CN112898021A - 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法 - Google Patents
一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法 Download PDFInfo
- Publication number
- CN112898021A CN112898021A CN202110333559.6A CN202110333559A CN112898021A CN 112898021 A CN112898021 A CN 112898021A CN 202110333559 A CN202110333559 A CN 202110333559A CN 112898021 A CN112898021 A CN 112898021A
- Authority
- CN
- China
- Prior art keywords
- microwave dielectric
- dielectric material
- low
- temperature
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3239—Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Insulating Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明属于电子陶瓷及其制造领域,提供一种低温烧结微波介质材料及其制备方法;所述低温烧结微波介质材料为:Mg2‑xCoxV2O7(0.5≤x≤1.0),其晶相为:Mg2V2O7,晶体结构为:单斜晶体结构、钴离子和镁离子共同占据A位。本发明中,钴离子的加入使微波介质的晶相Mg2V2O7从三斜结构转变为单斜结构,且晶粒长大、原子堆积率提高,从而获得了Q×f值的极大提升;同时,实现了860~870℃的低温烧结,解决了微波介质材料烧结温度偏高的问题。本发明提供低温烧结微波介质材料在860~870℃烧结温度下拥有优良的微波介电性能:介电常数为8~9、Q×f值为66000~72000GHz、谐振频率温度系数为‑30~‑26ppm/℃;并且,该低温烧结微波介质材料制备工艺简单、生产成本低,有利于实现工业化生产。
Description
技术领域
本发明属于电子陶瓷及其制造领域,涉及微波介质陶瓷Mg2V2O7的掺杂改性,具体涉及一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法。
背景技术
低温共烧陶瓷(LTCC)技术已被广泛应用于微波器件制备领域,如移动电话、卫星广播、雷达等。应用于实际的微波介质材料需要具备低介电损耗,适当的介电常数及近零谐振频率温度系数。MgO-V2O5系钒酸盐以其固有烧结温度低、微波性能优良等优点而被广泛关注, Joung等人在期刊Journal of the American Ceramic Society中发表了文章“Formation and Microwave Dielectric Properties of the Mg2V2O7 Ceramics”。文中采用固相反应法在950℃的烧结温度下制得Mg2V2O7微波介质陶瓷,其微波介电性能为εr=10.5、Q×f=58275GHz、τf=-26.9ppm/℃,其烧结温度依然较高,且微波介电性能有待提升。
基于此,本发明提供一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法。
发明内容
本发明的目的在于提供了一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法,基于微波介质陶瓷Mg2V2O7进行掺杂改性,进而降低烧结温度、提升微波介电性能。
为实现上述目的,本发明采用的技术方案如下:
一种低温烧结微波介质材料,其特征在于,所述微波介质材料的化学式为:Mg2- xCoxV2 O7,其中,0.5≤x≤1.0。
进一步的,所述微波介质材料的晶相为Mg2V2O7;所述微波介质材料的晶体结构为:单斜晶体结构,其中,镁离子与钴离子共同占据A位。
进一步的,所述低温烧结微波介质材料的制备方法,其特征在于,包括以下步骤:
步骤1:按照Mg2-xCoxV2O7(0.5≤x≤1.0)的摩尔比,以分析纯CoO、MgCO3、V2O5为原料进行配料;
步骤2:以酒精和锆球为球磨介质,将混合料在尼龙罐中球磨4~6小时,球磨后出料置于70℃烘箱中干燥;
步骤3:对干燥料进行过筛,然后置于坩埚中在700~750℃下预烧3~4小时,得到预烧料;
步骤4:以酒精和锆球为球磨介质,将预烧料在尼龙罐中球磨4~6小时,球磨后出料置于70℃烘箱中干燥;
步骤5:将干燥料与聚乙烯醇(PVA)溶液混合、造粒,在10~20MPa干压得到生坯;
步骤6:将生坯在860~870℃的温度烧结5~6小时,得到所述微波陶瓷材料。
本发明的有益效果在于:
1.本发明提供一种低温烧结微波介质材料Mg2-xCoxV2O7(0.5≤x≤1.0),其晶相为:Mg2V2O7,晶体结构为:单斜晶体结构,钴离子和镁离子共同占据A位;钴离子的加入使该微波介质的晶相Mg2V2O7从三斜结构转变为单斜结构,且晶粒长大,原子堆积率提高,从而获得了Q×f值的极大提升,为实现低温共烧陶瓷(LTCC)技术提供了候选材料;
2.Mg2V2O7和Co2V2O7的晶格类型相同,钴与镁的离子键价相差不大、且离子半径接近,故在该微波介质材料中钴离子与镁离子共同占据A位而形成了固溶体,从而实现了860~870℃的低温烧结,解决了微波介质材料烧结温度偏高的问题。
综上所述,本发明提供低温烧结微波介质材料Mg2-xCoxV2O7(0.5≤x≤1.0),其在860~870℃烧结温度下拥有优良的微波介电性能:介电常数为8~9、Q×f值66000~72000GHz、谐振频率温度系数为-30~-26ppm/℃,尤其在x=0.5时,所述低温烧结微波介质材料在870℃烧结温度下微波介电性能为:εr=8.3、Q×f=72639GHz、τf=-29ppm/℃;同时,该低温烧结微波介质材料制备工艺简单、生产成本低,有利于实现工业化生产
附图说明
图1为实施例3制备得微波介质材料Mg2-xCoxV2O7(x=0.5)的XRD图。
图2为实施例3制备得微波介质材料Mg2-xCoxV2O7(x=0.5)的SEM图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
本发明共提供3个实施例,每个实施例提供的低温烧结微波介质材料配方为:Mg2- xCox V2O7,其中,x=0.5、0.75、1.0;所述低温烧结微波陶瓷材料均采用如下方法进行制备:
步骤1:按照Mg2-xCoxV2O7(0.5≤x≤1.0)的摩尔比,以分析纯CoO、MgCO3、V2O5为原料进行配料;
步骤2:以酒精和锆球为球磨介质,将混合料在尼龙罐中球磨4~6小时,球磨后出料置于70℃烘箱中干燥;
步骤3:对干燥料进行过筛,然后置于坩埚中在700~750℃下预烧3~4小时,得到预烧料;
步骤4:以酒精和锆球为球磨介质,将预烧料在尼龙罐中球磨4~6小时,球磨后出料置于70℃烘箱中干燥;
步骤5:将干燥料与聚乙烯醇(PVA)溶液混合、造粒,在10~20MPa干压得到生坯;
步骤6:将生坯在860~870℃的温度烧结5~6小时,得到所述微波陶瓷材料。
以上3个实施例的具体工艺参数及微波介电性能如下表所示:
编号 | 组成 | 烧结温度(℃) | 烧结时长(h) | ε<sub>r</sub> | Q×f值(GHz) | τ<sub>f</sub>(ppm/℃) |
实施例1 | x=0.5 | 870 | 5 | 8.31 | 72639 | -29.6 |
实施例2 | x=0.75 | 860 | 5 | 8.99 | 69731 | -30.4 |
实施例3 | x=1.0 | 870 | 5 | 9.21 | 66463 | -26.4 |
由上表可见,本发明提供低温烧结微波介质材料Mg2-xCoxV2O7(0.5≤x≤1.0),其在860 ~870℃烧结温度下拥有优良的微波介电性能:介电常数为8~9、Q×f值为66000~72000GHz、谐振频率温度系数为-30~-26ppm/℃。实施例1制备得微波介质材料Mg2-xCoxV2O7(x=0.5)的X RD图、SEM图分别如图1、图2所示。由图可见,实施例1制备得微波介质材料Mg2-xCox V2O7(x=0.5)的XRD衍射图样与单斜结构的Mg2V2O7完全匹配,表明了晶相Mg2V2O7从三斜结构向单斜结构的转变;SEM微观形貌显示陶瓷晶粒排列致密,晶粒尺寸明显增大,在低温870℃烧结的基础上,获得了Q×f值的极大提升。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。
Claims (3)
1.一种低温烧结微波介质材料,其特征在于,所述微波介质材料的化学式为:Mg2- xCoxV2O7,其中,0.5≤x≤1.0。
2.按权利要求1所述低温烧结微波介质材料,其特征在于,所述微波介质材料的晶相为Mg2V2O7;所述微波介质材料的晶体结构为:单斜晶体结构,其中镁离子与钴离子共同占据A位。
3.按权利要求1所述低温烧结微波介质材料的制备方法,其特征在于,包括以下步骤:
步骤1:按照Mg2-xCoxV2O7(0.5≤x≤1.0)的摩尔比,以分析纯CoO、MgCO3、V2O5为原料进行配料;
步骤2:以酒精和锆球为球磨介质,将混合料在尼龙罐中球磨4~6小时,球磨后出料置于70℃烘箱中干燥;
步骤3:对干燥料进行过筛,然后置于坩埚中在700~750℃下预烧3~4小时,得到预烧料;
步骤4:以酒精和锆球为球磨介质,将预烧料在尼龙罐中球磨4~6小时,球磨后出料置于70℃烘箱中干燥;
步骤5:将干燥料与聚乙烯醇(PVA)溶液混合、造粒,在10~20MPa干压得到生坯;
步骤6:将生坯在860~870℃的温度烧结5~6小时,得到所述微波陶瓷材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110333559.6A CN112898021B (zh) | 2021-03-29 | 2021-03-29 | 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110333559.6A CN112898021B (zh) | 2021-03-29 | 2021-03-29 | 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112898021A true CN112898021A (zh) | 2021-06-04 |
CN112898021B CN112898021B (zh) | 2022-05-31 |
Family
ID=76109354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110333559.6A Active CN112898021B (zh) | 2021-03-29 | 2021-03-29 | 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112898021B (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08259325A (ja) * | 1995-03-28 | 1996-10-08 | Oki Electric Ind Co Ltd | マイクロ波用誘電体セラミックス |
CN102412393A (zh) * | 2011-09-26 | 2012-04-11 | 河北联合大学 | 一种采用高温固相法合成Mg2V2O7纳米颗粒的方法及应用 |
CN103030394A (zh) * | 2013-01-27 | 2013-04-10 | 桂林理工大学 | V基低温烧结微波介质陶瓷材料及其制备方法 |
US20160352314A1 (en) * | 2013-08-22 | 2016-12-01 | Nathan Newman | High performance microwave dielectric systems and methods |
CN108358633A (zh) * | 2018-05-24 | 2018-08-03 | 电子科技大学 | 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法 |
CN110272263A (zh) * | 2018-03-13 | 2019-09-24 | 中国科学院上海硅酸盐研究所 | 一种低温共烧陶瓷介质材料及其制备方法 |
CN110357628A (zh) * | 2019-08-01 | 2019-10-22 | 电子科技大学 | 一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法 |
CN110590360A (zh) * | 2019-10-17 | 2019-12-20 | 大连理工大学 | 一种低温制备BaMg2V2O8微波介质陶瓷粉体的方法 |
CN111548158A (zh) * | 2020-05-19 | 2020-08-18 | 电子科技大学 | 超低温烧结微波介质复合材料Sr1-xCaxV2O6及其制备方法 |
-
2021
- 2021-03-29 CN CN202110333559.6A patent/CN112898021B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08259325A (ja) * | 1995-03-28 | 1996-10-08 | Oki Electric Ind Co Ltd | マイクロ波用誘電体セラミックス |
CN102412393A (zh) * | 2011-09-26 | 2012-04-11 | 河北联合大学 | 一种采用高温固相法合成Mg2V2O7纳米颗粒的方法及应用 |
CN103030394A (zh) * | 2013-01-27 | 2013-04-10 | 桂林理工大学 | V基低温烧结微波介质陶瓷材料及其制备方法 |
US20160352314A1 (en) * | 2013-08-22 | 2016-12-01 | Nathan Newman | High performance microwave dielectric systems and methods |
CN110272263A (zh) * | 2018-03-13 | 2019-09-24 | 中国科学院上海硅酸盐研究所 | 一种低温共烧陶瓷介质材料及其制备方法 |
CN108358633A (zh) * | 2018-05-24 | 2018-08-03 | 电子科技大学 | 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法 |
CN110357628A (zh) * | 2019-08-01 | 2019-10-22 | 电子科技大学 | 一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法 |
CN110590360A (zh) * | 2019-10-17 | 2019-12-20 | 大连理工大学 | 一种低温制备BaMg2V2O8微波介质陶瓷粉体的方法 |
CN111548158A (zh) * | 2020-05-19 | 2020-08-18 | 电子科技大学 | 超低温烧结微波介质复合材料Sr1-xCaxV2O6及其制备方法 |
Non-Patent Citations (7)
Title |
---|
CAO HUIMIN 等: "Low temperature sintering and microwave dielectric properties of Mg2-xCoxV2O7 ceramics", 《CERAMICS INTERNATIONAL》 * |
K.FRITSCH 等: "Crystal growth and characterization of the magnetically dilute kagome staircase system (Co(1−x)Mgx)3V2O8", 《JOURNAL OF CRYSTAL GROWTH》 * |
LL SURAT.: "Phase equilibria of the MO-CoO-V2O5 (M = Mg, Zn, Cd) systems", 《RUSSIAN JOURNAL OF INORGANIC CHEMISTRY》 * |
MI-RI JOUNG 等: "Effect of Li2CO3 Addition on the Sintering Temperature and Microwave Dielectric Properties of Mg2V2O7 Ceramics", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 * |
MI-RI JOUNG 等: "Formation and Microwave Dielectric Properties of the Mg2V2O7 Ceramics", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 * |
曹宵 等: "LTCC微波介质陶瓷的研究进展", 《材料导报A:综述篇》 * |
王丹: "具有超低烧结温度的铋基钒酸盐陶瓷的制备及介电性能研究", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》 * |
Also Published As
Publication number | Publication date |
---|---|
CN112898021B (zh) | 2022-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102531581B (zh) | 一种中介电常数高q值微波介质陶瓷及其制备方法 | |
CN108516826B (zh) | 一种含Sn中介微波介质陶瓷材料及其制备方法 | |
CN114874010B (zh) | 一种微波陶瓷材料DyVO4及其制备方法 | |
CN108358633B (zh) | 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法 | |
CN111943671A (zh) | 一种宽烧结温区低损耗微波介质陶瓷及其制备方法 | |
CN110229004B (zh) | 一种低温烧结微波介质陶瓷材料及其制备方法 | |
CN114907124A (zh) | 一种微波介质材料TmVO4及其制备方法 | |
CN113735580B (zh) | 一种复相微波介质陶瓷及其冷烧结制备方法 | |
CN113896530B (zh) | 一种温度稳定的改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法 | |
CN111635223A (zh) | 一种复合微波介质陶瓷及其制备方法 | |
CN108975913B (zh) | 一种ZnO-TiO2-Nb2O5基LTCC材料及其制备方法 | |
CN114736012B (zh) | 具有超高q值的低介微波介质陶瓷及其ltcc材料 | |
CN112898021B (zh) | 一种低温烧结微波介质材料Mg2-xCoxV2O7及其制备方法 | |
CN113582690B (zh) | 一种超低温烧结微波介质材料Zn2V2O7及其制备方法 | |
CN111646796B (zh) | 低温烧结低介微波陶瓷材料Sr2VxO7及其制备方法 | |
CN112898022B (zh) | 一种超低温烧结微波介质材料Ca2V2O7-H3BO3及其制备方法 | |
CN104692792A (zh) | 低温烧结温度稳定型锡酸盐微波介质陶瓷材料 | |
CN111825445B (zh) | 一种高介电常数微波介质陶瓷材料、制备及其应用 | |
CN110317057B (zh) | 一种中介电常数低温共烧陶瓷材料和制备方法 | |
CN113816736A (zh) | 一种超低温烧结的低介低损耗ltcc材料及其制备方法 | |
CN110357628B (zh) | 一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法 | |
CN112851333A (zh) | 一种高q值微波介质陶瓷材料及其制备方法 | |
CN113072373A (zh) | 一种适用于5g毫米波通讯应用的温度稳定型低介陶瓷材料及其制备方法 | |
CN111302795A (zh) | 一种锂镁铌铝钨系微波介质陶瓷及其制备方法 | |
CN114804867B (zh) | 适合热压烧结的陶瓷介质材料、陶瓷器件及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |