CN112993067A - 一种无机钙钛矿太阳能电池及其制备方法 - Google Patents

一种无机钙钛矿太阳能电池及其制备方法 Download PDF

Info

Publication number
CN112993067A
CN112993067A CN201911283231.7A CN201911283231A CN112993067A CN 112993067 A CN112993067 A CN 112993067A CN 201911283231 A CN201911283231 A CN 201911283231A CN 112993067 A CN112993067 A CN 112993067A
Authority
CN
China
Prior art keywords
ordered mesoporous
inorganic perovskite
silicon material
mesoporous silicon
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911283231.7A
Other languages
English (en)
Other versions
CN112993067B (zh
Inventor
刘生忠
姜箫
刘璐
段连杰
王开
王辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201911283231.7A priority Critical patent/CN112993067B/zh
Publication of CN112993067A publication Critical patent/CN112993067A/zh
Application granted granted Critical
Publication of CN112993067B publication Critical patent/CN112993067B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种无机钙钛矿太阳能电池及其制备方法,属于太阳能光伏技术领域。本发明利用有序介孔材料为模版,将其引入钙钛矿前驱体溶液中,通过有序介孔材料调控无机钙钛矿的结晶过程,在制备钙钛矿薄膜时有序介孔材料起到骨架支撑与限域生长的作用,从而得到高性能无机钙钛矿太阳能电池。本发明采用廉价的有序介孔硅材料,其在钙钛矿的结晶过程中起到支撑与限域的作用,与传统的掺杂、界面修饰等改性手段有所区别,利用有序介孔硅材料为模版进行结晶调控更为方便有效,进而制备得到高性能无机钙钛矿层太阳能电池。

Description

一种无机钙钛矿太阳能电池及其制备方法
技术领域
本发明涉及太阳能光伏技术领域,具体为一种无机钙钛矿太阳能电池及其制备方法,具体为利用有序介孔材料调控无机钙钛矿的结晶过程,进而制备高性能无机钙钛矿层太阳能电池的方法。
技术背景
随着现代人类社会对可持续发展的要求越来越高,光伏技术受到了人们的无限关注。有机金属杂化卤化物钙钛矿因其具有良好的载流子迁移率、较长的载流子寿命和较宽的光谱吸收等优良光电特性而被认为是一种重要的吸光材料。在过去的几年中,采用传统结构的电子传输层(ETL)/钙钛矿吸附层(PVK)/空穴传输层(HTL)和HTL/PVK/ETL制备的太阳能电池实现了转换效率(PCE)由初始值3.8%到23.3%的提升。尽管获得了较高的PCE,大多数先进的钙钛矿太阳能电池是由挥发性阳离子制造的,如甲胺(MA+)和甲脒(FA+)。有机-无机钙钛矿太阳能电池由于受到挥发性组分的破坏,其热稳定性和光稳定性严重影响了其在实际生产中的进一步应用。因此,去除挥发性成分对于促进钙钛矿太阳能电池(PSCs)的稳定性变得至关重要。在钙钛矿晶体中,铯阳离子(Cs+)因其合适的离子半径和非挥发性而被认为是最有应用价值的一种阳离子,由此衍生的无机钙钛矿(CsPbX3)太阳能电池在光伏领域引起了众多研究者的兴趣。与此同时,Cs+与卤化铅骨架相互作用的促进将显著抑制钙钛矿的分解。因此,无机钙钛矿在太阳能电池领域具有极大的应用潜力。然而无机钙钛矿太阳能电池的效率仍然较低,因此通过各种改性手段提高无机钙钛矿太阳能电池的效率势在必行。
发明内容
为了解决无机钙钛矿太阳能电池效率仍然较低的问题,本发明旨在改善无机钙钛矿结晶过程,得到结晶度良好,晶格张力得到改善,性能优异的钙钛矿层,进而达到提升无机钙钛矿太阳能电池性能的目的。
本发明的技术方案:
一种无机钙钛矿太阳能电池,由导电基板,电子传输层,有序介孔硅材料调控结晶的无机钙钛矿层,空穴传输层,背电极组成。具体的制备工艺如下:
(1)在导电基板上制备电子传输层。
(2)有序介孔硅材料调控结晶的无机钙钛矿层的制备:在保护气氛下配制卤化铅和卤化铯混合溶液,搅拌至溶解后过滤待用;水浴超声配置有序介孔硅材料悬浊液,将有序介孔硅材料悬浊液加入到过滤后的卤化铅和卤化铯混合溶液中,振荡得到有序介孔硅材料调控结晶的钙钛矿层前驱液;将该前驱液在电子传输层上制备薄膜,对薄膜进行退火,退火完毕后冷却至室温即得到有序介孔硅材料调控结晶的无机钙钛矿层。
(3)在有序介孔硅材料调控结晶的无机钙钛矿层上制备空穴传输层,在空穴传输层上制备背电极,得到无机钙钛矿太阳能电池;
或在有序介孔硅材料调控结晶的无机钙钛矿层上直接制备背电极,得到无机钙钛矿太阳能电池。
步骤(1)中的导电基板为氟掺杂的氧化锡导电玻璃或铟掺杂的氧化锡导电玻璃中的一种;电子传输层为n型半导体,具体为氧化钛。
步骤(2)中的有序介孔硅材料为ZrSBA-15、SBA-15、MSU-H、MCM-48、MCM-41中的一种或两种以上;
步骤(2)中有序介孔硅材料悬浊液的配置中,其分散液为二甲基亚砜;有序介孔硅材料与分散液的配比为20mg/mL至60mg/mL,配置卤化铅和卤化铯混合溶液所用的溶剂为二甲基亚砜;有序介孔硅材料添加量占卤化铅和卤化铯的比例为0.1%(wt)至0.2%(wt)。步骤(2)中无机钙钛矿层的组成为CsPbIxBr3-x,x=0-3;或者为掺杂了锂,钠,钾,铷,锡,铋,锗,锶,硒中的一种或两种以上的CsPbIxBr3-x,x=0-3钙钛矿层;卤化铅和卤化铯的浓度为0.6M~1.5M,铅铯的摩尔比为0.8~1.2,无机钙钛矿层的退火温度为70℃~350℃,退火时间为1min~1000min。
步骤(2)在保护气氛下操作,其中保护气氛为相对湿度为10%~60%的空气,氮气,氩气,氦气,氖气,二氧化碳中的一种或两种以上。
步骤(3)中的空穴传输层为Spiro-OMeTAD、PTAA、氧化镍、氧化钼、氧化铜、铜铬氧化物、铜镓氧化物中的一种或两种以上;或者,不使用空穴传输层。
步骤(3)中的背电极为金、银、铜、镍中的一种或两种以上,其制备方法为真空蒸镀法。
不使用空穴传输层时,背电极为碳电极。
本发明的制备方法可制备得到无机钙钛矿层经有序介孔硅材料调控结晶的无机钙钛矿太阳能电池。
本发明采用无机钙钛矿材料制备太阳能电池,向无机钙钛矿前驱体溶液中加入有序介孔硅材料,利用其有序孔道辅助钙钛矿结晶,在结晶过程中,利用限域效应使钙钛矿前驱体溶液在孔道内形成固定大小的晶体从而调控其晶格张力,改善薄膜性能,进而提高所制备的太阳能电池的光伏性能。
基于上述技术,本发明与现有技术方案相比其优点在于:
(1)太阳能电池实际应用过程中,器件由于受光辐照与光伏过程的发电过程,发热是不可避免的问题。因此,太阳能电池的热稳定与光稳定性能至关重要。与传统的有机无机杂化太阳能电池相比,本发明通过有序介孔硅材料调控结晶的无机钙钛矿层的无机钙钛矿太阳能电池由于避免了挥发性有机阳离子的使用,其热稳定,光稳定性得到了显著的提升。
(2)在无机钙钛矿的结晶构型中,由于A位阳离子其离子半径的不同会造成所形成的钙钛矿晶体晶格张力有所改变,对于离子半径较小的铯阳离子,无机钙钛矿中的晶格张力通常会减小。本发明利用限域结晶过程中孔道内壁压力增强晶格张力的理念,将有序介孔硅材料添加到无机钙钛矿前驱体溶液中,在退火过程中使钙钛矿前驱体溶液在有序介孔孔道内限域生长,从而增强晶格张力,得到高效的无机钙钛矿薄膜。
附图说明
图1:无机钙钛矿限域生长及电池结构示意图;
图2:有序介孔孔道内限域生长的无机钙钛矿晶体透射电镜图;
图3:有序介孔孔道内限域生长的无机钙钛矿晶体选区电子衍射图;
图4:限域生长无机钙钛矿薄膜制备的太阳能电池I-V曲线;
图5:限域生长的无机钙钛矿薄膜XRD图谱;
图6:限域生长的无机钙钛矿薄膜表面扫描电镜图。
具体实施方式
现结合实施例及附图详细说明本发明的实施方法及详细操作。但本发明并不局限于以下所述的实施方案,属于权利要求范畴中的方法都应属于本发明的保护范围
实施例1:
使用40mM四氯化钛溶液利用70℃1h化学沉浴的方法在臭氧处理过的导电基板上制备氧化钛电子传输层。化学沉浴完成之后将制备了电子传输层的导电基板200℃退火30min待用。在相对湿度10%-20%的氮气气氛下配制0.9M的溴化铅碘化铯混合二甲基亚砜溶液1mL,铅铯的摩尔比为1:1,充分搅拌至完全溶解,过滤后待用。向过滤后的溴化铅碘化铯混合溶液中加入30μL的介孔ZrSBA-15的二甲基亚砜(ZrSBA-15与二甲基亚砜配比为:20mg/mL)悬浊液并充分振荡。(有序介孔硅材料添加量占卤化铅和卤化铯的比例为0.1%(wt))。
在退火后并经过15min臭氧处理的电子传输层导电基板上以1500rpm,150s的方式旋涂上述混合溶液。在225℃下退火结晶10min即得到钙钛矿层。在保护气氛下配制90mg/mL的Spiro-OMeTAD的氯苯溶液,向其中加入520mg/mL LiTFSI的乙腈溶液、叔丁基吡啶、300mg/mLCo-FK209的乙腈溶液,充分搅拌至完全溶解即得空穴传输层溶液。在钙钛矿层上以5000rpm,40s的方式旋涂空穴传输层溶液。将制备了空穴传输层的钙钛矿薄膜利用真空蒸镀仪制备150nm的金背电极即得到最终的钙钛矿电池见图1。采用该方法可以得到限域生长的钙钛矿晶体(图2)。对限域生长的钙钛矿晶体进行选区电子衍射,得到了单晶的衍射花样(图3)。基于以上所制备的CsPbIBr2钙钛矿电池效率达到了10.04%(图4)。XRD图谱确认了典型的CsPbIBr2钙钛矿衍生峰证明CsPbIBr2钙钛矿晶体良好的结晶性(图5)。同时,图6中CsPbIBr2钙钛矿薄膜表面扫面电镜图展示的大尺寸晶粒也证明了良好的结晶性。
实施列2:
将实施例1中的ZrSBA-15的二甲基亚砜悬浊液替换为MCM-41、SBA-15、MCM-48、MSU-H的二甲基亚砜悬浊液,其他条件不变,均可得到高性能的钙钛矿太阳能电池。
实施例3:
将实施例1中0.9M的溴化铅碘化铯溶液替换为0.6M的碘化铅碘化铯混合溶液,其他条件不变,也能得到高性能的钙钛矿太阳能电池。
实施例4:
将实施例1中30μL的ZrSBA-15悬浊液分别替换为40μL、50μL、60μL,其他条件不变,均可得到高性能的钙钛矿太阳能电池。

Claims (10)

1.一种无机钙钛矿太阳能电池的制备方法,其特征在于:以有序介孔硅材料为模版,调控无机钙钛矿结晶,制备无机钙钛矿太阳能电池的方法,其具体制备步骤如下:
(1)在导电基板上制备电子传输层;
(2)有序介孔硅材料调控结晶的无机钙钛矿层的制备:在保护气氛下配制卤化铅和卤化铯混合溶液,搅拌至溶解后过滤待用;水浴超声配置有序介孔硅材料悬浊液,将有序介孔硅材料悬浊液加入到过滤后的卤化铅和卤化铯混合溶液中,振荡得到有序介孔硅材料调控结晶的钙钛矿层前驱液;将该前驱液在电子传输层上制备薄膜,对薄膜进行退火,退火完毕后冷却至室温即得到有序介孔硅材料调控结晶的无机钙钛矿层;
(3)在有序介孔硅材料调控结晶的无机钙钛矿层上制备空穴传输层,在空穴传输层上制备背电极,得到无机钙钛矿太阳能电池;
或在有序介孔硅材料调控结晶的无机钙钛矿层上直接制备背电极,得到无机钙钛矿太阳能电池。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)中的导电基板为氟掺杂的氧化锡导电玻璃或铟掺杂的氧化锡导电玻璃中的一种;电子传输层为n型半导体,具体为氧化钛。
3.根据权利要求1所述的制备方法,其特征在于:步骤(2)中的有序介孔硅材料为ZrSBA-15、SBA-15、MSU-H、MCM-48、MCM-41中的一种或两种以上。
4.根据权利要求1所述的制备方法,其特征在于:步骤(2)中有序介孔硅材料悬浊液的配置中,其分散液为二甲基亚砜;有序介孔硅材料与分散液的配比为20mg/mL至60mg/mL,配置卤化铅和卤化铯混合溶液所用的溶剂为二甲基亚砜;有序介孔硅材料添加量占卤化铅和卤化铯的比例为0.1%(wt)至0.2%(wt)。
5.根据权利要求1所述的制备方法,其特征在于:步骤(2)中无机钙钛矿层的组成为CsPbIxBr3-x,x=0-3;或者为掺杂了锂,钠,钾,铷,锡,铋,锗,锶,硒中的一种或两种以上的CsPbIxBr3-x,x=0-3钙钛矿层;卤化铅和卤化铯的浓度为0.6M~1.5M,铅铯的摩尔比为0.8~1.2,无机钙钛矿层的退火温度为70℃~350℃,退火时间为1min~1000min。
6.根据权利要求1所述的制备方法,其特征在于:步骤(2)在保护气氛下操作,其中保护气氛为相对湿度为10%~60%的空气,氮气,氩气,氦气,氖气,二氧化碳中的一种或两种以上。
7.根据权利要求1所述的制备方法,其特征在于:步骤(3)中的空穴传输层为Spiro-OMeTAD、PTAA、氧化镍、氧化钼、氧化铜、铜铬氧化物、铜镓氧化物中的一种或两种以上;
或者不使用空穴传输层。
8.根据权利权利要求1所述的制备方法,其特征在于:步骤(3)中的背电极为金、银、铜、镍中的一种或两种以上。
9.根据权利要求7中所述的制备方法,其特征在于:不使用空穴传输层时,背电极为碳电极。
10.一种权利要求1-9任一所述方法制备的无机钙钛矿太阳能电池。
CN201911283231.7A 2019-12-13 2019-12-13 一种无机钙钛矿太阳能电池及其制备方法 Active CN112993067B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911283231.7A CN112993067B (zh) 2019-12-13 2019-12-13 一种无机钙钛矿太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911283231.7A CN112993067B (zh) 2019-12-13 2019-12-13 一种无机钙钛矿太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN112993067A true CN112993067A (zh) 2021-06-18
CN112993067B CN112993067B (zh) 2022-11-15

Family

ID=76341682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911283231.7A Active CN112993067B (zh) 2019-12-13 2019-12-13 一种无机钙钛矿太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN112993067B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196883A (zh) * 2021-11-16 2022-10-18 国科大杭州高等研究院 一种钙钛矿介孔玻璃的制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016145860A1 (zh) * 2015-03-13 2016-09-22 北京大学 一种具有有机骨架结构的钙钛矿太阳能电池及其制备方法
CN107154459A (zh) * 2016-03-04 2017-09-12 深圳清华大学研究院 掺杂钙钛矿型薄膜太阳能电池及制备方法
CN107204379A (zh) * 2017-05-12 2017-09-26 中国科学院化学研究所 一种高质量无机钙钛矿薄膜及其制备方法和在太阳能电池中的应用
EP3223323A1 (en) * 2016-03-24 2017-09-27 Ecole Polytechnique Fédérale de Lausanne (EPFL) High efficiency large area perovskite solar cells and process for producing the same
WO2018043910A1 (ko) * 2016-08-31 2018-03-08 대주전자재료 주식회사 페로브 스카이트 태양전지 효율 향상을 위한 정공수송물질
CN110246917A (zh) * 2019-06-26 2019-09-17 西南石油大学 一种无机钙钛矿太阳能电池及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016145860A1 (zh) * 2015-03-13 2016-09-22 北京大学 一种具有有机骨架结构的钙钛矿太阳能电池及其制备方法
CN107154459A (zh) * 2016-03-04 2017-09-12 深圳清华大学研究院 掺杂钙钛矿型薄膜太阳能电池及制备方法
EP3223323A1 (en) * 2016-03-24 2017-09-27 Ecole Polytechnique Fédérale de Lausanne (EPFL) High efficiency large area perovskite solar cells and process for producing the same
WO2018043910A1 (ko) * 2016-08-31 2018-03-08 대주전자재료 주식회사 페로브 스카이트 태양전지 효율 향상을 위한 정공수송물질
CN107204379A (zh) * 2017-05-12 2017-09-26 中国科学院化学研究所 一种高质量无机钙钛矿薄膜及其制备方法和在太阳能电池中的应用
CN110246917A (zh) * 2019-06-26 2019-09-17 西南石油大学 一种无机钙钛矿太阳能电池及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196883A (zh) * 2021-11-16 2022-10-18 国科大杭州高等研究院 一种钙钛矿介孔玻璃的制备方法及其应用
CN115196883B (zh) * 2021-11-16 2024-04-05 国科大杭州高等研究院 一种钙钛矿介孔玻璃的制备方法及其应用

Also Published As

Publication number Publication date
CN112993067B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
EP3304611B1 (en) Gas-induced perovskite formation
Ma et al. Doping in inorganic perovskite for photovoltaic application
CN107240643B (zh) 溴元素掺杂甲胺铅碘钙钛矿太阳能电池及其制作方法
CN108336233B (zh) 一种蓝黑色钙钛矿薄膜的制备方法及其应用
CN108389969B (zh) 一种用于制备钙钛矿太阳能电池钙钛矿层的绿色溶剂体系及混合溶液
CN110120455A (zh) 一种基于双效种子生长法的钙钛矿光伏薄膜制备方法
CN106299139B (zh) 一种离子掺杂的钙钛矿太阳能电池及其制造方法
CN106410035A (zh) 一种三步旋涂制备钙钛矿薄膜的方法及其应用
Wang et al. A modified sequential method used to prepare high quality perovskite on ZnO nanorods
CN109742241A (zh) 一种钙钛矿薄膜太阳能电池及其制备方法
CN111261745A (zh) 一种钙钛矿电池及其制备方法
CN110729403A (zh) 一种高质量有机-无机杂化钙钛矿薄膜的制备方法及应用
CN112993067B (zh) 一种无机钙钛矿太阳能电池及其制备方法
CN114678472A (zh) 一种FAPbI3钙钛矿薄膜及其高效的钙钛矿太阳能电池的方法
Ojha et al. Modifications in structural morphology of CH3NH3PbI3 perovskite using nitrilotriacetic acid and glycine as habit modifiers
Zhao et al. Highly efficient A-site cation exchange in perovskite quantum dot for solar cells
CN111509129B (zh) 一种制备高结晶度钙钛矿的方法及其产品应用
CN111244291B (zh) 一种高性能高稳定的FACs钙钛矿薄膜的制备方法
Verma et al. Characterization CH3NH3PbI3/TiO2 nano-based new generation heterojunction organometallic perovskite solar cell using thin-film technology
CN112420877B (zh) 一种以卤素化氧化石墨烯为添加剂及空穴传输层的钙钛矿太阳能电池及其制备方法
CN106571426B (zh) 一种以二氧化钛纳米管阵列为电子传输层的钙钛矿电池及其制备方法
CN113087633B (zh) 一类兼备界面钝化与空穴传输的空穴传输材料、其制备方法及其应用
CN114156414B (zh) 一种高效稳定CsPbI3无机钙钛矿电池的制备方法
CN109713061B (zh) 一种基于溶胶凝胶法制备铜铟镓硒吸收层的方法
CN113897681B (zh) 一种具有(110)取向的非铅钙钛矿单晶的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20210618

Assignee: CHINA NATIONAL NUCLEAR POWER Co.,Ltd.

Assignor: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES

Contract record no.: X2023210000071

Denomination of invention: An inorganic perovskite solar cell and its preparation method

Granted publication date: 20221115

License type: Exclusive License

Record date: 20230808

EE01 Entry into force of recordation of patent licensing contract