储能器件的锌碳复合电极材料的制备方法,其特征在于:所述S1步骤中手工研磨的研磨时间为10~180min。
CN202110211151.1A 2021-02-25 2021-02-25 一种用于锌离子储能器件的锌碳复合电极材料的制备方法 Pending CN113012948A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110211151.1A CN113012948A (zh) 2021-02-25 2021-02-25 一种用于锌离子储能器件的锌碳复合电极材料的制备方法
PCT/CN2021/102703 WO2022179018A1 (zh) 2021-02-25 2021-06-28 一种用于锌离子储能器件的锌碳复合电极材料的制备方法
US17/594,477 US20230223524A1 (en) 2021-02-25 2021-06-28 Preparation method of a zinc-carbon composite electrode material used in zinc ion energy storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110211151.1A CN113012948A (zh) 2021-02-25 2021-02-25 一种用于锌离子储能器件的锌碳复合电极材料的制备方法

Publications (1)

Publication Number Publication Date
CN113012948A true CN113012948A (zh) 2021-06-22

Family

ID=76385819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110211151.1A Pending CN113012948A (zh) 2021-02-25 2021-02-25 一种用于锌离子储能器件的锌碳复合电极材料的制备方法

Country Status (3)

Country Link
US (1) US20230223524A1 (zh)
CN (1) CN113012948A (zh)
WO (1) WO2022179018A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022179018A1 (zh) * 2021-02-25 2022-09-01 海南大学 一种用于锌离子储能器件的锌碳复合电极材料的制备方法
CN115403041A (zh) * 2022-09-15 2022-11-29 中国地质大学(北京) 一种半纤维素基中空多孔碳及其制备方法和其在锌离子储能器件中的应用
CN116014093A (zh) * 2022-12-15 2023-04-25 天津大学 一种锌晶界处高导电性功能基团异质相连材料及制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117069093B (zh) * 2023-09-15 2024-06-07 福建省鑫森炭业股份有限公司 一种硬碳负极材料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432585B1 (en) * 1997-01-28 2002-08-13 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and rechargeable battery
CN107221654A (zh) * 2017-05-25 2017-09-29 济南大学 一种三维多孔鸟巢状硅碳复合负极材料及其制备方法
CN107221716A (zh) * 2017-05-23 2017-09-29 武汉理工大学 一种可充电水系锌离子电池
CN109119604A (zh) * 2018-07-12 2019-01-01 暨南大学 一种二次锌基电池用纳米Zn@C负极材料及其制备方法
CN110148704A (zh) * 2019-04-24 2019-08-20 浙江浙能技术研究院有限公司 一种网络状轻量型金属锌电极的结构及制备方法
CN111146492A (zh) * 2018-11-02 2020-05-12 三星电子株式会社 全固态二次电池及其制造方法
CN111211293A (zh) * 2020-03-09 2020-05-29 杨旭 一种电动牙刷或电动剃须刀用锂离子二次电池负极的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100484103B1 (ko) * 2002-09-03 2005-04-19 삼성에스디아이 주식회사 버튼형 및 코인형 전지
FI123479B (fi) * 2009-06-10 2013-05-31 Enfucell Ltd Ohutparisto
CN101948130B (zh) * 2010-10-11 2012-07-04 厦门大学 一种氧化锌空心微米球及其制备方法
CN105742648A (zh) * 2014-12-12 2016-07-06 中国科学院大连化学物理研究所 一种金属基锌材料及其制备方法
CN105870384A (zh) * 2016-03-03 2016-08-17 中国石油大学(华东) 一种用于锂电池电极的氮掺杂碳纳米管/锰-钴氧化物纳米复合材料
CN106219602B (zh) * 2016-08-13 2018-05-11 南阳师范学院 一种锂离子电池负极材料钛酸锂锌的制备方法
CN107317015B (zh) * 2017-07-05 2020-02-14 中国矿业大学 一种氧化锌/碳复合材料为负极制备钾离子电池的方法
CN110364692A (zh) * 2018-04-10 2019-10-22 中国科学院上海硅酸盐研究所 一种具有多相材料复合锌负极
CN108767215B (zh) * 2018-05-15 2021-03-26 华中科技大学 一种抑制锌枝晶的材料及其制备方法与应用
CN113012948A (zh) * 2021-02-25 2021-06-22 海南大学 一种用于锌离子储能器件的锌碳复合电极材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432585B1 (en) * 1997-01-28 2002-08-13 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and rechargeable battery
CN107221716A (zh) * 2017-05-23 2017-09-29 武汉理工大学 一种可充电水系锌离子电池
CN107221654A (zh) * 2017-05-25 2017-09-29 济南大学 一种三维多孔鸟巢状硅碳复合负极材料及其制备方法
CN109119604A (zh) * 2018-07-12 2019-01-01 暨南大学 一种二次锌基电池用纳米Zn@C负极材料及其制备方法
CN111146492A (zh) * 2018-11-02 2020-05-12 三星电子株式会社 全固态二次电池及其制造方法
CN110148704A (zh) * 2019-04-24 2019-08-20 浙江浙能技术研究院有限公司 一种网络状轻量型金属锌电极的结构及制备方法
CN111211293A (zh) * 2020-03-09 2020-05-29 杨旭 一种电动牙刷或电动剃须刀用锂离子二次电池负极的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022179018A1 (zh) * 2021-02-25 2022-09-01 海南大学 一种用于锌离子储能器件的锌碳复合电极材料的制备方法
CN115403041A (zh) * 2022-09-15 2022-11-29 中国地质大学(北京) 一种半纤维素基中空多孔碳及其制备方法和其在锌离子储能器件中的应用
CN115403041B (zh) * 2022-09-15 2023-11-21 中国地质大学(北京) 一种半纤维素基中空多孔碳及其制备方法和其在锌离子储能器件中的应用
CN116014093A (zh) * 2022-12-15 2023-04-25 天津大学 一种锌晶界处高导电性功能基团异质相连材料及制备方法

Also Published As

Publication number Publication date
US20230223524A1 (en) 2023-07-13
WO2022179018A1 (zh) 2022-09-01

Similar Documents

Publication Publication Date Title
CN108520985B (zh) 一种提高锌电池循环寿命的方法及其应用
CN113012948A (zh) 一种用于锌离子储能器件的锌碳复合电极材料的制备方法
CN112670516B (zh) 三维复合集流体及其制备方法
CN110034283B (zh) 磷化锡复合材料及其制备方法和应用
CN105762362B (zh) 碳包覆四氧化三铁/氮掺杂石墨烯复合材料及其制备应用
CN108598390A (zh) 一种锂硫电池用正极材料的制备方法及锂硫电池
CN114291796B (zh) 一种钾离子电池负极材料及其制备方法和应用
CN114530601A (zh) 一种硼掺杂多孔碳材料的制备方法及其在钾离子电池中的应用
CN110931725B (zh) 一种硅碳复合材料及其制备方法和应用
CN110407165B (zh) 锂硫电池用硒掺杂的共价有机骨架-硫正极复合材料及其合成方法
CN111668459A (zh) 铝离子电池用复合正极材料的制备方法及铝离子电池
CN110690441B (zh) 一种3d结构纳米锡基锂离子电池电极片及其制备方法
CN109817908B (zh) 硅碳复合材料及其制备方法、锂离子电池
CN115332507B (zh) 一种碳包覆磷酸铁钠复合电极材料及其制备和应用
CN116161698A (zh) 一种锌基电池正极材料及其制备方法和使用方法
CN113636554B (zh) 一种碳化钛-碳核壳阵列负载垂直石墨烯/二氧化锰复合材料及其制备方法和应用
CN111261866B (zh) 一种胶囊结构ZnO/C纳米复合微球材料的制备方法
CN114551873A (zh) 一种三氧化二铋修饰铟掺杂氧化锌材料及制备和应用
CN112002884A (zh) 花球状MoSe1.48S0.52@C正极复合材料及铝离子电池
CN112072084A (zh) 一种复合电极材料及其制备方法和应用
CN112824323A (zh) 一种铟掺杂氧化锌复合还原氧化石墨烯材料及制备和应用
CN109742341A (zh) 葡萄糖辅助制备高性能Fe掺杂二维多孔NiO电极材料的方法
CN116826059B (zh) 一种应用于海洋环境的锂电池负极材料及其制备方法
CN112624205B (zh) Fe2(SO4)3负极材料的制备方法及其应用
CN117509733B (zh) 一种本征Zn缺陷核壳结构ZnMoO3/C微球及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210622